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Abstract

The performance of speech recognition systems trained
in quiet degrades significantly under noisy conditions.
To address this problem, a Weighted Viterbi Recogni-
tion (WVR) algorithm that is a function of the SNR
of each speech frame is proposed. Acoustic models
trained on clean data, and the acoustic front-end fea-
tures are kept unchanged in this approach. Instead, a
confidence/robustness factor is assigned to the output
observation probability of each speech frame according
to its SNR estimate during the Viterbi decoding stage.
Comparative experiments are conducted with Weighted
Viterbi Recognition with different front-end features such
as MFCC, LPCC and PLP. Results show consistent im-
provements with all three feature vectors. For a reason-
able size of adaptation data, WVR outperforms environ-
ment adaptation using MLLR.

1. Introduction
Noise-robust speech recognition is an important chal-
lenge for real world applications. The performance of
recognition systems trained in quiet degrades signifi-
cantly in the presence of background acoustic noise. In
general, there are two ways of addressing this problem.
The first approach is to reduce mismatch in the front end
feature extraction stage [1] [2]. The other approach in-
volves either updating ‘clean’ acoustic models based on
noise estimates [3] or building separate HMMs of the
’clean’ speech and of the noise [4].

In [7], a Weighted Viterbi Recognition (WVR) algo-
rithm was introduced to deal with channel impairments,
frame erasures and network congestion for Distributed
Speech Recognition (DSR). Also, independent work was
conducted in [9] using “soft-feature” decoding to deal
with DSR channel degradation. In this paper, we use the
WVR algorithm to deal with background acoustic noise
without changing the acoustic speech models.�
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he weighting factor is a function of the SNR esti-
of each speech frame. The computational complex-
this algorithm is quite low and its structure renders

y to implement in DSR systems. Compared with en-
ment adaptation using MLLR with a reasonable size
aptation data, WVR can achieve better results. Three
of feature vectors are examined: MFCC, LPCC and

[2].
he remainder of this paper is organized as follows.
ction 2, a system overview is provided. In Sections 3
, the SNR estimation algorithm and WVR formula-
re described, respectively. Experimental results are
n in Section 5, and Section 6 concludes the paper
a summary and discussion.

2. System Overview

stem overview is illustrated in Fig. 1, where acoustic
s are trained using clean data and front-end feature

ction using standard features such as MFCC, LPCC
LP. The SNR is estimated for each speech frame and

stimate is provided to a Viterbi decoding/recognition
le where a final decision is made based on the
acoustic models and the confidence/quality of each
h frame.
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e 1: Weighted Viterbi Recognition (WVR) to deal
noisy speech given ‘clean’ acoustic models.



3. Frame-based SNR Estimation
The weighting factor in WVR is a function of SNR es-
timates. In this paper, we refer to the average utterance
signal-to-noise ratio, and the frame-based signal-to-noise
ratio as �����
	�� and SNR, respectively.

A minimum statistics tracking method is adopted
([5] and [6]). Assuming that the noisy speech power
is the summation of power of clean speech and back-
ground noise, tracking power spectral minima can pro-
vide fairly accurate estimation of the background noise
power, hence good estimation of SNR. Also, by tracking
minimum statistics, this algorithm can deal with nonsta-
tionary background noise with slowly changing statistical
characteristics. One disadvantage of this approach is the
bias between the mean and minimum value of the back-
ground noise. Hence, in this paper, a constant factor is
applied to compensate for the bias. Power spectral min-
imum statistics is searched within a 0.5 second interval
preceding each speech frame. In real applications, this
will introduce an extra memory requirement and time de-
lay. But, compared with other complicated front end pro-
cessing algorithms, the overhead is quite small. Figs. 2
and 3 show estimated frame-based SNRs and the confi-
dence factor ( 
�� ) for two speech utterances from the Au-
rora 2 database. In Aurora 2, the signal-to-noise ratio is
estimated for the whole utterance. From these figures we
can see that frame-based SNR values vary in a large range
compared to the overall utterance SNR. Also notice that
there is an SNR floor set at 0 dB for all frames because we
assume that SNR estimates below 0 dB are not reliable.
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Figure 2: Estimated SNR and confidence factor ( 
�� ) for
the utterance “0021641” labeled in the Aurora 2 database
as having a signal-to-noise ratio of 15 dB.

4. Weighted Viterbi Recognition
WVR modifies the recursive step of the Viterbi algorithm
to take into account the effect of SNR by weighting the
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re 3: Estimated SNR and confidence factor ( 
�� ) for
tterance “4” labeled in the Aurora 2 database as hav-
signal-to-noise ratio of 0 dB.

ability of observing features given the HMM state
l ����������� with the confidence factor of current fea-

observation ��� . The time-varying confidence factor
n be inserted into the Viterbi algorithm by raising the
ability ����������� to the power 
�� to obtain the following
update equation [7]:

� ������� �"!$#&%')( � ' ���+*-,��+./# ' ��0�1 �����������325476 (1)

e
� �&����� represents the maximum likelihood of ob-

ng speech feature �&8 to ��� and being in state 9 at� , # ' � stands for the transition probability from state
tate 9 and 
��<;=1 >�?/,72 is a time-varying frame con-
ce factor that maps the frame SNR into the interval
. The value(s) of 
�� are determined empirically.
n extreme cases, when 
����@> , � �&����� are updated
by state transition probability # ' � and the probabil-������� for current frame is discarded; when 
��<�A, ,
nt frame is decoded by regular unweighted Viterbi
nition scheme.

n this paper, two sets of 
�� are chosen depending on
verage signal-to-noise ratio of the utterance �����B	��
own in Fig. 4.
hen the utterance �����C	�� is above 10 dB, then

�ED , for SNR F 25 dBGIH/J 8LK7M N5O&PRQ+STKVUVW for SNR X 25 dB Y (2)

f the utterance �����C	�� is less than 10 dB, a simple
alization by the maximum SNR value of the utter-
is adopted:


���� ����������[Z\	�] (3)
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Figure 4: 
�� (gamma) for �����
	�� higher than 10 dB (left)
and 
�� (gamma) for �����
	�� lower than 10 dB (right).

5. Experimental Results
5.1. WVR with MFCC, LPCC and PLP

Comparative experiments are carried out for the WVR al-
gorithm using different features: MFCC, LPCC and PLP.
The experiments use Aurora 2 database. Training corpus
has only clean speech data while the test corpus contains
noisy speech at signal-to-noise levels labeled as clean, 20
dB, 15 dB, 10 dB, 5 dB and 0 dB. Left-to-right topology
is adopted for the HMMs. Each digit has 16 states with 3
mixtures each. There are one 3-state silence model with 6
mixtures and one short pause model who shares the mid-
dle state of the silence model. The above topology is the
standard setup provided by the Aurora 2 database [8].

Tables 1, 2 and 3 show the WVR performance im-
provement over baseline performance for an MFCC,
LPCC and PLP frontend. In test corpus, Set A and Set
B are chosen from the Aurora 2 database since only ad-
ditive noise is tested in this paper. In each set, there are
four types of noise with different frequency characteris-
tics which are subway, babble, car and exhibition noise
for Set A, and restaurant, street, airport and station noise
for Set B. For each type of noise, six noise levels are
tested ranging from clean to 0 dB as shown in the tables.
For each noise level, word accuracy averaged over all the
four noise types are presented.

Set A Set B

Baseline WVR Imprv.(%) Baseline WVR Imprv.(%)

Clean 98.94 98.96 1.9 98.94 98.96 1.9

20 dB 94.99 96.50 30.1 92.35 96.42 53.2

15 dB 86.93 92.89 45.6 80.79 91.83 57.5

10 dB 67.28 84.70 53.2 58.06 86.46 67.7

5 dB 39.36 62.99 39.0 32.04 63.46 46.2

0 dB 17.07 34.91 21.5 14.63 35.30 24.2

Table 1: WVR performance with MFCC features.

From the tables, we observe that WVR resulted in
consistent improvements for all noise conditions and
noise levels. On average, the algorithm reduces the error
rate by 38%, 45% and 47% for MFCC, LPCC and PLP
features, respectively compared with their baselines in
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Set A Set B

Baseline WVR Imprv.(%) Baseline WVR Imprv.(%)

Clean 98.71 98.73 1.6 98.71 98.73 1.6

20 dB 91.09 94.89 42.7 86.77 93.88 53.7

15 dB 76.69 90.74 60.3 69.38 92.46 75.4

10 dB 52.86 79.43 56.4 45.88 81.64 66.1

5 dB 27.16 57.73 42.0 24.31 59.08 45.9

0 dB 12.11 31.59 22.2 9.71 32.89 25.7

able 2: WVR performance with LPCC features.

Set A Set B

Baseline WVR Imprv.(%) Baseline WVR Imprv.(%)

Clean 98.90 99.00 9.1 98.90 99.00 9.1

20 dB 93.81 96.49 43.3 91.71 96.19 54.0

15 dB 82.13 92.35 57.2 78.04 91.04 59.2

10 dB 59.85 84.84 62.2 53.97 86.92 71.6

5 dB 33.57 63.73 45.4 27.55 65.41 52.3

0 dB 13.35 35.92 26.1 10.36 37.15 29.9

Table 3: WVR performance with PLP features.

and 50%, 53% and 53% for Set B. For both sets of
the average improvements did not include the clean
ition. The highest error reduction is achieved at 10
ignal-to-noise ratio. Furthermore, WVR performs
r for data from Set B compared to Set A. MFCC fea-
give the best baseline results. After WVR, PLP and
C have comparable performance.

WVR vs. MLLR

constitutes a very simple back-end technique aim-
t improving recognition accuracy under noisy con-
ns. In this Section, we carry a comparative study
een WVR and environment adaptation using Max-

likelihood Linear Regression (MLLR) [3] tech-
. For MLLR, 40 utterances are randomly selected
each type of noise data set which means the total

tation data size is 320 sentences.

ig. 5 illustrates the performance of WVR and MLLR
ared with the baseline performance for the Aurora 2
ase with 8 types of noise and using MFCC features.
ach type of noise, an average over all the signal-to-
levels (clean, 20 dB, 15 dB, 10 dB, 5 dB and 0 dB)

alculated. Both WVR and MLLR result in improve-
s over the baseline. Moreover, WVR outperforms
R by 2.4% on average without the need for a pri-
nowledge of noise statistics nor the need for off-line
ing while MLLR has these requirements.

6. Conclusions
is paper, a Weighted Viterbi Recognition (WVR) al-
hm is used in a DSR system to deal with background
. A confidence factor is assigned to each speech



Figure 5: Perfomance of WVR vs. MLLR for different
types of noise from the Aurora 2 database Set A (top) and
Set B (bottom).

frame based on its SNR estimate. The trained acoustic
models and the acoustic features are not changed or up-
dated in this approach. Experimental results show con-
sistent improvements of WVR with MFCC, LPCC and
PLP features with different types of background noise
and SNR levels. For Aurora 2 database, word error rate
reduction, compared to baseline performance, was on av-
erage 50%. Compared to environment adaptation tech-
niques, WVR outperforms MLLR by 2.4%. WVR has
low computational complexity and is easy to incorporate
into DSR systems without much memory requirements
and time delay.

Note that when calculating �����C	�� for continuous
speech recognition, the values can be updated adaptively
based on segmental SNR (e.g. 0.5 secs as in the min-
imum statistics tracking algorithm), without waiting for
the whole utterance to be completed. In this way, time
delay can be reduced.

In WVR, weights are assigned to observation features
based on frame-based confidence measure; it does not re-
duce the mismatch between clean models and noisy fea-
tures. Thus, finding an effective way to reestimate SNR
for each frame after mismatch reduction in the feature
domain is a promising direction for future work.
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