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Abstract

A novel Statistical Approach for F0 Estimation, SAFE, is pro-
posed to improve the accuracy of F0 tracking under both clean
and additive noise conditions. Prominent Signal-to-NoiseRa-
tio (SNR) peaks in speech spectra are robust information source
from which F0 can be inferred. A probabilistic framework is
proposed to model the effect of additive noise on voiced speech
spectra. It is observed that prominent SNR peaks located in
the low frequency band are important to F0 estimation, and
prominent SNR peaks in the middle and high frequency bands
are also useful supplemental information to F0 estimation un-
der noisy conditions, especially babble noise condition. Ex-
periments show that the SAFE algorithm has the lowest Gross
Pitch Errors (GPE) compared to prevailing F0 trackers: GetF0,
Praat, TEMPO, and YIN, in white and babble noise conditions
at low SNRs.
Index Terms: fundamental frequency estimation, pitch track-
ing, noise robust

1. Introduction
Accurate F0 tracking in quiet and in noise is important for
serveral speech applications, such as speech coding, analysis,
synthesis, and recognition.

Current F0 tracking algorithms are mainly based on the
source-filter theory of speech production and estimate F0 for
voiced speech segments. These algorithms usually have two
stages. The first stage is to obtain F0 candidates and the likeli-
hood of voicing on a frame-by-frame basis. The second stage is
to use dynamic programming to decide the optimal F0 and voic-
ing states for each frame. The F0 candidate generation methods
in the first stage can be classified into two categories: single-
band and multi-band.

In the single-band method, a low-pass filter with a cut-off
frequency around 1000 Hz is usually applied to the speech sig-
nal before extracting F0 candidates. There are several methods
to generate F0 candidates over the voiced speech, e.g. normal-
ized cross correlation function [1], autocorrelation function [2],
’fundamentalness’ based on amplitude and frequency modula-
tion [3], and average magnitude difference function [4]. Ac-
cording to the experimental results in this study, the above-
mentioned methods can work well under relatively clean con-
ditions.

In the multi-band method, a decision module is usually used
to reconcile the F0 candidates generated from different bands
([5] [6] [7]). The multi bands used by these methods focus
mainly on the low frequency region, i.e. less than 1000 Hz.
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Figure 1:A flowchart of SAFE.

Some single-band and multi-band F0 candidate generation
methods are also applied to noisy conditions ([8] [9] [10]).

Since F0 harmonics in the middle or high frequency re-
gions may not be corrupted by noise (especially babble noise),
it is necessary for a noise robust F0 estimation method to uti-
lize this information. Because the reliability of different bands
in F0 estimation can vary, it is also necessary to reconcile the
F0 estimation results from different bands. Current multi-band
methods [5] [7] mainly retain the F0 candidates obtained from
the most reliable band, which is a ’hard-decision’, while the
Licklider’s pitch perception model uses an empirically-based
’soft-decision’ to merge information from different bands[6].
The proposed SAFE method also adopts a ’soft-decision’ ap-
proach, but merges the likelihoods of F0 candidates from dif-
ferent bands in a statistically-based framework.

In the following sections, the statistical effects of additive
noise on clean voiced speech spectra are studied. This relation-
ship between the noise and information source for F0 estimation
is modeled in a probabilistic framework.

2. SAFE: A Statistical Approach for F0
Estimation

The flowchart of SAFE is shown in Figure 1.



This paper focuses on estimating F0 values over voiced
frames that may be corrupted by quasi-stationary additive noise.
Suppose that the range of F0 in human speech is fromfmin

to fmax, and the frequency resolution of F0 estimation is
∆, SF0 is used to denote the set of all possible F0 values
{fmin, fmin + ∆, · · · , fmax}.

Given a single observed noisy voiced framey corrupted by
a stationary additive noisen, the probability off to be F0 of
that frame can be expressed asP (f |y, n). The most probable
F0 denoted bŷf should be:

f̂ = arg max
f∈SF0

P (f |y, n) (1)

Let Yl and Nl denote the power spectrum of the noisy
voiced framey and noisen at frequencyl, respectively. Then
thea posteriori SNR at frequencyl denoted byγl is:

γl = 10 log
10

Yl

Nl
(2)

As quasi-stationary noise is used in this study, the initialand
final frames of noisy speech are used to estimate noisy spectra.

The SNRγl is a measure of the spectral magnitude at fre-
quencyl being contaminated by the noise. Obviously, local
SNR peaks contain more information than valleys regarding F0.
It is assumed that information contained in a set of local SNR
peaks denoted by{C1, · · · , CM} are sufficient for F0 estima-
tion, whereM is the number of local SNR peaks. Thus, the
posterior probability of F0 is:

P (f |y,n) = P (f |C1, · · · ,CM ,N) (3)

If assuming that the set of local SNR peaks are independent
in inferring the F0 given noise shape and level, the overall pos-
terior probability can be presented as a weighted combination
of posterior probabilities denoted byP (f |Ci,N):

P (f |y,n) =

M
X

i=1

wiP (f |Ci,N) (4)

wherewi is the confidence measure of theith local SNR peak.
If each local SNR peak is assumed to have an equal confidence
score, thenwi can be set to1/M .

As the F0 distribution given the noise, i.e.P (f |N), can be
assumed to be uniformly distributed when prior informationis
not available,P (f |Ci, N) can be calculated according to the
Bayesian rule:

P (f |Ci,N) =
p(Ci|f, N)

P

f∈SF0
p(Ci|f, N)

(5)

The local SNR peakCi is represented by the following
properties: the frequencyl, thea posteriori SNRγ l, and the
frequency bandBl in which the frequencyl is. Because the
frequencyl does not usually exactly equal to the multiples of
F0, l can be decomposed into a multiplem and a residualδ as
follows:

m =
ˆ l

f

˜

, δ =
l

f
− m (6)

where[ l
f
] denotes the nearest integer ofl

f
. If the fraction of l

f
is exactly 0.5, it is rounded downwards. Note that the residual
ranges from -0.5 to 0.5. Then we have:

p(Ci|f, N) = p(m,δ, γl, Bl|f,N) (7)

We assume that the deviation of the local SNR peak from a mul-
tiple of the F0, caused by noise, will not exceed half F0. There-
fore, m is independent of noiseN and F0, i.e.P (m|f,N) =
P (m|f). After the decomposition shown in Eq. 6, the residual
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Figure 2: The SNR spectrum of a voiced frame of a female speaker
corrupted by different levels of additive white noise (20 and 0 dB). The
number on top of each peak of the short-term smoothed SNR is the
value of the normalized difference SNR̄ζi of that peakli.

δ can be assumed to be independent ofm andf givenγl, Bl,
andN, i.e. p(δ|m,γl,Bl, f,N) = p(δ|γl,Bl,N). The local
SNR γl only depends on the band indexBl and noise condi-
tion N, i.e. p(γl|m,Bl, f,N) = p(γl|Bl,N). Furthermore,
P (m|f) andP (Bl|m, f,N) are assumed to be uniformly dis-
tributed. Then we can have:

p(Ci|f, N) = D · p(δ|γl,Bl,N)p(γl|Bl,N) (8)

whereD is a constant.

2.1. Prominent SNR Peaks

Before studying the distribution of the residual and local SNR
peaks, it is important to select useful local SNR peaks for
F0 estimation. Two smoothed SNRs denoted byγS

l and γL

l

are obtained by smoothingγl with a Hamming window of
length fmin and fmax in Hz, respectively. Since the short-
term smoothing can reduce the number of false alarm local SNR
peaks and retain F0 information,γl in Eq. 8 is changed toγS

l .
To depict the relationship between the two smoothed SNRs, an
SNR difference at theith local peak inγS

l denoted byζi can be
expressed as follows:

ζi = γ
S

li
− γ

L

li
, i = 1, · · · , M (9)

whereM is the number of the local peaks inγS

l . ζli
is further

normalized among all the peaks in the frame to beζ̄i as follows:

ζ̄i =
ζi − µζ

σζ

, i = 1, · · · , M. (10)

whereµζ andσζ are the mean and standard deviation of the
sequenceζi. The ith local SNR peak is only regarded as a
prominent SNR peak for F0 estimation ifζ̄i is above a cer-
tain threshold.



As shown in Figure 2, not all local SNR peaks are located
in the vicinity of multiples of F0. Most false alarm or deviated
peaks have a lower normalized SNR difference compared to the
peaks near the multiples of F0. Take the false alarm local peaks
around 300 Hz of the voiced frame in Figure 2 for example.
These peaks have a lower̄ζi than the prominent peaks in the
two noise conditions. These peaks also have a lower normalized
difference SNR compared to their adjacent prominent peaks.

The lower a peak is than the long-term smoothed SNR, the
more likely it is corrupted by the noise and shifted from its orig-
inal location, and the less likely it is to be close to the multiples
of the F0. Based on this conclusion, only prominent SNR peaks
which are less corrupted by the noise and less deviated from the
a multiple of F0 can provide reliable information for inferring
F0s.

As mentioned above, only prominent SNR peaks are used
in Eq. 6, i.e. M is reduced to the number of prominent SNR
peaks.

2.2. Distribution of the Local SNR and Residual

Recall that the residualδ is dependent on the local SNR value
and the band index. To reduce the model complexity, it can be
assumed that the distribution of the local SNRp(γl|Bl, N) in
Eq. 8 slightly changes whenγl is rounded, i.e.:

p(γl|Bl,N) ≈ p(Qγ l
|Bl,N) (11)

whereQγ l
denotes the SNR bin whichγl is rounded to. The

distribution can be learned by using a histogram-like approach
based on the training set.

It can be assumed that this rounding does not significantly
change the distribution of the residualsp(δ|γl,Bl,N), i.e.:

p(δ|γl, Bl,N) ≈ p(δ|Qγ l
,Bl,N) (12)

Curve-fitting or Gaussian mixture modeling can be used to
model the distribution of the residuals; however, it is impor-
tant to control the number of parameters in the model which
enables training with limited data and prevents model over-
fitting. Doubly truncated Laplace distribution denoted by
p(δ|µ, b) is used for modeling thep(δ|Qγ l

,Bl,N), i.e. the
distribution of residuals given the rounded SNR bin, band index
and noise condition:

p(δ|µ, b) =

(

A

2b
exp

“

−
|δ − µ|

b

”

−
1

2
≤ δ ≤

1

2
0 otherwise

(13)

whereµ andb represent the mean and variance, respectively.A
is set to be(1 − e−1/2b)−1 to ensure

R

δ
p(δ|µ, b) = 1. Only

two free parameters(µ, b) are estimated.
Given a sequence of residuals{δ1, · · · , δN} denoted by∆,

suppose all the residuals are i.i.d., we have:

p(∆|µ, b) =

N
Y

i=1

p(δi|µ, b) (14)

Let α = 1/2b andL(∆|µ, α) = log p(∆|µ, b), then:

L(∆|µ, α) = N log α − N log(1 − e−α) − 2α
N

X

i=1

|δi − µ| (15)

Under the maximum-likelihood criterion, the estimated
mean and variance denoted byµ̂ andb̂ (or α̂) should maximize
the joint probabilityp(∆|µ, b) which is equivalent to maximiz-
ing theL(∆|µ, α).

Since∂2L/∂µ2 = −2α
PN

i=1
δ(δi−µ) ≤ 0 whenα > 0,

L(∆|µ, α) with a fixedα > 0 achieves its maximum when

∂L/∂µ = 0, i.e.:

−2α

N
X

i=1

sgn(δi − µ̂) = 0 (16)

Since∂2L/∂α2 = eα/(eα−1)2−1/α2 < 0 whenα > 0,
L achieves its maximum when∂L/∂α = 0 andµ = µ̂, i.e.:

1

α̂
−

1

eα̂ − 1
−

2

N

N
X

i=1

|δi − µ̂| = 0 (17)

Although there is no close-form solution to Eqs. 16 and 17,
Newton’s method can be used to search forµ̂ andα̂. Note that
b̂ = 1/2α̂. When a bin with a high rounded SNR does not have
training instances, no effort of running the mean and variance
solvers is spared. In case some unseen residuals might have
higher SNRs, the mean is set to 0, and the variance is set to a
small value, e.g.0.01.

While the curve-fitting approach might result in a model
of high complexity and be over-fitted to the training data, our
mathematical modeling approach can avoid these problems by
using prior knowledge about the shape of distribution.

2.3. Post-Processing

For an utterance, the posterior probabilities, i.e.P (f |y, n) on
each frame is obtained by calculating Eqs. 8 and 4. A dynamic
programming approach is used to not only smooth the tracked
F0 contour but also to allow octave jumps at a certain cost [1].

The focus of the proposed method is to reduce the F0 es-
timation error under both clean and noisy conditions. How-
ever, the voicing boundary can affect the results of F0 track-
ing [11]. To eliminate the uncertainty introduced by voicing
decision errors, the ground truth of voicing information isused.
That means that the different F0 tracking algorithms estimate
F0 values over all voiced frames regardless of their SNRs.

3. Experiments
Gross Pitch Error (GPE) [12] (±20% allowable deviation from
the ground truth) is used to evaluate the performance of F0 es-
timation algorithms.

In this section, we compare the GPE using the KEELE [13]
and FDA [14] corpora. The 5 minute 37 second KEELE corpus
contains a simultaneous recording of speech and laryngograph
signals for a phonetically-balanced paragraph which was read
by 5 male and 5 female speakers. The 5 minute 32 second FDA
corpus is composed of laryngograph and speech signals from
one male and one female speaker. Each speaker read 50 sen-
tences in the FDA corpus. Ground truth F0s were obtained by
running an autocorrelation method on the laryngograph signal
in addition to some manual correction ( [13] [14]).

Speech signals are downsampled from 20000 Hz to 16000
Hz for both corpora. Noise is artificially added to the corpora
to test the robustness of the F0 trackers under different noise
conditions. The program FaNT was used to employ white and
babble noise segments from the NOISEX92 corpus to generate
utterances with SNR of 20, 10, 5, 0, and -5 dB [11].

The parameters of SAFE are as follows: FFT size is 16384;
frequency resolution is 1 Hz; frame length and step size are
0.04 and 0.01 seconds, respectively;fmin andfmax are 50 and
400 Hz, respectively; the lengths of the short-term and long-
term windows for spectrum smoothing are 50 and 400 in Hz,
respectively. A peak is regarded as a prominent peak if the nor-
malized difference SNR̄ζi is greater than an empirically de-



termined threshold of 0.33; the ranges of the low, middle, and
high frequency bands are 0-1, 1-2, and 2-3 kHz, respectively;
local SNRs of the peaks are rounded to the nearest value in the
following sequence10r/3, wherer = 0, 1, · · · , 21.

For the KEELE corpus, a 5-fold cross-validation scheme is
applied. For each fold under a certain noise level, the speech of
one male and one female speaker are used for testing, the resid-
ual and SNR models are trained from the remaining speech and
its ground truth. Since 54% of the KEELE corpus is voiced
speech, if the frame step size is 0.01 seconds, each fold has
about 14000 frames for training. Since there are 23 rounded
local SNR bins, if each voiced frame has 10 prominent peaks
on average, each residual model has about 6000 samples for
training. Because some bins with high SNRs might have fewer
training instances, e.g. 5% of the average - 300 samples, it is
still possible to robustly train a doubly-truncated Laplace distri-
bution with only two free parameters.

To determine the generalizablity of SAFE, the model
trained from the KEELE corpus is used for the FDA corpus.

The GPE comparison of the GetF0 [1], Praat [2],
TEMPO [3], YIN [4], and proposed SAFE on KEELE corpus is
shown in Table 1. All F0 trackers perform well under clean con-
ditions with GPEs lower than 3.5%. All algorithms suffer from
performance degradation when the SNR drops. As expected, it
is more difficult to accurately estimate F0 under babble noise
condition compared to white noise with the same SNR. The
SAFE algorithm has the lowest GPE when the SNR is at or be-
low 5 dB under white noise, and at or below 10 dB under babble
noise. We also ran experiments where only the low frequency
band (0-1 kHz) was used in SAFE. The GPE of SAFE with
only low-frequencies is higher than the standard SAFE, but still
lower than other F0 tracking algorithms in low SNR conditions.

Although there is a mismatch between the KEELE and FDA
corpora, SAFE still has the lowest GPE on FDA under low SNR
conditions as it does for the KEELE corpus.

4. Conclusions
Prominent Signal-to-Noise Ratio (SNR) peaks constitute a sim-
ple and an effective information source for F0 inference under
both clean and noisy conditions. The statistical frameworkof
F0 estimation is promising in modeling the effect of additive
noise on the clean speech spectra given F0. In addition to low
frequencies, middle and high frequency bands (1-3 kHz) pro-
vide supplemental useful information for F0 inference. The
proposed SAFE algorithm is more effective in reducing the GPE
compared to prevailing F0 trackers especially for low SNRs.
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