SAFE: a Statistical Algorithm for FO Estimation for Both Clean and Noisy
Speech

Wei Chu, Abeer Alwan

Department of Electrical Engineering
University of California, Los Angeles

{wei chu,

Abstract

A novel Statistical Approach for FO Estimation, SAFE, ispro
posed to improve the accuracy of FO tracking under both clean
and additive noise conditions. Prominent Signal-to-Ndse

tio (SNR) peaks in speech spectra are robust informatiorceou
from which FO can be inferred. A probabilistic framework is
proposed to model the effect of additive noise on voiceddpee
spectra. It is observed that prominent SNR peaks located in
the low frequency band are important to FO estimation, and
prominent SNR peaks in the middle and high frequency bands
are also useful supplemental information to FO estimation u
der noisy conditions, especially babble noise conditiorx- E
periments show that the SAFE algorithm has the lowest Gross
Pitch Errors (GPE) compared to prevailing FO trackers:_Bt
Praat, TEMPO, and YIN, in white and babble noise conditions
at low SNRs.

Index Terms. fundamental frequency estimation, pitch track-
ing, noise robust

1. Introduction

Accurate FO tracking in quiet and in noise is important for
serveral speech applications, such as speech coding.semaly
synthesis, and recognition.

Current FO tracking algorithms are mainly based on the
source-filter theory of speech production and estimate FO fo
voiced speech segments. These algorithms usually have two
stages. The first stage is to obtain FO candidates and the like
hood of voicing on a frame-by-frame basis. The second stage i
to use dynamic programming to decide the optimal FO and voic-
ing states for each frame. The FO candidate generation eetho
in the first stage can be classified into two categories: sing|
band and multi-band.

In the single-band method, a low-pass filter with a cut-off
frequency around 1000 Hz is usually applied to the speeeh sig
nal before extracting FO candidates. There are severaloteth
to generate FO candidates over the voiced speech, e.g. lhorma
ized cross correlation function [1], autocorrelation fiioe [2],
fundamentalness’ based on amplitude and frequency medula
tion [3], and average magnitude difference function [4].- Ac
cording to the experimental results in this study, the above
mentioned methods can work well under relatively clean con-
ditions.

In the multi-band method, a decision module is usually used
to reconcile the FO candidates generated from differenti®an
([5] [6] [7]).- The multi bands used by these methods focus
mainly on the low frequency region, i.e. less than 1000 Hz.
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Figure 1:A flowchart of SAFE.
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Some single-band and multi-band FO candidate generation
methods are also applied to noisy conditions ([8] [9] [10]).

Since FO harmonics in the middle or high frequency re-
gions may not be corrupted by noise (especially babble Joise
it is necessary for a noise robust FO estimation method to uti
lize this information. Because the reliability of diffetdmands
in FO estimation can vary, it is also necessary to reconbie t
FO estimation results from different bands. Current miodtird
methods [5] [7] mainly retain the FO candidates obtainedhfro
the most reliable band, which is a 'hard-decision’, while th
Licklider’'s pitch perception model uses an empiricallyséd
’soft-decision’ to merge information from different banf.

The proposed SAFE method also adopts a 'soft-decision’ ap-
proach, but merges the likelihoods of FO candidates from dif
ferent bands in a statistically-based framework.

In the following sections, the statistical effects of atldit
noise on clean voiced speech spectra are studied. Thiorelat
ship between the noise and information source for FO estimat
is modeled in a probabilistic framework.

2. SAFE: A Statistical Approach for FO
Estimation

The flowchart of SAFE is shown in Figure 1.



This paper focuses on estimating FO values over voi o
White noise, SNR=20dB

frames that may be corrupted by quasi-stationary additigen 50 : :

i i 16 Log of the short-term smoothed SNR
Suppose that the range of FO in hur_nan speech is 17%‘,\ ol = < Log of the long~term smoothod SNRL
to fmaz, and the frequency resolution of FO estimation O Multiples of the FO (217.4 Hz)
A, Sro is used to denote the set of all possible FO val 30
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Given a single observed noisy voiced fragpneorrupted by
a stationary additive noise, the probability off to be FO of 10
that frame can be expressedR§f|y, n). The most probable

FO denoted byf should be:
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Let Y; and N, denote the power spectrum of the noi White noise, SNR=0dB

voiced framey and noisen at frequencyl, respectively. Then
thea posteriori SNR at frequency denoted byy, is:

Y
7, = 10log;, Ki (2

SNR (dB)

As quasi-stationary noise is used in this study, the inarad

final frames of noisy speech are used to estimate noisy spe
The SNR~, is a measure of the spectral magnitude at f

quency! being contaminated by the noise. Obviously, lot

SNR peaks contain more information than valleys regarding -20; 50 1000 1500 2000 Py 3000

It is assumed that information contained in a set of local S frequency (Hz)

peaks denoted b{/C,, - - - , Cy,} are sufficient for FO estima

tion, WhereM 'S_t_he numt_)er of local SNR peaks. Thus, tne Figure 2: The SNR spectrum of a voiced frame of a female speaker

posterior probability of FO is: corrupted by different levels of additive white noise (2@&ndB). The
P(fly,n) = P(f|C1,---,Cwm,N) ?) number on top of each peak of the short-term smoothed SNReis th

value of the normalized difference SNR of that peakl;.
If assuming that the set of local SNR peaks are independent
in inferring the FO given noise shape and level, the oveasl p
terior probability can be presented as a weighted comloinati

of posterior probabilities denoted By( f|C, N): 0 can be assumed to be independentoénd f given~y,, By,

andN, i.e. p(é|m,~;, By, f,N) = p(d|v,,B:,N). The local

M SNR~, only depends on the band ind&; and noise condi-
P(fly,n) =Y w:P(f|Ci,N) 4 tion N, i.e. p(v,|m, By, f, N) = p(v,|Bi, N). Furthermore,
=1 P(m|f) andP(B;|m, f,IN) are assumed to be uniformly dis-
wherew; is the confidence measure of thelocal SNR peak. tributed. Then we can have:
gce;e:g‘htlr?gs;scgs E:zl;tliaa/s;med to have an equal confidence p(Cilf,N) = D - p(5,, Bi, N)p(v,|Bi, N) ®)
As the FO distribution given the noise, i.B(f|N), can be whereD is a constant.

assumed to be uniformly distributed when prior informati®n
not available,P(f|C;, N) can be calculated according to the ~ 2.1. Prominent SNR Peaks

B i le:
ayesian rule Before studying the distribution of the residual and loclRS

P(f|Ci,N) = p(Cilf,N) (5) peaks, it is important to select useful local SNR peaks for
> rese P(Cilf,N) FO estimation. Two smoothed SNRs denoted~gyand ~*
The local SNR pealC; is represented by the following are obtained by smoothing, with a Hamming window of

properties: the frequendy thea posteriori SNR=,, and the length fonin gnd fmax In Hz, respectively. Since the short-
frequency bandB; in which the frequency is. Because the term smoothing can reduce the number of false alarm local SNR

. h S ; S

frequency! does not usually exactly equal to the multiples of peaks ‘.'de retain '.:O |nf(_)rmat|o17, in Eq. 8 is changed tg;.

FOql canybe decomposed ir}wlto a mlilltip(’:eand a residuaipas To depict the relationship between the two smoothed SNRs, an
y SNR difference at thén local peak iny; denoted by, can be

follows:
I I expressed as follows:
m:[?}v 5:?—m (6) Ci:”"i_'ﬁw i=1,--,M )
where[L] denotes the nearest integer-of If the fraction of & where M is the number of the local peaks 4. ¢, is further

is exactly 0.5, it is rounded downwards. Note that the resdidu  normalized among all the peaks in the frame t@ pas follows:
ranges from -0.5 to 0.5. Then we have: B Ci—
=2 B i M. (10)

p(Cilf.N) = p(m, 5,7, Bil f,N) @ Gi= T
We assume that the deviation of the local SNR peak fromamul- where ¢ ando, are the mean and standard deviation of the
tiple of the FO, caused by noise, will not exceed half FO. €her sequencel,. The iy local SNR peak is only regarded as a

fore, m is independent of nois® and FO, i.e.P(m|f,N) = prominent SN R peak for FO estimation if, is above a cer-
P(m|f). After the decomposition shown in Eq. 6, the residual  tain threshold.



As shown in Figure 2, not all local SNR peaks are located
in the vicinity of multiples of FO. Most false alarm or deedt
peaks have a lower normalized SNR difference compared to the
peaks near the multiples of FO. Take the false alarm locddpea
around 300 Hz of the voiced frame in Figure 2 for example.
These peaks have a lowéy than the prominent peaks in the
two noise conditions. These peaks also have a lower noreaaliz
difference SNR compared to their adjacent prominent peaks.

The lower a peak is than the long-term smoothed SNR, the
more likely it is corrupted by the noise and shifted from itiggo
inal location, and the less likely it is to be close to the npldis
of the FO. Based on this conclusion, only prominent SNR peaks
which are less corrupted by the noise and less deviated fiem t
a multiple of FO can provide reliable information for infierg
FOs.

As mentioned above, only prominent SNR peaks are used
in Eq. 6, i.e. M is reduced to the number of prominent SNR
peaks.

2.2. Distribution of the Local SNR and Residual

Recall that the residual is dependent on the local SNR value
and the band index. To reduce the model complexity, it can be
assumed that the distribution of the local SNRy,|B;, N) in

Eq. 8 slightly changes whem, is rounded, i.e.:

p(’YllBl?N) zp(Q’Yz|Blvlq) (11)
whereQ,, denotes the SNR bin which, is rounded to. The
distribution can be learned by using a histogram-like apgino
based on the training set.

It can be assumed that this rounding does not significantly
change the distribution of the residual®|vy,, B;,N), i.e.:

p(5|’Yl7Bl7N) %p((s'Q’Y[vBhN) (12)

Curve-fitting or Gaussian mixture modeling can be used to
model the distribution of the residuals; however, it is impo
tant to control the number of parameters in the model which
enables training with limited data and prevents model over-
fitting. Doubly truncated Laplace distribution denoted by
p(6|p, b) is used for modeling the(5|Q~,,B:,N), i.e. the
distribution of residuals given the rounded SNR bin, barmtin
and noise condition:

A |0 — pl 1 1

l _ _l<§<
p(8lp,b) =< 2% eXp( b ) 55955 3

0 otherwise

wherep, andb represent the mean and variance, respectively.
is set to be(1 — e~ /?*)~" to ensuref; p(3|u,b) = 1. Only
two free parameter§., b) are estimated.

Given a sequence of residudls;, - - - , o } denoted by,
suppose all the residuals are i.i.d., we have:

N
p(A|u,b) = [ [ (il b) (14)
i=1

Leta = 1/2bandL(A|u, a) = log p(A|p, b), then:

N
L(Alu,a) = Nloga— Nlog(l —e™ %) — 2042 |6; — u| (15)
1=1
Under the maximum-likelihood criterion, the estimated
mean and variance denoted yandb (or &) should maximize
the joint probabilityp( A |u, b) which is equivalent to maximiz-
ing theL(A|p, ).
Sinced*L/op® = —2a 3N | §(8; —p) < Owhena > 0,

1=

L(Alp, ) with a fixeda > 0 achieves its maximum when

oL/ =0, i.e.

N
—200» " sgn(d; — 1) =0 (16)
i=1
Sinced’L£/8a® = e*/(e* —1)*—1/a® < Owhena > 0,
L achieves its maximum when. /0a = 0 andu = i, i.e.:

N

1 1 2 N

a @1 N hAl=0
1=1

Although there is no close-form solution to Egs. 16 and 17,
Newton’s method can be used to searchif@anda. Note that
b = 1/24. When a bin with a high rounded SNR does not have
training instances, no effort of running the mean and vagan
solvers is spared. In case some unseen residuals might have
higher SNRs, the mean is set to 0, and the variance is set to a
small value, e.90.01.

While the curve-fitting approach might result in a model
of high complexity and be over-fitted to the training data; ou
mathematical modeling approach can avoid these problems by
using prior knowledge about the shape of distribution.

(17

2.3. Post-Processing

For an utterance, the posterior probabilities, i¥.f|y, n) on
each frame is obtained by calculating Egs. 8 and 4. A dynamic
programming approach is used to not only smooth the tracked
FO contour but also to allow octave jumps at a certain cost [1]

The focus of the proposed method is to reduce the FO es-
timation error under both clean and noisy conditions. How-
ever, the voicing boundary can affect the results of FO track
ing [11]. To eliminate the uncertainty introduced by voigin
decision errors, the ground truth of voicing informatiomsed.
That means that the different FO tracking algorithms edéma
FO values over all voiced frames regardless of their SNRs.

3. Experiments

Gross Pitch Error (GPE) [12H{20% allowable deviation from
the ground truth) is used to evaluate the performance of O es
timation algorithms.

In this section, we compare the GPE using the KEELE [13]
and FDA [14] corpora. The 5 minute 37 second KEELE corpus
contains a simultaneous recording of speech and laryngbgra
signals for a phonetically-balanced paragraph which wad re
by 5 male and 5 female speakers. The 5 minute 32 second FDA
corpus is composed of laryngograph and speech signals from
one male and one female speaker. Each speaker read 50 sen-
tences in the FDA corpus. Ground truth FOs were obtained by
running an autocorrelation method on the laryngographasign
in addition to some manual correction ( [13] [14]).

Speech signals are downsampled from 20000 Hz to 16000
Hz for both corpora. Noise is artificially added to the cogpor
to test the robustness of the FO trackers under differergenoi
conditions. The program FaNT was used to employ white and
babble noise segments from the NOISEX92 corpus to generate
utterances with SNR of 20, 10, 5, 0, and -5 dB [11].

The parameters of SAFE are as follows: FFT size is 16384;
frequency resolution is 1 Hz; frame length and step size are
0.04 and 0.01 seconds, respectively;, and f,... are 50 and
400 Hz, respectively; the lengths of the short-term anddong
term windows for spectrum smoothing are 50 and 400 in Hz,
respectively. A peak is regarded as a prominent peak if the no
malized difference SNK; is greater than an empirically de-



termined threshold of 0.33; the ranges of the low, middie, an
high frequency bands are 0-1, 1-2, and 2-3 kHz, respectively
local SNRs of the peaks are rounded to the nearest value in the
following sequencéOr/3, wherer =0, 1,-- -, 21.

For the KEELE corpus, a 5-fold cross-validation scheme is | SNR (dB) | Clean || 20 | 10 | 5 | 0 | 5 |
applied. For each fold under a certain noise level, the spetc KEELE White Noise
one male and one female speaker are used for testing, the resi GetFo 562 569 310 209 7691 17.83
!Jal and SdNR rr;lodgl_s areééainfeifrolgwE?Eéemaining spe_ecrsj and Praat 3'22 3'16 4.28 6'11 11'53 30'91
its ground truth. Since of the corpus is voice - - - - : -
speech, if the frame step size is 0.01 seconds, each fold has TE’:ANPO ggi :23;"11 ggg :5332 15;3 iijg
about 14000 frames for training. Since there are 23 rounded : : : : : :
local SNR bins, if each voiced frame has 10 prominent peaks SAFE 2.98 3.01] 335] 366 | 406 .01

Table 1:The GPE (%) of the Ge0, Praat, TEMPO, YIN, and SAFE
using the KEELE and FDA corpora. Bold numbers representotivest
GPE in each column.

on average, each residual model has about 6000 samples for KEELE Babble Noise
training. Because some bins with high SNRs might have fewer GetFO0 287 | 7.19| 15.99| 29.76 | 58.40
training instances, e.g. 5% of the average - 300 samples, it i Praat 3.18| 8.33| 17.97 | 35.26 | 54.06
still possible to robustly train a doubly-truncated Lagaistri- TEMPO 4.69| 13.99 | 26.98 | 43.98 | 65.15
bution with only two free parameters. YIN 3.27 | 889 | 19.71| 36.75| 57.35

To determine the generalizablity of SAFE, the model SAFE 3.10 | 472 7.44 | 1588 | 39.23
trained from the KEELE corpus is used for the FDA corpus. EDA White Noise

The GPE comparison of the GED [1], Praat [2], GetF0 | 245 || 246 3.04] 394 6.73] 17.72
TEMP(_) [3], YIN [4], and proposed SAFE on KEELE corpus is Praat 557 5571 299 435 11.84 | 2754
shown in Table 1. All FO trackers perform well under clean-con TEMPO | 2.27 5591 287 507 11.64| 31.65

ditions with GPEs lower than 3.5%. All algorithms sufferrfro
performance degradation when the SNR drops. As expected, it
is more difficult to accurately estimate FO under babble enois

YIN 2.25 225 | 236 3.34| 5.20| 12.33
SAFE 2.40 241 | 269| 310 | 324 | 368

condition compared to white noise with the same SNR. The FDA Babble Noise

SAFE algorithm has the lowest GPE when the SNR is at or be- GetF0 2.86| 836 | 24.41| 46.41| 64.52
low 5 dB under white noise, and at or below 10 dB under babble Praat 2.65| 10.55| 27.15| 46.32 | 64.24
noise. We also ran experiments where only the low frequency | TEMPO 3.56 | 15.24 | 33.10 | 54.43 | 66.38
band (0-1 kHz) was used in SAFE. The GPE of SAFE with YIN 236 | 10.09 | 27.53 | 51.15| 68.22
only low-frequencies is higher than the standard SAFE, tilit s SAFE 261 | 414 7.73 | 19.32 | 57.17

lower than other FO tracking algorithms in low SNR condison
Although there is a mismatch between the KEELE and FDA
corpora, SAFE still has the lowest GPE on FDA under low SNR

conditions as it does for the KEELE corpus. [6] A.de Cheveigne, “Speech FO extraction based on Lickbdstch
perception model,ICPhS, 1991, pp. 218-221.
1 [7] F. Sha, J. Burgoyne, and L. Saul, “Multiband statistiesrning

4. Conclusions for FO estimation in speech|CASSP, 2004, vol. 5, pp. 661-664.
Prominent Signal-to-Noise Ratio (SNR) peaks constituiena s [8] D.Krusback and R. Niederjohn, “An autocorrelation pitbetec-
ple and an effective information source for FO inferenceaund tor and voicing decision with confidence measures develémed
both clean and noisy conditions. The statistical framewairk noise-corrupted speechlEEE Trans. on Sgnal Processing, vol.
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vide supplemental useful information for FO inference. The JASA, vol. 116, no. 6, pp. 3690-3700, 2004.
proposed SAFE algorithm is more effective in reducing th&GP  [10] O. Deshmukh, C.Y. Espy-Wilson, A. Salomon, and J. Sjiiglse
compared to prevailing FO trackers especially for low SNRs. of temporal information: Detection of periodicity, apeticity,

and pitch in speech,TEEE Trans. on Speech and Audio Process-
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