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Abstract

In this paper, we present efficient HMM-based techniques for
estimating missing features. By assuming speech features to
be observations of hidden Markov processes, we derive a min-
imum mean-square error (MMSE) solution. We increase the
computational efficiency of HMM-based methods by downsam-
pling underlying Markov models, and by enforcing symmetry in
transitional probability matrices. When applied to features gen-
erally utilized in parametric speech coding, namely line spectral
frequencies (LSFs), the proposed methods provide significant
improvement over the baseline repetition scheme, in terms of
Itakura-Saito distortion and peak SNR.

Index Terms: Missing Features, Markov Process, Packet Loss
Concealment.

1. Introduction

In digital speech communication systems, transmitted data may
become lost or corrupted due to channel degradation. Specifi-
cally, transmission of speech over wireless communication sys-
tems relies on error detecting codes to determine the reliabil-
ity of received frames [1]. Packet-based systems, on the other
hand, are subject to arrival jitter, which may induce unaccept-
able delay for real-time speech applications [2]. In either sce-
nario, packet loss concealment (PLC) is applied at the receiver
to reconstruct speech frames.

To reduce the impact of lost frames, some studies have ap-
plied waveform substitution or extrapolation techniques in the
time domain [4]. Other studies have performed PLC for para-
metric coders in the parameter domain ([2],[3]). In this paper,
we present novel efficient HMM-based techniques for estimat-
ing missing speech features, with applications to packet loss
concealment. We assume speech parameters to be observations
of hidden Markov processes, and derive generalized MMSE es-
timates of missing features. In this way, we aim to capture the
natural progression of speech features in time by exploiting a
priori steady-state and transitional statistics. Furthermore, we
offer methods by which to increase the efficiency of the pro-
posed framework. Specifically, we utilize downsampling of un-
derlying Markov models, similar to [7], and the novel approach
of enforcing symmetry in transitional probability matrices.

This paper is organized as follows: In Section 2, we provide
derivations for MMSE HMM-based estimation. In Section 3,
we present methods for increasing computational efficiency of
the proposed estimation. Experimental results are provided in
Section 4, followed by conclusions in Section 5.
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2. HMM-Based Estimation

2.1. Interpreting Speech Parameters as Markov Processes

Parametric coders transmit feature vectors comprised of speech
parameters which are used to synthesize speech at the receiver.
Transmitted packets typically include spectral shape (such as
line spectral frequencies), gain, and pitch information [6]. In
this section we derive estimation techniques for a general miss-
ing feature, x,,, where n denotes time index.

Packet loss concealment (PLC) for parameter-based coders
in the feature domain can be generalized as estimating &+,
conditioned on reliable features x,, and x,+n, and given that
[Zn+1s- - -, TnyN—1] are missing. For some PLC applications,
future features (z,+n) may not be available, since this may
induce unacceptable delays [4]. In this section, however, we
derive missing feature estimation techniques in the general case,
where both past and future samples are available. The general
case solution can then be reduced to the specific solution based
solely on past observations.

We interpret speech parameters as observations of Markov
processes, as in [2]. In such a framework, parameter x,, is the
observation of a fully connected hidden Markov model (HMM)
with K states. We assume that state s; has a continuous obser-
vation probability distribution function (pdf) with mean ;.

Given the Markov property, we can express the transitional
probability between states at time index m as:
Q45 :P(Sm :i\sm,1 :]) (1)
We define the matrix A € R¥*¥ such that A (4, ) = as;.

Furthermore, we define the matrix B € R¥ *¥ such that:
B (i,j) = bij, where: bjj = P (Sm = t|$Sm+1 =17). (2)

We assume parameter values to be outputs of a Markov pro-
cess. For codec parameters with a continuous range of values,
we specify HMMs with continuous observation pdfs. For such
features, it may be most suitable to apply the minimum mean-
square error (MMSE) estimate, defined as [5]:

K
Enik = P (Snpk = ilTn, Tnin). 3)
i=1

2.2. Deriving State-Specific Probabilities

In this section we provide derivations for state-specific con-
ditional probabilities P (Sn+x = ¢|@n, Trn+N), Which are re-
quired by the MMSE solution. Using a Bayesian approach, the
conditional probabilities in Eq. 3 can be expressed as:
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P (sntk = i|Tn, TniN) =

Using the Markov property previously assumed, the left-hand
probability in the numerator of Eq. 4 can be approximated as:

P (Spntk =1,Zn) (5)
Z;; P (sntk = ilsntk—1 = J) P (Sn+k-1 = J,; Tn),
= for k > 0,

P (sp = ilzn) P(xy), fork =0

To infer the hidden state at time n we minimize the distortion
between the observed reliable feature and the underlying model:

P (sn =i|zn) = diq,, Where g, = argmin l|lzn — .U«jHQ-
J

Thus, Eq. 5 can be simplified as: ©)

P (susr = iyan) = P (2n) [A®e,, FRNC)
where the vector e; € R¥ is comprised of zeros, except for a
one at the j** element. As in the previous equation, we will
use the notation [m] ;) to refer to the j'" element of vector m.
The right-hand probability in the numerator of Eq. 4 can be

approximated as:

P (xn+N‘5n+k- =1, frn) ~ P ($n+N‘5n+k = Z) (®)
_ P(snyk =1, ZnyN)
P(Sn+k = ’L)

Note that the denominator of Eq. 8 is the steady-state proba-
bility of state ¢, denoted by 7 (7). Steady-state statistics can be
determined as the elements of the eigenvector of A or B corre-
sponding to the unit eigenvalue:

Am =7, and Bw = 7. ©)]

Furthermore, the numerator of Eq. 8 can be simplified by as-
suming the Markov property:
P (sn+k =i, TnyN) = (10)

ZJI'(:1 P (sntk = i|Sntk+1 = J) P (Sn+k41 = J, Tntn),

fork < N
SigninP (TntnN), fork =N
Thus Eq. 8 can simplified as:
o P@ntnN) [nv—r)
(x +N|S +k Z) p (Z) €qnin )
(11)

By substituting Eqs. 7 and 11 into Eq. 4, the underlying state
for time index n + k is inferred via:

P (sntr = i|Tn, TniN) (12)

a P (zn,xnen) 7 () [A eq":| &) [B eLZnJrN:|

The first term, which we refer to as «, is independent of state 7,
and is simply used to normalize the probability distribution:

-1
k= (fj %(Z) [A%e,,] [B(N_k)eqn+N](i)> (13)

i=1

@

The value « need not be explicitly determined during estimation
of z,,+k. Instead, x cancels from the solution by assuring that:

K
Z P ($pntk = t|Tn, Tnen) = 1.

i=1

(14)
We can infer the underlying state of a missing feature for
the case where future reliable features are not available by

marginalizing the observation x4 n:

P (s =ilen) = [ Plonar = ilon,anin) O
Tn+ N

15)
=2 [A“% } ,
1
K —1
where: & = APe . (16)
(L],

Depending on the availability of future observations, T+ is
determined by substituting either Eq. 12 or 15 into Eq. 3.

Note that [2] offers a similar derivation for estimation of
missing features. However, several important differences exist
between the two approaches. In [2], determining state-specific
probabilities of the reliable “boundary” feature requires HMM-
based decoding of a series of preceding features. In the pro-
posed method, such probabilities are determined simply by Eq.
6. Furthermore, in the proposed work, Eq. 12 includes the
steady-state probability in the denominator, which is missing
from the corresponding equation in [2]. Finally, in this paper,
we provide the solution for the scenario in which future obser-
vations are not available via marginalization of a generalized
solution conditioned on past and future observations.

3. Reducing the Complexity of
HMM-Based Estimation

3.1. Markov Model Downsampling

From Eq. 12, it can be observed that the size of underlying
signal models, K, has a large effect on the resulting complexity
of the proposed algorithm. As we previously explored in [7], we
propose to downsample the configuration of underlying Markov
models to increase the computational efficiency of HMM-based
estimation. Underlying models can either be trained at multiple
resolutions, or lower resolution statistics can be extracted from
a higher order model. Details are provided in [7].

3.2. Enforcing Transition Matrix Symmetry

From Section 2, the HMM-based estimation in the general miss-
ing feature framework is given by:

. K
P ($p4k = i|Tn, TnyN) = —— [A%)eqn} anrN]

7 (i)
a7

Note that Eq. 17 requires numerous self-multiplications of tran-
sitional matrices A and B. For large underlying Markov mod-
els (i.e. large K), this may prove computationally expensive.
However, certain statistical patterns of transitional matrices can
be exploited to reduce the complexity of Eq. 17.

Suppose A is symmetric. Its singular value decomposition
(SVD) then reveals equivalent input and output bases: A =
D, A, P}, where A, is diagonal and ®,, is orthonormal. The
self-multiplication of A can then be expressed as:

[B<N7k)e
(1)

W



AF = (8,A.9))" = ®.Af D], (18)

reducing the required computation due to the diagonal nature of
A,. If A and B are symmetric matrices, Eq. 17 becomes:

P(Sn-Hc - ilmnver-N) = (19)

K k g% N—k x *

I @Al ®le, | (@A) e
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Transitional matrices of LSF parameters show strong sym-

metric patterns. However, because such matrices are data-

generated, they are not perfectly symmetric, and we wish to add

a perturbation matrix A to A such that:

A=A+A=(A+A)7"=A". (20)

Because A is a transition probability matrix, its columns each
sum to unity, i.e. 17 A = 17, where 1 is an appropriately-sized
unity vector. Additionally, A should be as small as possible to
minimize its statistical effect on A. Thus, we have:

W

A = argmin ||A]pw st (1) 17A = 07 @1
A
(i) A+A=(A+A).

Here, pw indicates a weighted Frobenius norm where each en-
try in A can be weighted differently to avoid negative entries
1

in A. We weight A;; by A-Ta thereby restricting large
T A

changes in near-zero entries of A. Eqn. (21) can be posed as:
d = argmin ||d||Fw s.t. (1) Aeqgd = beg, (22)
d

where d = vec(A), and where A, and b, represent a set
of linear equality constraints on d imposed by (¢) and (4¢) from
Eq. 21. The first constraint in Eqn. 21 results in a set of n equal-
. . . 2_ .

ity constraints, and the second yields another - constraints.

n?4n ., 2 . .
Thus, Aeg € R 2 *™ represents an underdetermined lin-

ear system, and A.q,d = beg has an infinite set of solutions.
The weighted least-norm solution to this underdetermined set
of equations is well-known:

d =W 1AL (A, WAL b, (23)

where W is a weighting matrix and A is obtained by reshap-

*
ing d . A corresponding perturbation matrix for B can be found
similarly. It is important to note that the singular value decom-
positions and optimization techniques proposed in this section
are performed offline, and required complexity of these opera-
tions is therefore not an issue.

3.3. Complexity Analysis

Sections 3.1 and 3.2 present methods by which to reduce the
complexity of the original HMM-based estimation method of
Eq. 12, without noticeable degradation in performance. In this
section, we provide quantitative complexity analysis, and show
the efficient method of Eq. 19 to result in significant reductions
in required computation for error burst lengths of > 2.

The computational complexity associated with matrix mul-
tiplication of full matrices of size M x M is known to be
(0] (MS) If either of the matrices is known to be diagonal, this
sparse structure can be exploited, and the complexity reduces to
0O (M 2). If both matrices are diagonal, the complexity reduces
further to O (M). Using this, the number of required multipli-
cations for the standard method of Eq. 12 and reduced com-
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Figure 1: Induced Complexity of HMM-based Estimation of
Missing Features for Original Method (Eq. 12) and Reduced
Complexity Method (Eq. 19)

plexity method of Eq. 19 are plotted in Figure 1 as a function of
the duration of error burst. Note that R refers to the resolution
of the downsampled HMM. It is clear from Figure 1 that model
downsampling and enforcing matrix symmetry offers signifi-
cantly reduced complexity for error durations of > 2, making
the algorithm ideal for bursty channels. In fact, PLC schemes
can be implemented wherein Eq. 19 is applied only for missing
features occurring at least 2 frames into an error burst.

4. Experimental Results

The proposed estimation techniques were applied to speech fea-
tures generally utilized by parametric speech coders, namely
line spectral frequencies (LSFs). We simulated a bursty channel
for which we used a two-state model wherein state 0 incurred
no loss, and state 1 incurred a dropped packet with probability
1. The probability of self-transition within state 1 was twice
that of the probability of transition from O to 1. Note that within
the assumed model, the average burst duration is equal to:

Ave. Burst Duration = 2 (Error Rate) + 1. 24)

The proposed HMM-based framework was applied to 100
randomly selected utterances from the TIMIT database, sepa-
rate from the training set, and using the previously mentioned
channel model. Figure 2 provides an illustrative example of the
reconstruction of missing values for the 1°* LSF. ”"REP” refers
to the baseline scheme wherein reliable features are repeated
(as in [3]), whereas "HMM” refers to the proposed HMM-based
framework. It can be observed that proposed HMM-based es-
timation generally provides more accurate reconstructions, as
well as smoother transitions, relative to the baseline. The quan-
titative quality of reconstructed LSF feature trajectories was as-
sessed by peak-SNR (PSNR) and Itakura-Saito distortion (ISD).
Figure 3 and Table 1 provide results for R=7. Recall that the
difference between Eq. 15 and 12 is that the latter requires fu-
ture observations, whereas the former does not. It can be ob-
served that both HMM-based methods provide significant im-
provements relative to the baseline, in terms of PSNR and ISD.

Figure 4 provides results for estimation of missing LSF
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Figure 2: Reconstructed Trajectories for the 1°° LSF in the
Presence of Error Bursts. "REP” refers to the baseline repeti-
tion scheme, whereas "THMM” refers to HMM-based estimation
with R=7. Error burst are denoted by horizontal bars.
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Figure 3: Itakura-Saito Distortion for Estimation of Missing
LSF Features as a Function of Error Rate. "REP” refers to the
baseline repetition scheme, whereas "HMM?” refers to the pro-
posed HMM-based framework with R=7.

Table 1: Improvements in Peak-SNR (dB), relative to feature
repetition, for Estimation of Missing LSF Features as a Func-
tion of Error Rate, for R=7. Results are Averaged Across 10
Individual LSFs.

Error Rate (%) 5 10 15 20
HMM (Eq. 15) | 0.75 1.06 0.96 0.84
HMM (Eq. 12) | 3.62 3.62 3.64 3.46
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Figure 4: The Effect of Model Downsampling on PSNR for
HMM-based Estimation with Eq. 12 with a 5% Error Rate

vectors using reduced complexity estimation developed in Sec-
tion 3. Specifically, the figure illustrates the effect of HMM
downsampling on PSNR, for a 5.0% error rate. It can be ob-
served that performance of the proposed estimation technique
converges for R = 4, corresponding to 16 states. Note that this
corresponds to a model size that is significantly smaller than
those used previously in [2]. Furthermore, it was observed that
enforcing transition matrix symmetry had a negligible effect on
estimation performance in terms of ISD.

5. Conclusions

In this paper, we present efficient HMM-based estimation tech-
niques for missing speech features, with applications to para-
metric coding. By assuming features to be observations of hid-
den Markov processes, we derive the minimum mean-square
error solutions for estimating unreliable features. We explore
computationally efficient approximations to the derived solu-
tions by downsampling underlying Markov models, and by en-
forcing symmetry in transitional probability matrices. When
applied to features generally utilized by parametric coding,
the proposed estimation methods outperform baseline repetition
scheme in terms of both PSNR and ISD.
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