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Abstract 
In previous work, a speech enhancement algorithm based on 
phase opponency and a periodicity measure (MPO-APP) was 
developed for speech recognition.  Axiomatic thresholds were 
used in the MPO-APP regardless of the signal-to-noise ratio 
(SNR) of the corrupted speech or any characterization of the 
noise.  The current work developed an algorithm for adjusting 
the threshold in the MPO-APP based on the SNR and 
whether the speech signal is clean, corrupted by aperiodic 
noise or corrupted with noise with periodic components.  In 
addition, variable frame rate (VFR) analysis has been 
incorporated so that dynamic regions in the speech signal are 
more heavily sampled than steady-state regions.  The result is 
a 2-stage algorithm that gives superior performance to the 
previous MPO-APP, and to several other state-of-the-art 
speech enhancement algorithms. 
Index Terms: Speech enhancement, robust speech recognition, 
SNR estimation, variable frame rate analysis, phase opponency. 

1. Introduction 
Several approaches have been explored to improve noise-
robustness of automatic speech recognition (ASR) systems. 
One such approach is to enhance the speech signal by 
suppressing the noise while retaining the speech contents 
undistorted. Such a technique is usually used within the front-
end of an ASR system prior to estimating the features that will 
be used for recognition. The Modified Phase Opponency 
(MPO) algorithm together with a periodicity summary 
measure (MPO-APP) has been proposed [1] as a stand-alone 
speech enhancer for this kind of application. The MPO-APP 
passes as-is the harmonics in the formant regions of the 
speech signal and attenuates the rest. Objective measures 
show that the MPO-APP has comparable performance to 
many other speech enhancement techniques, but has superior 
performance in fluctuating noise [1].  However, at low SNRs 
(below 0 dB), MPO-APP is found to suffer from speech 
deletions. This happens due to the severe masking effect of 
the noise, especially at higher frequencies, whose energy is 
usually weaker due to the natural roll-off of the glottal 
spectrum.  

Recent studies on the functional dependence of the 
periodicity summary thresholds (�th) on ASR recognition 
accuracy for the MPO-APP enhanced speech reveals that for 
optimal performance, �th  should vary with the SNR and also 
with the noise type.  Thus, optimal performance necessitates a 
priori knowledge about the noise type and it’s SNR for the 
input speech, which are usually unknown for real-world 
problems. The studies also showed that at a given SNR, the 
thresholds for broad categories of the noise (i.e., aperiodic 
noise, noise with periodic components and clean speech) 
show similar values. Also, for a given noise type, the 

thresholds are found to vary almost linearly with SNR levels. 
These two facts suggest that given a priori knowledge about 
the broad noise type and its SNR, sub-optimal �th values can 
be predicted which ensures near-optimal performance of the 
MPO-APP in terms of ASR accuracy. It is also observed that 
the performance of the MPO-APP enhancement improves 
with an increase in the SNR.  

These observations led us to a 2-stage architecture as a 
refinement to the MPO-APP algorithm.  In the first stage, a 
preprocessor is used to (a) estimate the SNR of the input 
speech, (b) reduce the quasi-stationary noise component from 
the input speech, (c) obtain the broad noise type of the input 
speech (i.e., whether the noise is clean, or contains a periodic 
component (e.g., babble noise, airport noise etc which 
typically has a multitude of background speakers), or is 
strictly aperiodic in nature (e.g., car noise, subway noise etc.), 
and (d) predict near optimal periodicity thresholds for MPO-
APP based upon the estimated SNR and the detected broad 
noise type. A more aggressive noise reduction is performed in 
the second stage using the MPO-APP architecture, which uses 
the optimal periodicity thresholds obtained from the first 
stage. Prior to recognition, feature extraction is performed 
using variable frame rate (VFR) analysis [8, 9]. VFR analysis 
aims to oversample frames during speech segments showing 
high spectral dynamics, which can be considered important 
for recognition, while sparsely sampling steady-state 
segments. Results indicate that the combination of the 2-stage 
MPO-APP based speech enhancement architecture with VFR 
provides considerable improvement in recognition 
performance in noisy conditions over the baseline as well as 
some of the other noise-robust approaches. 

2. The data 
The evaluation of the preprocessor based MPOAPP with VFR 
is performed by using ASR experiments on the Aurora-2 [3] 
dataset. The Aurora-2 dataset is created from the TIdigits 
dataset, which consists of connected digits spoken by an 
American English talker sampled at 8kHz. There are three 
sections in this data set, test-set A, B and C; where sets A and 
B have four subparts representing four different noises 
(altogether eight different noise types). Section C contains 
two subsections representing two noise types from section A 
and B, but involving a different channel. As channel effects 
are not considered in our approach, test-set C is ignored in 
this research. Only the training in clean and the testing in 
noisy scenario was used. 

3. The Pre-processor based MPO-APP 
The MPO-APP [2, 4] first performs MPO enhancement on 
the speech and then a summary periodicity confidence 
measure [2] is used to remove noise insertions (occurs when 
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the noise has narrow-band resonances) and reinsert speech 
deletions (occurs when the speech signal appears wide band 
due to two closely-spaced formants, e.g., when F2 and F3 
moves closer to each other in /r/). The present work uses a 
summary periodicity energy measure (Êper) as opposed to a 
summary periodicity confidence measure to obtain �low and 
�high, as the former is found to be the more reliable indicator 
of voicing. 

The periodicity measure uses two thresholds.  The lower 
threshold, �low, deals with noise insertions and a higher 
threshold, �high, deals with speech deletions. In the initial 
implementation of MPO-APP [4], �low was estimated from 
clean speech and it was assumed that �low does not change 
with varying background conditions. Keeping �high equal to 
�low+2, we varied �low and performed speech enhancement on 
a subset of the Aurora corpus that we call the “dev-set” (200 
files selected randomly from each noise type and SNR level) 
and the recognition results are shown in Figure 1. It shows 
that (a) the optimal ASR performance depends upon the 
careful selection of �low (which we term as �lowopt) and (b) 
�lowopt varies with SNR.  
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Figure 1. Plot of ASR accuracy on the dev-set obtained by 

varying �low, and maintaining �high=2+�low, for clean speech and 
speech with babble noise at 5dB, 0dB and -5dB SNRs. The 

square points represent the Rec. acc. at �lowopt for babble at that 
specific SNR. 

 

Figure 2 shows the effect of �low on the ASR accuracy across 
different noise types at 20dB SNR for the dev-set. Figure 2 
presents the following interesting observations: (a) at a 
specific SNR, the �lowopt is found to vary with noise type and 
(b) �lowopt for aperiodic noise types (car, street, train-station, 
subway and exhibition noise; where recognition accuracy at 
�lowopt is shown in solid squares) show similar values and so 
does �lowopt for noises having periodic components due to 
background speakers (babble, airport, and restaurant noise; 
where recognition accuracy at �lowopt is shown in solid circles). 
The �lowopt’s for these two broad noise types are very different 
from one another. A priori knowledge about the noise types 
may not be possible for real world applications; however, 
broad noise types can be detected and hence suboptimal 
performance of the MPOAPP can be ensured. 

In the first stage of the proposed preprocessor based 
MPO-APP architecture, a VAD is constructed, whose 
decision is based upon Êper and other parameters obtained 
from the APP detector [5]. Figure 3 shows Êper for a speech 
file from Aurora which has been corrupted with subway noise 
at 10dB SNR. A threshold is used (which is a function of the 
statistics and the dynamic range of Êper, details about this 
procedure are beyond the scope of this paper) to distinguish 
between speech-dominant and speech-absent frames. The 
knowledge of the speech-dominant and speech-absent frames 
is used for: (a) estimating the SNR of the input speech, (b) 

obtaining the noise spectrum from speech absent frames to 
perform initial speech enhancement using signal theoretic 
approaches and (c) identifying the broad noise type from the 
spectral information of speech absent frames.  

3.1. Estimating the SNR 

The signal power at the speech-dominant frames and speech-
absent frames was used to estimate the SNR. Table 1, presents 
the SNR estimates averaged across test sets A and B. 
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Figure 2. Plot of ASR accuracy on the dev-set obtained by 

varying �low, and maintaining �high=2+ �low, for all noise types in 
Aurora at 20dB SNR. The solid points represent the �lowopt for 

each noise type. 
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Figure 3. Plot showing the performance of the VAD, the topmost 

spectrogram shows the clean speech (“eight five”), the second 
spectrogram shows the signal corrupted with subway noise at 
10dB, the curve at the bottom shows Êper, where the thicker 

regions are detected as speech present. 
 

Table. 1. SNR Estimate (Average for Aurora-2 test-set A & B) 
Prior SNR Estimate  

Mean (dB) Standard dev 
20dB 17.78 1.78 
15dB 13.01 1.64 
10dB 8.22 1.69 
5dB 3.41 1.66 
0dB -0.65 1.74 
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-5dB -2.82 1.79 

3.2. Pre-processing by signal theoretic approaches to 
lower quasi-stationary noise 

The MPO-APP passes narrow band components as-is without 
attenuating them. As a result, noise gets passed along with the 
speech in the speech-dominant regions (i.e., formant regions). 
When the speech signal is not sufficiently dominant to mask 
the noise, the noise becomes perceivable creating a ‘shadow-
effect’. It was also observed that the performance of the 
MPO-APP improves with increase in SNR.  To address these 
issues, the knowledge of the speech-absent frames is exploited 
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to perform initial enhancement of speech using signal 
theoretic approaches to reduce the quasi-stationary 
component of the noise. Two approaches have been 
considered for the initial enhancement: generalized spectral 
subtraction (GSS) [6] and speech enhancement by minimum 
mean square log-spectral amplitude estimator (LMMSE) [7].     
The knowledge of the speech absent frames is used to obtain a 
local average noise spectrum using equation (1)  
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where �n,t(�) is the noise spectrum estimate for a particular 
frame t, �avg(�) is the average noise spectrum over all the 
frames, �lavg,t(�) is the local average noise spectrum for frame 
t considering 10 frames before and 10 frames after t, and � is 
considered to be 0.5.  

3.3. Estimating the broad category of the noise 

The speech-absent frames were used to identify the broad-
noise type. Thirteen Linear Prediction Cepstral Coefficients 
(LPCC) are generated for the speech absent frames, using an 
analysis window of 20ms and an advance of 5ms, where the 
coefficients are normalized by C0, yielding 12 coefficients. 
These coefficients after normalization were used to train a 2-
hidden layer feed-forward Artificial Neural Network (ANN) 
with a goal to discern between clean speech, speech with 
aperiodic noise and speech with periodic noise components. It 
was empirically found that hidden layers with 75 processing 
elements (PE) in the first layer and 50 PEs in the second layer 
(with biases and tan-sigmoid transfer function in all layers) 
generated optimal results in terms of accuracy as well as 
computation time. Back-propagation with scaled conjugate 
gradient training was used to train the ANN, using the dev-set 
as the training corpus. The recognition accuracy for all the 
files in test-set A and B was 94.1%.  

The preprocessor based MPO-APP architecture is shown 
in Figure 4. �low for clean speech is globally set to be 14.0, 
which is inferred from empirical results. For the aperiodic 
noise or the noise with a periodic component, the appropriate 
piecewise linear curve shown in Figure 5 is used to obtain �low 
given the SNR estimate. Figure 5 is different from Figure 1 in 
the sense that the former uses the estimated mean SNR where 
as the latter uses the SNR specified by Aurora database. Both 
GSS and LMMSE suffer from deletion errors at low SNR. 
Feeding the enhanced speech from either of these two 
algorithms to MPO-APP ensures propagation of deletion 
errors. To circumvent this, a mixing of the original noisy 
speech is performed with the GSS or LMMSE enhanced 
speech, which ensures an increase in the SNR at the same 
time the noisy component reduces the probability of deletion 
error by MPO-APP, even if LMMSE and GSS suffers from 
those errors (see Figure 6 which shows that GSS deleted the 
2nd “zero”, however, the mixing allowed the MPO to detect 
that region). The mixing is performed using equation 2 

        [ ] [ ] (1 ) [ ] , 0 1mix preS n S n S n whereβ β β= + − ≤ ≤   (2) 

where Smix[n] is the mixed signal which is fed to the MPO-
APP, � is the mixing coefficient, Spre[n] is the pre-enhanced 
speech and S[n] is the noisy speech. ASR experiments at 
different noise types and noise levels suggest that � is a 
function of SNR and noise type. This is because (1) MPO-
APP is known to perform well at high SNRs, hence at higher 
SNRs, � can be close to zero if not zero, (2) as the SNR is 
lowered, performance of the MPO-APP degrades, hence, 
improving the SNR by increasing � helps to improve the 

performance of MPO-APP but � is constrained by the amount 
of deletion errors suffered by GSS or LMMSE. The estimated 
SNR and the noise broad-class are used to obtain the lower 
periodicity threshold, �low and the mixing coefficient, � 
(where � is also modeled as a piecewise linear function of 
SNR (based on empirical data), given broad noise type). ASR 
experiments with �high shows that it has relatively less 
contribution to ASR accuracy as compared to �low. Hence no 
direct estimation of �high was performed. Instead, it is set to 
�high = 1.46 + �low. In the second stage the thresholds and the 
partially cleaned signal from the first stage is used by the 
MPO-APP to perform a more aggressive speech 
enhancement.  

 
Figure 4. Block-diagram of the preprocessor based MPO-APP 
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Figure 5. Curves used to estimate �low given the estimated SNR 

and the knowledge of the broad noise type. 
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Figure 6. Spectrograms showing (a) clean speech with words 

“Three Zero Five One Zero Eight One”, (b) the same speech with 
5dB car noise, (c) the noisy speech after enhanced by GSS (d) the 

noisy speech after MPO-APP enhancement using GSS 
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4. Variable Frame Rate (VFR) analysis 
Variable frame rate (VFR) analysis aims to oversample frames 
during speech segments showing high spectral dynamics, 
since these regions have been shown to be perceptually 
important, while sparsely sampling other segments. Thus, 
perceptually rich signal segments are captured at higher 
resolutions. VFR has been shown to improve the noise 
robustness of ASR [8], [9]. An integral component of VFR 
analysis is VAD since it allows for sparse sampling of frames 
during non-speech segments, even if the corresponding signal 
shows relatively high spectral dynamics. However, since the 
performance of VAD algorithms tend to degrade at lower 
SNRs, the overall performance of the VFR feature extraction 
system can be expected to degrade as well. The high noise 
suppression during non-speech segments achieved by the 
proposed enhancement architecture makes the VAD a simpler 
task, and even allows for the use of less complex VAD 
algorithms. In this study, VFR analysis was implemented 
using a low-complexity VAD based on frame energy. 

5. Results 
Results show that the GSS based architecture offers better 
recognition accuracy than its LMMSE counterpart. The 
feature vector and the HMM model for the experiments in our 
research are kept the same as specified for use with the 
Aurora-2 dataset [3]. Figure 7 shows the average ASR 
recognition accuracy for only aperiodic noise types whereas 
Figure 8 shows the same for noises having periodic 
components. From Figures 7-8 it is evident that the 
preprocessor based MPO-APP outperformed the MPO-APP 
proposed in [2]. Table 2 presents the word accuracies 
according to Hirsch and Pierce [3], where the word accuracies  
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Figure 7. Average recognition accuracy for aperiodic noise types 
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Figure 8. Average recognition accuracy for periodic noise types 

for a test set are averaged across all the noise types for SNRs 
between 0dB and 20dB. The table suggests that the 
preprocessor based MPOAPP enhancement helped to improve 
the recognition accuracy significantly over the baseline and 
the performance is improved further by the VFR analysis.  
 

Table 2. Average word recognition accuracy for the Aurora-2 
database 

6. Conclusion 
Comparing the contents of Table 2, it can be seen that 
GSSMPOAPP+VFR offered the best recognition accuracy. 
Also from Figure 7-8, it is evident that the preprocessor based 
MPO-APP architecture consistently outperformed the other 
competing enhancement schemes considered in this study. 
MPOAPP uses a spectro-temporal mask to discern noise 
dominant regions from speech dominant ones; future research 
should consider using this mask to implement a missing 
feature technique to further improve ASR noise robustness. 
Currently MPOAPP attenuates the noise with a constant 
factor, future research should exploit the estimated SNR to 
adaptively control the attenuation, which would help to retain 
consonantal information at higher SNRs and may improving 
ASR accuracy at those SNRs. 
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