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Abstract

Automatic recognition of children’s speech using acoustic models trained by adults

results in poor performance due to differences in speech acoustics. These acoustical

differences are a consequence of children having shorter vocal tracts and smaller

vocal cords than adults. Hence, speaker adaptation needs to be performed. How-

ever, in real-world applications, the amount of adaptation data available may be

less than what is needed by common speaker adaptation techniques to yield reason-

able performance. In this paper, we first study, in the discrete frequency domain, the

relationship between frequency warping in the front-end and corresponding transfor-

mations in the back-end. Three common feature extraction schemes are investigated

and their transformation linearity in the back-end are discussed. In particular, we

show that under certain approximations, frequency warping of MFCC features with

Mel-warped triangular filter banks equals a linear transformation in the cepstral

space. Based on that linear transformation, a formant-like peak alignment algo-

rithm is proposed to adapt adult acoustic models to children’s speech. The peaks

are estimated by Gaussian mixtures using the Expectation-Maximization (EM) al-

gorithm (Zolfaghari & Robinson, 1996). For limited adaptation data, the algorithm
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outperforms traditional vocal tract length normalization (VTLN) and maximum

likelihood linear regression (MLLR) techniques.

Key words: automatic speech recognition, speaker adaptation, children’s speech,

VTLN, peak alignment, limited data, MLLR.

1 Introduction

It is well known that speech characteristics of adults and children differ due

to differences between their vocal apparatus. Children have higher formant

and fundamental frequencies in their spectra than adults because of their

shorter vocal tracts and smaller vocal cords. Since most of the current auto-

matic speech recognition systems are trained on adult speech, such systems

suffer from dramatically degraded performance for child speakers (Li & Rus-

sell, 2001; Wilpon & Jacobsen, 1996). To reduce spectral mismatch between

adult and children’s speech, various vocal tract length normalization (VTLN)

and speaker adaptation techniques have been used (Burnett & Fanty, 1996;

Das et al., 1998; Potamianos & Narayanan, 2003).

VTLN algorithms are typically applied to the front-end feature domain whereby

the linear frequency or Mel-frequency axis is scaled by a warping factor which

is obtained via a grid search. In (Lee & Rose, 1998), a frequency warping ap-

proach is investigated. The linear frequency warping factor is first estimated

from the input speech based on the maximum likelihood criterion and then
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used to re-scale the filter banks when computing Mel-frequency cepstral co-

efficients (MFCC) features. An efficient algorithm based on a generic voiced

speech model is studied in (Wegmann et al., 1998) to simplify the procedure

of selecting the frequency warping factor; the technique achieves excellent re-

sults using conversational telephone speech. In addition, a variety of frequency

axis re-scaling strategies are discussed in (Burnett & Fanty, 1996; Das et al.,

1998; Eide & Gish, 1996; Gouvea & Stern, 1997) to address vocal tract shape

variation between children and adults.

Speaker adaptation schemes, on the other hand, are adopted in the back-

end acoustic model domain (Gales, 1998; Gauvain & Lee, 1994; Leggetter &

Woodland, 1995). These algorithms try to tune the acoustic models towards

a specific speaker utilizing adaptation data. In general, unlike VTLN which

attempts to compensate for physical (vocal tract) differences, adaptation tech-

niques are statistically driven using the maximum likelihood or maximum a

posterior probability criteria. Most often, the computational complexity of

speaker adaptation algorithms are higher than VTLN and require more adap-

tation data. If the amount of adaptation data is adequate for reliable estima-

tion, adaptation techniques may achieve better performance than VTLN.

Among the adaptation algorithms, the maximum likelihood linear regression

(MLLR) technique, introduced in (Leggetter & Woodland, 1995), is the most

widely used approach. In MLLR, the relationship between the means of the

Gaussian mixtures of an acoustic hidden Markov model (HMM) and that of

a new speaker can be described using linear regression:

µ̂ = A µ+ b (1)

The transformation matrix A and bias vector b are estimated using the
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Expectation-Maximization (EM) algorithm with the maximum likelihood cri-

terion. In real-world applications, one often encounters the situation where

only a limited amount of adaptation data is available for the new speaker.

This may be because adaptation data are difficult to obtain and/or time limi-

tations do not permit collecting enough data. Under these conditions, MLLR

performance is unsatisfactory due to unreliable parameter estimation, espe-

cially for the transformation matrixA since it has more parameters to estimate

than the bias vector b. To reduce the number of parameters, a 3-block diag-

onal matrix is usually employed where the static, delta and delta-delta (first

and second derivatives, respectively) parts of the features have their own full

sub-matrices and independence is assumed among the three parts (Gales et

al., 1996; Young et al., 2001). A diagonal form of the transformation matrix A

is also studied in (Leggetter & Woodland, 1995) and is shown to have limited

performance improvements. In (Digalakis et al., 1999), several rapid speaker

adaptation methods are summarized for large vocabulary speech recognizers.

These methods explore the dependencies between speech units and efficiently

make use of small amounts of data by only utilizing the biases in MLLR

transforms.

In recent years, the relationship between frequency warping in the front-end

feature domain and the corresponding transformation in the cepstral domain

has drawn increasing attention in the speaker adaptation area (Claes et al.,

1998; Ding et al., 2002; McDonough et al., 2004; Pitz et al., 2001; Pitz &

Ney, 2003). Conclusions are made in (McDonough et al., 2004) and (Pitz

& Ney, 2003) that VTLN equals a linear transform in the cepstral space.

Perceptual linear prediction (PLP) cepstral coefficients features and MFCCs

with Mel-frequency warping, instead of Mel-warped filter banks, are used in
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(McDonough et al., 2004) and (Pitz & Ney, 2003), respectively. For both

features, the frequency warping is invertible and the derivation is performed

in continuous frequency ω or in the Z space.

In this paper, we first discuss, in the discrete frequency domain, the relation-

ship between frequency warping in the front-end domain and the correspond-

ing transformation linearity in the back-end domain of a variety of feature

extraction schemes. In particular, we show that under certain approxima-

tions, the frequency warping of MFCC features with Mel-warped triangular

filter banks equals a linear transformation in the model domain. The linear

transform can be considered as a special case of the traditional MLLR and

serves as a basis to cope with the sparse adaptation data problem. Utilizing

the linear transformation, a fast adaptation approach based on formant-like

peak alignment is proposed. In this proposed approach, the transformation

matrix A is computed deterministically after which the bias vector b is es-

timated statistically within the EM framework. As mentioned earlier, MLLR

needs more data to reliably estimate A than that needed to estimate b. By

generating A based on re-mapping of the formant-like peaks, the proposed

approach can ameliorate the spectral mismatch between adults and children’s

speech while reducing the number of parameters to be estimated; this makes

robust estimation of the bias b possible.

The remainder of the paper is organized as follows. In Section 2, the relation-

ship between frequency warping in the front-end and corresponding transfor-

mations in the back-end is investigated for three common features, and the

conditions under which this relationship is equivalent to a linear transforma-

tion are discussed. The focus is on the discrete frequency domain. In Section 3,

the estimation of formant-like peaks in speech spectra using Gaussian mixtures
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is described. Recognition results are presented in Section 4 and conclusions

are made in Section 5.

2 Relationship between frequency warping and linear transforma-

tions

2.1 Feature Schemes

We study three kinds of speech features in this paper: cepstra without Mel-

scale warping (CEP), cepstra with Mel-scale warping (MFCC1) and Cepstra

computed using Mel-warped triangular filter banks (MFCC2). While MFCC2

is the most widely used front-end feature in the state-of-the-art automatic

speech recognition systems, we include CEP and MFCC1 for comparison with

the work in (Pitz et al., 2001) and (Pitz & Ney, 2003). In the discrete frequency

domain, we will show that for the first two feature extraction strategies (CEP

and MFCC1), frequency warping is indeed equivalent to a linear transform

in the cepstral space as stated in (Pitz et al., 2001) and (Pitz & Ney, 2003),

and the corresponding discrete frequency transformation matrices are given.

However, this conclusion is not true for MFCC2 features computed using Mel-

warped filter banks unless certain approximations are made.

Fig. 1 illustrates the three feature extraction schemes. The input speech sig-

nal is first pre-emphasized and framed by Hamming windows. For each speech

frame, the magnitude of its Discrete Fourier Transform (DFT) is obtained

and then converted into the Mel-frequency domain by certain mappings. The

logarithm is then computed on the Mel-spectra to compress the dynamic

range, and the output is further decorrelated by the Discrete Cosine Transform
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(DCT) to obtain the final cepstral coefficients.

Let Sl denote the linear spectrum and Sc the cepstrum, according to Fig. 1,

we have

Sc = C · log(M · Sl) (2)

whereM is the Mel-mapping matrix,C the DCTmatrix and log the component-

wise logarithm function applied to the matrix. The three different features have

different Mel-mapping matrices M:

• For CEP, since there is no Mel-scale mapping,M simply equals the identity

matrix. That is,

M = I (3)

• For MFCC1, the Mel-scale warping from the linear frequency f to the Mel-

frequency ϕ(f) is defined by (Young et al., 2001)

ϕ(f) = 2595 · log10

(

1 +
f

700

)

(4)

In the discrete frequency domain, the relationship between the linear fre-

quency index l and the Mel-frequency index k is

k = round

[

ϕ

(

Fmaxl

L

)

·
N

Fmax

]

(5)

where Fmax is the maximum frequency in the spectrum, L and N are the

sample numbers in the linear and Mel-frequency domains, respectively. De-

fine

ψ(l) = ϕ

(

Fmaxl

L

)

·
N

Fmax

(6)
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The Mel-mapping matrix can be expressed as

M =









































1 0 0 0 0 · · · 0

0 1 0 0 0 · · · 0

...
...

...
...
...
. . .

...

0 · · · 0 1 0 · · · 0









































N×L

(7)

where M’s components are defined as:

mij =































1, if i = round(ψ(j))

0, otherwise.

(8)

Typically, in order to perform the Mel-scale mapping in the discrete fre-

quency domain, an “oversampling” strategy is used in the linear spectral

domain (Deller et al., 1987) and a smaller number of samples in the Mel-

spectral domain are generated by selecting appropriate frequency compo-

nents from the linear spectral domain. Therefore, L is larger than N in

Eq. 7.

• For MFCC2, triangular filter banks are employed in Mel-mapping whose

central frequencies are equally spaced in the Mel-frequency axis (Young et

al., 2001) as shown in Fig. 2.
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The corresponding Mel-mapping matrix M can be written as:

M =









































θ1,1 θ1,2 · · · θ1,K1
0 0 0 · · · 0

0 · · · 0 θ2,1 · · · θ2,K2
0 · · · 0

...
...

...
...

...
...

...
. . .

...

0 · · · · · · · · · · · · 0 θN,1 · · · θN,KN









































N×L

(9)

where L and N are the sample numbers in the linear and Mel-frequency do-

mains, respectively, θi,j are weights of the triangular filters and K1, . . . , KN

are the numbers of non-zero weights of each triangular filter. Typically, N

is much smaller than L.

2.2 Derivation of the transformation matrix A

Suppose there exists a warping function in the discrete linear frequency domain

l = g(k), where k and l are the discrete frequency sample indices. This can be

presented as a warping matrix R whose components are defined as:

rij =































1, if i = round(g(j))

0, otherwise.

(10)

in case the index j, computed using the warping function, is located outside

the sample number interval, e.g. j < 0 or j > L−1 where L is the total discrete

sample number, 0 or L − 1 is set for the index. Let X be one speech feature

vector and Y be the feature after applying the linear frequency warping, then
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X and Y have a relationship described by Eq.11.

Y = C · log
(

M ·R ·M∗ · exp
(

C−1 ·X
))

(11)

where C and C−1 are the DCT and inverse DCT matrices, respectively. R is

the linear frequency warping matrix. M is the Mel-mapping matrix and M∗

is the matrix that transforms features from the Mel-frequency domain to the

linear frequency domain. log(·) and exp(·) are component-wise logarithm and

exponential functions of the matrix.

Let T =M ·R ·M∗, then Eq.11 can be written as:

Y = C · log
(

T · exp
(

C−1 ·X
))

(12)

This equation is equivalent to the one presented in (Claes et al., 1998).

Before we discuss the properties of the transform in Eq.12, let us first define

an index mapping (IM) matrix. A matrix is called an index mapping matrix

if there is one and only one “1” in each row and all the other components are

zeros. There is no requirement on the dimension of an IM matrix. It is not

necessarily a square matrix. For example, the Mel-mapping matrixM in Eq.7

and the warping matrix R mentioned above are all IM matrices. Furthermore,

it is obvious that the product of IM matrices is still an IM matrix.

Next, we show that if the matrix T in Eq.12 is an IM matrix, then X and

Y are related by a linear transformation. Since T is an IM matrix, it only

re-maps the order of vector component indices and does not alter the value of

them. Therefore, we can exchange the order of T and log(·):
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Y=C · log
(

T · exp
(

C−1 ·X
))

=C ·T ·
(

log · exp
(

C−1 ·X
))

=C ·T ·C−1 ·X

=A ·X (13)

where

A = C ·T ·C−1 (14)

Or, by substituting T =M ·R ·M∗ into Eq.14, we obtain

A = C ·M ·R ·M∗ ·C−1 (15)

Consequently, the expectations of X and Y also satisfy the same linear rela-

tion:

E{Y} = E{A ·X} = A · E{X} (16)

In other words,

µY = A · µX (17)

In most cases, speech features employed in automatic speech recognizers are

a concatenation of static MFCCs, their first (delta) and second (delta-delta)

order derivatives. In this paper, the derivatives are computed using first order

difference:

4Xt=Xt −Xt−1 (18)

42Xt=4Xt −4Xt−1 (19)

It is straightforward that if Eq.13 holds, then we have

4Y=A · 4X (20)

42Y=A · 42X (21)

Thus,
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µ4Y =A · µ4X (22)

µ42Y =A · µ42X (23)

As long as T =M ·R ·M∗ is an IM matrix, the expectations of the original

feature X and warped feature Y are linearly related. Next, we will investi-

gate the properties of the mean transformation of the three feature extraction

schemes discussed in Section 2.1.

• For CEP,

M =M∗ = I (24)

both of which are IM matrices and the warping matrix R is also an IM

matrix. Hence, T which is the product of three IM matrices, is also an IM

matrix. According to the discussion above,

µY = A · µX (25)

where

A = C ·R ·C−1 (26)

• For MFCC1, M and R are both IM matrices. Since the Mel-mapping in

Eq.7 is performed by first “oversampling” in the linear frequency domain

and then selecting the desired frequency components in the Mel-frequency,

the number of rows N is smaller than the number of columns L. There-

fore, in order to recover the linear frequency samples from Mel-frequency,
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interpolation is needed in matrix M∗:

M∗ =


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
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










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
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
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
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


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1 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0

0 1 0 · · · 0

0 1 0 · · · 0

...
...
...
. . .

...

0 0 0 · · · 1

0 0 0 · · · 1
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
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



















L×N

(27)

where

m∗

ij =































1, if i = round(ψ−1(j))

0, otherwise.

(28)

The interpolation calculated according to Eq.28 generates the unseen

samples by repeating existing neighboring samples. In this way, M∗ is an

IM matrix. Hence, T is also an IM matrix and we have

µY = A · µX (29)

where

A = C ·M ·R ·M∗ ·C−1 (30)

• For MFCC2, the Mel-mapping involves the summation of spectra samples

within each triangular filter frequency range. Therefore,M is not an IM ma-

trix. So T is generally not an IM matrix either. Eq.12 can not be expressed

13



as a linear transformation. However, suppose we substitute the output of

each triangular filter in the filter banks with the value of the center fre-

quency sample (peak) of that filter, we are able to approximateM with an

IM matrix M̃:

M̃ =









































θ̃1,1 θ̃1,2 · · · θ̃1,K1
0 0 0 · · · 0

0 · · · 0 θ̃2,1 · · · θ̃2,K2
0 · · · 0

...
...

...
...

...
...

...
. . .

...

0 · · · · · · · · · · · · 0 θ̃N,1 · · · θ̃N,KN









































N×L

(31)

where

θ̃i,j =































1, if θi,j is the central frequency of filter i

0, otherwise.

(32)

Similarly, M∗, which maps samples from the Mel-frequency domain to the

linear frequency domain can be created by setting the output of each tri-

angular filter on the Mel-frequency axis as the sample value at the corre-

sponding center frequency on the linear frequency axis. The other frequency

samples in the linear frequency domain are interpolated by repeating neigh-

boring center frequencies that have already been generated. Thus,M∗ is an

IM matrix. Since M̃, M∗ and R are all IM matrices, linear transformation

of µY and µX is guaranteed. That is,

µY ≈ A · µX (33)

where

A = C · M̃ ·R ·M∗ ·C−1 (34)
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2.3 Discussions

The derivation in Section 2.2 shows the relationship between µY and µX in the

discrete frequency domain for the three features. In (Pitz et al., 2001) and (Pitz

& Ney, 2003), the components of linear transformation matrix for Cepstral and

MFCC features are computed in the continuous frequency domain as follows:

Ank(α) =
2sk
π

∫ π

0
dω̃ cos(ω̃n) cos(g(−1)

α (ω̃)k) (35)

and

Amel
nk (α) =

2sk
π

∫ π

0
dω̃mel cos(ω̃meln) cos(gmel ◦ g

(−1)
α ◦ g(−1)

mel (ω̃mel)k) (36)

where gα and gmel are linear frequency and Mel-scale warping functions, and

sk =































0.5, k = 0

1, else.

(37)

Note that Eq.26 for CEP and Eq.30 for MFCC1 are the discrete forms of Eq.35

and Eq.36, respectively, where R is the matrix form of gα. In Eq.36, gmel and

g−1
mel are represented byM andM∗ in Eq.30. One advantage of using matrices

in the discrete frequency domain is that it can avoid tedious and complicated

calculus to calculate matrix components in the continuous frequency domain

(Eq.35 and Eq.36). Generally, the analytical expression of the transformation

matrices in Eq.35 and Eq.36 for an invertible warping function gα is not always

available. Even for some relatively simple warping functions, e.g. piece-wise

linear, bilinear or quadratic functions, the computational load of Eq.35 and

Eq.36 is high. Matrix expression in the discrete frequency domain can simplify

the above calculation into simple index mapping matrices and greatly reduce
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the computational complexity.

Note that the studies in (McDonough et al., 2004) and (Pitz & Ney, 2003) use

either LPC-based features or MFCC features with only the Mel-scale warping,

and the discussion are in the continuous frequency domain. We showed that

since Mel-warped filter bank mapping is not invertible, it will not lead to a

linear transformation in the cepstral domain unless a certain approximation

is made. Moreover, the approximation made in Section 2.2 with triangular

Mel-warped filter bank matrices is not easy to implement in the continuous

frequency domain.

2.4 Estimation of the bias vector b

Suppose we adapt the means of Gaussian mixtures of HMMs as:

µ̂ = A µ+ b (38)

where the transformation matrix A is generated using the method described

in Section 2.2. We want to estimate the bias vector b based on the adaptation

data under the maximum likelihood criterion. This can be performed using

the EM algorithm (Dempster et al., 1977).

Define the EM auxiliary function we are interested in as:

Qb(λ;λ) =
U
∑

u=1

N
∑

i=1

M
∑

k=1

Tu
∑

t=1

γut (i, k) · logN (ot;Aµik + b,Σik) (39)

where U is the number of adaptation utterances and T u is the number frames

in the uth utterance. i ∈ {1, 2, · · · , N} and k ∈ {1, 2, · · · ,M} are the indices

of state and mixture sets , respectively. γut (i, k) = p(sut = i, ξut = k|Ou, λ) is

the posterior probability of staying at state i mixture k at time t given the uth
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observation sequence. N (ot;Aµik + b,Σik) is the kth multivariate Gaussian

mixture in state i with weight αik while µik and Σik are the mean vector and

covariance matrix associated with it.

Suppose the biases are tied into Q classes: {ω1, · · · , ωq, · · · , ωQ}. For a specific

class ωq, the bias bq is shared across all the Gaussian mixtures N (ot;µi,k,Σi,k)

with (i, k) ∈ ωq. The maximum likelihood estimation of bq could be obtained

by setting the differentiation of Qb(λ;λ) with respect to bq to zero:

∂Qb(λ;λ)

∂bq
=

∂

∂bq

U
∑

u=1

∑

(i,k)∈ωq

Tu
∑

t=1

γut (i, k) · logN (out ;Aµik + b,Σik)

=
∂

∂bq

U
∑

u=1

∑

(i,k)∈ωq

Tu
∑

t=1

γut (i, k)
[

−
1

2
(out −Aµik − bq)

TΣ−1
ik (o

u
t −Aµik − bq)

]

=
U
∑

u=1

∑

(i,k)∈ωq

Tu
∑

t=1

γut (i, k) ·Σ
−1
ik · (o

u
t −Aµik − bq) = 0 (40)

By regrouping items, Eq.40 can be rewritten as:

U
∑

u=1

∑

(i,k)∈ωq

Tu
∑

t=1

γut (i, k) ·Σ
−1
ik ·(o

u
t −Aµik) =

U
∑

u=1

∑

(i,k)∈ωq

Tu
∑

t=1

γut (i, k) ·Σ
−1
ik ·bq (41)

Therefore, the bias vector in the class ωq can be obtained as:

bq =





U
∑

u=1

∑

(i,k)∈ωq

Tu
∑

t=1

γut (i, k) ·Σ
−1
ik





−1

·





U
∑

u=1

∑

(i,k)∈ωq

Tu
∑

t=1

γut (i, k) ·Σ
−1
ik · (o

u
t −Aµik)





(42)

Typically, Σik are diagonal covariance matrices so that Eq.42 can be solved

one dimension at a time and there is no need for matrix inverse operation.
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2.5 Variance Adaptation

Given the adapted Gaussian mixture means, the diagonal covariance matrices

are adapted in a non-constrained manner as described in (Gales, 1996):

Σ̂ik = B
T
ikHqBik (43)

where Hq is the linear covariance transformation shared by all Gaussian mix-

tures in the class ωq, namely, (i, k) ∈ ωq. Bik is the inverse of the Cholesky

factor of Σ−1
ik . That is,

Σ−1
ik = CikC

−1
ik (44)

and

Bik = C
−1
ik (45)

The maximum likelihood estimation of the covariance linear transformation

Hq is given by

Hq =

∑

(i,k)∈ωq
CT

ik[
∑U

u=1

∑Tu

t=1 γ
u
t (i, k)(o

u
t − µik)(o

u
t − µik)

T ]Cik
∑

(i,k)∈ωq

∑U
u=1

∑Tu

t=1 γ
u
t (i, k)

(46)

By forcing the Hq’s off-diagonal terms to zeros, a diagonal covariance matrix

Σ̂ik is obtained after adaptation.

3 Formant-like Peak Alignment

As mentioned earlier, speech spectra of the same sound spoken by children and

adults are spectrally mismatched primarily due to physiological differences.

This mismatch is the major reason for performance degradation when acoustic

models trained on adult speech are used to recognize children’s speech. Fig. 3

shows two spectra for one speech frame (25ms) from an adult male and a 10-
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year old boy for the /uw/ sound in the digit “two”. Obvious pitch and formant

differences can be observed from the two figures. If the spectrum can be re-

shaped by aligning the corresponding formants, then the spectral mismatch

would be reduced.

In this paper, peaks are estimated using one set of Gaussian mixtures under

the EM algorithm. This technique was proposed and applied in vocoder design

and feature extraction in (Stuttle & Gales, 2001; Zolfaghari & Robinson, 1996,

1997). In this algorithm, the normalized magnitude of the speech spectrum

for each frame is considered as a multi-mode probability density function and

a Gaussian mixture model is used to fit it. The estimation is performed in

an iterative manner. The estimated means, variances and mixture weights of

the Gaussians correspond to the locations, bandwidths and amplitudes of the

formants. Since the peaks fitted this way are not necessarily the formants,

they are called “formant-like” peaks.

Fig. 4 illustrates the spectrograms with peaks estimated using Gaussian mix-

tures. The speakers are the same as in Fig. 3 and the utterances are the /uw/

sound in the digit “two” from which the speech frames in Fig. 3 are chosen. In

the estimation, four Gaussian mixtures are used for the adult male and three

for the child. From the figure, one can see that the estimated peaks fit the

formants quite well.

To reduce the spectra mismatch, the estimated peaks are aligned by a piece-

wise linear function. Suppose we haveM−1 peaks to align, they are {ωc
1, . . . , ω

c
M−1}

for the child speaker and {ωa1 , . . . , ω
a
M−1} for the adult speaker. Also, we de-

fine ωc0 = ωa0 = 1. Since {ωc1, . . . , ω
c
M−1} and {ωa1 , . . . , ω

a
M−1} are estimated

Gaussian mixture means, they are real numbers, not necessarily integers. The
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piece-wise linear function is defined as Eq.47.

φ(l) =























































ωci +
ωc

i+1
−ωc

i

ωa
i+1

−ωa
i

· (l − ωai ) for l ∈ (ωai , ω
a
i+1) and i = 0, . . . ,M − 2.

ωcM−2 +
ωc

M−1
−ωc

M−2

ωa
M−1

−ωa
M−2

· (l − ωaM−2) for l ∈ (ωaM−1, ω
a
M).

(47)

Note that we require ωc0 = ωa0 but there is no requirement that ωcM = ωaM . This

is because children usually have much higher formants than adults. Therefore,

in the same frequency range, they may have fewer formants than adults, as

shown in Fig.4. By not requiring ωcM = ωaM , it is possible for the extra formants

in adult spectra to disappear after alignment. Finally, we can generate the peak

alignment matrix R in Eq.11 based on Eq.47 as:

rij =































1, if i = round(φ(j))

0, otherwise.

(48)

Fig. 5 shows the piece-wise linear function computed according to Eq.47 align-

ing the first (F1) and third (F3) formant-like peaks in Fig. 4. Since formants

gradually change from frame to frame, the median value for each peak is used.

The two aligned peaks are marked out in the figure. In Fig. 6, the original

spectrum of the child’s speech (solid line) and the re-shaped spectrum (dot-

ted line) of the adult’s speech from Fig. 3 are illustrated. Compared with

the spectra in Fig. 3, the mismatch between the two spectra is significantly

reduced.
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4 Experimental Results

Pseudo-codes which describe the implementation of training, adaptation and

recognition stages of the proposed approach is shown in Fig.7.

Experiments are performed on connected digit strings from the TIDIGITS

database. Acoustic models are trained on adult males and tested on children.

Utterances from 55 male speakers are used in training. There are 77 utterances

from each speaker with strings consisting of either 1, 2, 3, 4, 5 or 7 digits (there

are no 6-digit strings in the database). Data from 5 boys and 5 girls are used

in testing with 77 utterances from each speaker. In total, there are about 2500

digits in the test set. For each child, the adaptation utterances, which consists

of 1, 4, 7, 10, 20 or 30 digits, are randomly chosen from the test set and not

used in the testing. The speech signals are downsampled from 20 kHz to 8

kHz. Each speech frame is 25ms in length and a 10ms frame overlap is used in

the analysis. Feature vectors are of 39 dimensions: 13 static features plus their

first- and second-order derivatives. The features are computed using the CEP,

MFCC1 and MFCC2 schemes and the derivatives are computed according to

Eq.18 and Eq.19. In CEP and MFCC2, a 256-point FFT is used to obtain

the magnitude spectrum, and the Mel-warped filter banks are composed of 23

triangular filters. In MFCC1, the linear frequency axis is first “oversampled”

by a 1024-point FFT and then warped into 128 points on the Mel-frequency

axis.

Acoustic HMMs are phoneme-based with a left-to-right topology. There are 18

monophones plus silence and inter-word short pause models. Each monophone

has 2 to 4 states, depending on whether it is a vowel or consonant, with 6
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Gaussian mixtures in each state.

The adaptation of the children’s speech is carried out in an unsupervised

manner. For each child, voiced segments are detected from the adaptation ut-

terance via the traditional cepstrum peak analysis technique (Rabiner, 1978).

Formant-like peaks are then estimated from the voiced segments by Gaussian

mixtures. For a specific speaker, the median of peaks in each voiced segment

is first obtained and the average over all the medians serves as the estimate of

the peaks and is used in the alignment. The adult male who yields the highest

likelihood in the training set is selected as the “standard” adult speaker and

used to represent the acoustic characteristics of the entire adult training set.

It is observed that typically in the 4 kHz frequency range, adult speakers

have four formants while child speakers have only three. Hence, four Gaus-

sian mixtures are used for the adult males and three for the children in the

peak estimation procedure. The Gaussian mixtures are initialized with means

uniformly located on the frequency axis with equal mixture weights. For each

frame, 20 EM iterations are performed.

The three features (CEP, MFCC1, MFCC2) are evaluated with the following

peak alignment strategies:

• align F1 and F3, denoted as R(F1,F3)

• align F3 only, denoted as R(F3)

• align average F3 which is estimated from the speech of all the children and

males in the database, denoted as R(F̄3)

Note that F1 and F3 refer to the formant-like peaks in the spectrum. They

are not necessarily equal to the formant frequencies. We place an emphasis
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on the F3 region since F3 has been shown to correlate with the vocal tract

length (Fant, 1973). These strategies result in different alignment matrices R

in Eq.10, and hence different transformation matrices A in Eq.15.

In Tables 1, 2, and 3, the performance of the formant-like peak alignment

algorithm with the three alignment strategies (R(F1,F3), R(F3) and R(F̄3)) is

compared to the traditional VTLN with CEP, MFCC1 and MFCC2 features,

respectively. VTLN is implemented in two ways, namely, speaker-dependent

VTLN (VTLN1) and utterance-dependent VTLN (VTLN2). In both cases,

warping factors are chosen from [ 0.7, 1.1 ] with a stepsize of 0.05. For VTLN1,

an average likelihood is first computed with the candidate warping factors

across the adaptation utterances by forced alignment. The warping factor

yielding the highest average likelihood is chosen as the optimal factor to scale

the frequency axis in the feature extraction stage. For VTLN2, each test utter-

ance is first recognized to obtain an initial transcription (hypothesis) and the

warping factor with the highest likelihood for the utterance by forced align-

ment is applied to scale the frequency axis in feature extraction. The warped

features are then re-recognized. In this way, adaptation data are ignored.

VTLN by pooling adaptation and test data together to estimate the warp-

ing factor was also investigated but the results didn’t improve over VTLN2.

Peak alignment with and without a bias are both presented in the tables. The

results in parentheses are without a bias. In both cases, variance adaptation is

performed. Depending on the amount of adaptation data available, the mean

bias and variance transformation matrices are dynamically tied through a tree

(Young et al., 2001) with 20 base classes. The threshold for node occupation

is set to 50. For R(F̄3), average F3 peaks estimated from all the adult males

and children’ speech in the database are used in the alignment. The average
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F3 is around 2500 Hz for adult males and 3200 Hz for children.

From the tables, significant improvements over the baseline (no adaptation)

are observed for all three features when peak alignment is used. The transfor-

mation matrix A, generated by aligning the formant-like peaks, contributes

the most to the improved performance, and the bias b gives further improve-

ments. Among the three alignment strategies R(F1,F3), R(F3) and R(F̄3),

R(F3) yields the best results which achieves, on average, 86.8%, 91.0% and

88.8% word error rate (WER) reduction over the baseline for CEP, MFCC1

and MFCC2, respectively. It is also very interesting to note that, since F3 is

closely related to the speaker’s vocal tract length (Fant, 1973; Claes et al.,

1998), aligning F3 peak is related to vocal tract length normalization. Both

R(F3) and R(F̄3) outperform the traditional VTLN when the number of adap-

tation digits is larger than 4. In particular, R(F3) obtains 78.8%, 32.0% and

32.7% WER reduction over VTLN for CEP, MFCC1 and MFCC2, respec-

tively.

Since the peak alignment algorithm bridges the front-end feature domain and

back-end model domain by a linear transformation in terms of a linear fre-

quency warping function, it can be considered as a special form of traditional

MLLR. Therefore, it is interesting to compare the performance of the two.

Fig. 8 shows the recognition results of MLLR, VTLN and peak alignment

with varying numbers of adaptation digits. MFCC2 features are used in the

experiments and the peak alignment is performed using R(F3). The MLLR

transformation matrices have a block diagonal form and are estimated based

on the regression tree with 5 base classes. The threshold for node occupa-

tion is set to 500. From the figure, MLLR has poor performance when the

adaptation data is limited, due to the unreliable estimation of model param-

24



eters. Peak alignment and VTLN significantly outperform MLLR under this

condition because they utilize spectral information to reduce the mismatch in

adaptation. As the amount of adaptation data increases, MLLR performance

improves. Therefore, MLLR has an advantage when large amounts of data

are available while VTLN is advantageous for limited amounts of data. In the

proposed peak alignment algorithm, we primarily generate the linear mean

transformation by aligning the formant-like peaks (similar to VTLN), on the

basis of which, statistical approaches such as tree-based tied variance and bias

adaptation are performed. In this way, the algorithm performs well for both

large and limited amounts of adaptation data.

5 Summary and Conclusions

In this paper, the relationship between linear frequency warping in the front-

end feature extraction and model transformation in the back-end is investi-

gated in the discrete frequency domain with three feature extraction schemes:

cepstra without Mel-scale warping, cepstra with Mel-scale warping and cep-

stra with Mel-warped triangular filter banks. A linear transformation is shown

for the first two schemes. The transformation is linear for the third scheme

only if certain approximations are made. The linear transformation is based

on a discrete frequency mapping function (R) which can be considered as the

discretized form of a general mapping function in the continuous frequency

domain. Therefore, the linear transformation could cover a wide range of fre-

quency warping functions.

The linear transform can be considered as a special case of standard MLLR

and serves as a basis to deal with the sparse adaptation data problem. Utilizing
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the linear transformation, a fast adaptation approach based on formant-like

peak alignment is proposed. In this proposed approach, the transformation ma-

trix A of Gaussian mixture means is computed deterministically after which

the bias vector b is estimated statistically within the EM framework. Non-

constrained Gaussian covariance adaptation are also conducted statistically.

Both the estimation of biases and transformations of covariances are dynam-

ically tied via a tree structure.

The proposed algorithm is utilized to adapt children’s speech using acoustic

models trained on adult data when the adaptation data is limited. Compared

to traditional VTLN and MLLR with various amounts of adaptation data,

significant improvements are observed. Best results are obtained when the

peak alignment scheme uses speaker-specific F3 information for the alignment.

On average, with the widely-used MFCC feature with Mel-warped triangular

filter banks, speaker-specific F3 alignment outperforms VTLN by 33%, and

MLLR by 54% with limited adaptation data.
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Fig. 1. Diagram of the three feature extraction schemes discussed. The feature CEP

is computed with no Mel-scale warping. MFCC1 is computed with a Mel-scale warp-

ing function, and MFCC2 is computed with Mel-warped triangular filter banks.
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Fig. 3. Spectra for the steady part of the sound /uw/ in the digit “two” from an

adult male (left) and a boy (right).
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Fig. 4. Formants estimated (white circles) using Gaussian mixtures for the sound

/uw/ in digit “two” from an adult male speaker (left) and a child speaker (right).

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500

4000

adult male speech (Hz)

ch
ild

 s
pe

ec
h 

(H
z)

F1 

F3 

Fig. 5. Piece-wise linear function (solid line) which aligns the first and third for-

mant-like peaks of the adult and child’s speech in Fig. 4. The dotted line is the

reference line for y = x.
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Fig. 6. Original boy’s spectrum (solid line) and the re-shaped adult male’s spectrum

(dotted line) of Fig. 3.

Number of adaptation digits

algorithm 1 4 7 10 20 30

baseline 51.7 51.7 51.7 51.7 51.7 51.7

VTLN1 61.4 64.8 64.2 72.2 71.5 69.4

VTLN2 69.9 69.9 69.9 69.9 69.9 69.9

R(F1,F3) 90.3 (88.7) 89.1 (86.8) 91.5 (91.5) 92.6 (90.3) 95.4 (93.1) 95.9 (93.0)

R(F3) 90.7 (89.6) 92.9 (91.9) 92.3 (91.9) 93.6 (92.2) 95.8 (93.9) 96.4 (93.7)

R(F̄3) 87.9 (88.6) 89.0 (87.9) 89.4 (88.5) 92.0 (91.2) 95.1 (92.1) 95.2 (92.4)

Table 1

Recognition accuracy of children’s speech with CEP features for (1) baseline, or no

adaptation, (2) VTLN1 (speaker-dependent), (3) VTLN2 (utterance-dependent),

and (4) three peak alignment schemes ( R(F1,F3), R(F3) and R(F̄3) ) with and

without a bias vector. The results in the parentheses are without a bias. The acoustic

models are trained on adult male data and tested on children’s.

33



A. TRAINING

Train acoustic models (µ,Σ) using adult speech data;

Select the standard speaker with the highest likelihood;

Locate voiced segments;

Estimate formant-like peaks of the spectrum and store as a reference;

B. ADAPTATION

Get the adaptation data from the test child speaker;

Locate voiced segments;

Estimate the formant-like peaks of the spectrum;

Align the peaks between the test and standard speakers;

Generate warping matrix R (Eq.47 and Eq.48);

Generate transformation matrix A (Eq. 26, Eq.30, or Eq.34);

Estimate bias b using the tree structure (Eq.42);

Adapt variance Σ using the tree structure (Eq.46);

C. RECOGNITION

Get the input speech signal for the test child speaker;

Perform recognition using the adapted acoustic models (µ̂,Σ̂).

Fig. 7. Adaptation Algorithm.
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Number of adaptation digits

algorithm 1 4 7 10 20 30

baseline 36.1 36.1 36.1 36.1 36.1 36.1

VTLN1 87.0 89.6 92.2 92.8 92.6 92.9

VTLN2 91.5 91.5 91.5 91.5 91.5 91.5

R(F1,F3) 89.4 (89.5) 89.0 (87.5) 91.9 (91.8) 92.8 (90.8) 94.9 (92.2) 95.9 (92.9)

R(F3) 90.0 (89.8) 93.8 (93.1) 93.9 (93.8) 94.7 (93.0) 96.2 (94.3) 96.7 (94.7)

R(F̄3) 89.1 (89.2) 91.9 (91.6) 92.4 (90.7) 93.2 (92.0) 95.6 (93.4) 96.6 (93.2)

Table 2

Recognition accuracy of children’s speech with MFCC1 features. See Table 1 caption

for an explanation of the testing conditions.

Number of adaptation digits

algorithm 1 4 7 10 20 30

baseline 38.9 38.9 38.9 38.9 38.9 38.9

VTLN1 82.0 87.9 88.4 88.2 90.0 89.4

VTLN2 89.8 89.8 89.8 89.8 89.8 89.8

R(F1,F3) 86.1 (85.3) 90.1 (88.8) 91.1 (90.6) 91.0 (90.5) 93.5 (93.3) 95.1 (93.6)

R(F3) 89.5 (87.7) 93.3 (92.8) 92.6 (92.8) 92.8 (91.9) 95.0 (94.3) 95.6 (94.3)

R(F̄3) 88.2 (87.1) 91.7 (91.4) 91.5 (91.7) 92.5 (91.3) 94.6 (93.4) 96.0 (93.2)

Table 3

Recognition accuracy of children’s speech with MFCC2 features. See Table 1 caption

for an explanation of the testing conditions.
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Fig. 8. Performance of MLLR, VTLN and the peak alignment algorithm using R(F3)

with different numbers of adaptation digits.
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