References

- [1] Antonanzas, N. The inverse filter program developed by Norma Antonanzas can be investigated online at the following web site: www.surgery.medsch.ucla.edu/glottalaffairs/software_of_the_boga.htm
- [2] Bangayan, P., Long, C., Alwan, A., Kreiman, J., and Gerratt, B. "Analysis by Synthesis of Pathological Voices Using the Klatt Synthesiser." Speech Communication 22, pp. 343-368, 1997.
- Buder, E. H. "Acoustic Analysis of Voice Quality: A Tabulation of Algorithms 1902-1990." Included as Chapter 9 in *Voice Quality Measurement*, Kent, R. D. and Ball, M. J., Singular Publishing Group, 2000.
- [4] Chasaide, A. N. and Gobl, C. "Vocal Source Variation." Included as pages 427-461 in *Handbook of Phonetic Sciences*, W. J. and Laver, J., Hardcastle, Oxford. 1997.

- [5] Childers, D. G., and Lee, C. K. "Vocal Quality Factors: Analysis, Synthesis, and Perception." JASA, Vol. 90, pp. 2394-2410, 1991.
- [6] Deem, J. F., Manning, W. H., Knack, J. V., and Matesich, J. S.
 "The Automatic Extraction of Pitch Perturbation Using Microcomputers: Some Methodological Considerations." JSHR, Vol.32, pp. 689-697, 1989.
- [7] Deller, J.R. Jr. "On the Time Domain Properties of the Two-Pole Model for the Glottal Waveform and Implications for LPC." Speech Communication, Vol. 2, pp. 57-63, 1983.
- [8] Dennis, J. E. Jr, Woods, D. J. "New Computing Environments: Microcomputers in Large-Scale Computing." Edited by Wouk, A. SIAM, pp. 116-122, 1987.
- [9] Djeradi, A., Guerin, B., Badin, P., and Perrier, P. "Measurement of the Acoustic Transfer Function of the Vocal Tract: a Fast and Accurate Method." Journal of Phonetics, Vol 19, pp. 387-395, 1991.
- [10] Endo, Y. and Kasuya, H. "A Speech Analysis-Conversion-Synthesis System Taking Period-to-Period Fluctuations into Account." Electronics and Communications in Japan, Part 3, Vol. 82, No. 12, 1999. (Translated)

- [11] Epps, J., Smith, J. R., and Wolfe, J. "A Novel Instrument to Measure Acoustic Resonances of the Vocal Tract During Phonation." Meas. Sci. Technol., Vol. 8 (10), pp. 1112-1121, October, 1997.
- [12] Fant, G., Liljencrants, J, and Lin, Q. G. "A Four Parameter Model of Glottal Flow." STL-QPSR 4, pp. 1-12, 1985.
- [13] Fujimura, O. and Lindqvist, J. "Sweep-Tone Measurements of Vocal-Tract Characteristics." JASA, Vol 49, No 2, pp. 541-558, 1971.
- [14] Gabelman, B. and Alwan, A. "Analysis by Synthesis of FM Modulation and Aspiration Noise Components in Pathological Voices." In ICASSP Conference Proceedings, pp. 449-452, Orlando, FL, May, 2002
- [15] Gabelman, B. and Alwan, A. "Analysis and Synthesis of AM Components of Pathological Voices." In IEEE Workshop on Speech Synthesis, Paper #20154.
 Santa Monica, CA., 9/11/2002. IEEE Catalog Number 02EX555. ISBN 0-7803-7396-0.
- [16] Gabelman, B., Kreiman, J., Gerratt, B., Antonanzas-Barroso, N., and Alwan, A.

"LF Source Model Adequacy for Pathological Voices." Poster 5aSC17 presented at the 134th Meeting of the Acoustical Society of America, San Diego, CA., November, 1997.

- [17] Gabelman, B., Kreiman, J., Gerratt, B., Antonanzas-Barroso, N. "Perceptually Motivated Modeling of Noise in Pathological Voices." Proceedings of the 16 International Congress on Acoustics and 135th Meeting of the Acoustical Society of America, pp. 1293, and unpublished Poster 2pSC30, Seattle, WA., June, 1998.
- [18] Hillenbrand, J. "A Methodological Study of Perturbation and Additive Noise in Synthetically Generated Voice Signals." Journal of Speech and Hearing Research, Vol. 30, pp. 448-461, 1987.
- [19] House, A. S. and Stevens, K. N. "Estimation of Formant Band Widths from Measurements of Transient Response of the Vocal Tract." Journal of Speech and Hearing Research, Vol. 1, No 4, pp. 309-315, Dec., 1958.
- [20] IEEE Press. Programs for Digital Signal Processing (Section 8.1). John Wiley & Sons, 1979.

- [21] Kent, R. D., and Read, C. *The Acoustic Analysis of Speech* (Chapt 7). Singular Publishing Group, Inc., San Diego, CA., 1992.
- [22] Klatt, D. H. and Klatt, L. C. "Voice Quality." Journal of the Acoustical Society of America, Vol. 87, No. 2, pp. 838, February, 1990.
- [23] Kreiman, J., Gerratt, B.R., Precoda, K., and Berke, G. S. "Individual Differences in Voice Quality Perception." Journal of Speech and Hearing Research, Vol 35, pp. 512-520, April, 1995.
- [24] Krom, Guus de. "A Cepstrum-Based Technique for Determining a Harmonics to-Noise Ratio in Speech Signals." JSHR 93, Vol. 36, pp. 254-266, 1993.
- [25] Markel, J. D., Gray, A. H. Jr. *Linear Prediction of Speech*. Springer-Verlag. Berlin, Heidelberg, New York, 1976.
- [26] MATLAB for Windows. Version 4.2c. The Mathworks, Natick, MA. 01760.Copyright 1984-1994.
- [27] Milenkovic, P. "Least Mean Square Measures of Voice Perturbation."

JSHR 30, pp. 529-538, 1987.

- [28] Rabine, L. R., and Schafer, R. W. Linear Prediction Coding of Speech in Digital Processing of Speech Signals (Chapt. 8). Prentice – Hall, Englewood Cliffs, New Jersey, 1993.
- [29] Tarnoczy, T. H. "Vowel Formant Bandwidths and Synthetic Vowels." Letters to the editior, JASA, Vol. 34, pp. 859, 1962.
- [30] Tarnoczy, T. H., "Uber Eigenfrequennz und Dekrement der Vokalresonatoren der menschlichen Stimme." Arch. f Sprach und Stimmphysiol, 6, III/Iv 75-87, 1942.
- [31] Qi, Y., and Bi, N. "A Simplified Approximation of the Four-parameter LF Model of the Voice Source." JASA, Vol. 96, pp. 1182-1185, 1994.
- [32] Sensyn 1.1 version of Klatt synthesizer. Sensimetrics, Cambridge, MA.
- [33] Solari, E. ISA & EISA Theory and Operation. Annabooks, San Diego, CA., 1992.

[34] Yumoto, E., Gould, W. J., and Baer, T. "Harmonics to Noise Ratio as an Index of the Degree of Hoarseness." JASA, Vol. 71, pp. 1544-1550, 1984.