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ABSTRACT

Automatic speech recognition (ASR) systems for young
children are needed due to the importance of age-appropriate
educational technology. Because of the lack of publicly
available young child speech data, feature extraction strate-
gies such as feature normalization and data augmentation
must be considered to successfully train child ASR systems.
This study proposes a novel technique for child ASR using
both feature normalization and data augmentation methods
based on the relationship between formants and fundamental
frequency (fo). Both the fo feature normalization and data
augmentation techniques are implemented as a frequency
shift in the Mel domain. These techniques are evaluated on a
child read speech ASR task. Child ASR systems are trained
by adapting a BLSTM-based acoustic model trained on adult
speech. Using both fo normalization and data augmentation
results in a relative word error rate (WER) improvement of
19.3% over the baseline when tested on the OGI Kids’ Speech
Corpus, and the resulting child ASR system achieves the best
WER currently reported on this corpus.

Index Terms— child speech recognition, fundamental
frequency, feature normalization, data augmentation

1. INTRODUCTION

The development of effective child automatic speech recog-
nition (ASR) systems has become important in recent years.
For example, the advancement of child ASR can facilitate
the development of teaching and assessment tools for chil-
dren in educational settings [1, 2, 3] using interactive sys-
tems such as social robots [4, 5, 6]. This is especially rele-
vant for kindergarten-aged children who are just learning to
read, write, or type and rely on speech to interact with tech-
nology. Yet, ASR systems for young children still perform
quite poorly when compared to adult ASR [6, 7].

One of the major hurdles facing the development of ef-
fective child ASR systems is the lack of publicly available
young child speech databases. This is especially a concern
in an era where deep learning, which requires many hours of
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training data, is rapidly becoming the primary method of de-
veloping ASR systems, using data intensive acoustic models
such as bidirectional long-short term memory (BLSTM) net-
works. Hence, many child ASR systems complement young
child speech with older child speech or even adult speech for
training data. However, there is a large acoustic mismatch be-
tween child and adult speech, further complicated by the fact
that children’s speech acoustics change quite dramatically as
they grow [8, 9]. These changes include formants and fun-
damental frequency (fo) [8, 9], two defining features of the
speech signal, especially for vowels. Furthermore, as the age
difference between training and testing speakers grows, ASR
performance degrades rapidly [7].

One common strategy to account for the acoustic mis-
match between speakers is frequency normalization. This ap-
proach attempts to warp the frequency spectra of an utterance
given a normalization factor for the utterance and a target
acoustic space. For instance, vocal tract length normaliza-
tion (VTLN) warps the frequency spectra using a maximum
likelihood approach and can be implemented in several ways
with varying degrees of success [10, 11, 12]. An alternative
approach is to use acoustically relevant speech parameters as
normalization factors such as subglottal resonances (SGRs)
[13], the third spectral peak or formant frequency [14], and
fo [15].

Another strategy is to augment the training data by cre-
ating additional speech-like features for training data. There
are a number of ways to implement this augmentation such as
manipulating the frequency scaling or adding noise [16, 17].
While data augmentation has not been as readily explored for
child speech compared to adult speech, some techniques that
have been evaluated include adding noise and reverberation
[18] and using out-of-domain adult data [19].

In our previous study, we proposed an fo-based normal-
ization technique for child ASR [15]. In that study, a num-
ber of ASR systems were trained using speech from children
of various ages and tested using kindergarten-aged children.
While that study demonstrated that fo normalization was ef-
fective for child ASR, the experiments performed assumed
that only older child speech was available to train a young
child ASR system. In a more practical situation, we may ex-
pect that some amount of in-domain child speech would be
available as training data. Furthermore, we expect to be able



to generate additional training data through effective data aug-
mentation techniques.

In this study, we propose a new data augmentation method
for training child ASR systems based on the fo normaliza-
tion method we proposed in [15]. This method is capable
of generating speech-like features that adhere to the physi-
cal properties of speech defined by the relationship between
vowel formants and fo. We show that this data augmentation
method is capable of improving child ASR systems adapted
from BLSTM acoustic models trained on adult speech. Addi-
tionally, we demonstrate that this data augmentation method
can be used alongside fo normalization for further improve-
ment.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the fo normalization technique proposed in
[15] and formulates the data augmentation technique. Section
3 describes the databases and experimental setup. Section 4
presents the experimental results. Section 5 concludes the pa-
per with a summary and considerations for future work.

2. NORMALIZATION TECHNIQUE

2.1. Relationship Between fo and Formants

Several past studies have revealed meaningful connections
between fo and the first several formant frequencies (F1,
F2, F3, . . . ) of vowels. In Bark scale, the tonotopic
distances between adjacent formants (F (x + 1) − Fx for
x ∈ {1, 2, 3, . . .}), along with the tonotopic distance between
the first formant and fo (F1−fo), have proven to be effective
at modeling human vowel perception and representing the
vowel space [20, 21]. Furthermore, these tonotopic distances
can be equivalently represented by the difference between any
formant and fo (Fx−fo for x ∈ {1, 2, 3, . . .}). This suggests
that the vowel space can be modeled as a linear relationship
(in Bark scale) between formants and fo. Additionally, stud-
ies have found that fo and formant locations depend on one
another in both vowel production [22] and vowel perception
[23]. A more detailed examination of these relationships can
be found in [15].

2.2. Normalization Procedure

The frequency normalization technique we proposed for
kindergarten ASR in [15] was designed to be applied to any
spectral-based feature such as Mel-frequency cepstral coef-
ficients (MFCCs). The linear relationship between fo and
vowel formants is exploited to formulate a normalization
technique using median fo as the only normalization factor.
As such, the technique attempts to map a speaker’s acoustic
space, governed by the speaker’s fo, to some target space,
defined by a predetermined target fo. Notably, Mel scale
was used in [15] instead of Bark scale as the two scales are
highly correlated, but either scale can be used in practice. For
consistency, this study will also use the Mel scale.

To perform the fo-based normalization, a default fo, de-
noted as fo,def , must first be chosen. Before feature compu-
tation, fo extraction is performed across the entire utterance
using a reliable fo detection algorithm. For this study, we
will use the multi-band summary correlogram (MBSC) pitch
detection algorithm [24].

The median fo across all voiced frames of the utterance,
denoted as fo,utt, is then chosen as the normalization factor
for the utterance. The discrete Fourier transform (DFT) of the
feature extraction procedure is warped as follows:

fnorm = forig − (fo,utt − fo,def ) (1)

where all frequencies are in Mel scale, fnorm is a normal-
ized frequency corresponding to some DFT index, and forig
is the frequency from the original speech spectrum mapped to
fnorm.

An example of this fo normalization is shown in Figure
1. The Mel filter bank outputs of an 18 year old male and a 7
year old male saying the vowel /i/ are displayed both with and
without fo normalization. When both utterances are normal-
ized to fo,def = 100 Hz, the Mel filter bank outputs become
more similar.

2.3. Data Augmentation Procedure

While the fo normalization procedure attempted to reduce
variability between speakers by using Eq. 1, fixing fo,def to
a default value, and adjusting fo,utt, an alternative procedure
can use Eq. 1 to create variability rather than reduce it. This
can be accomplished by extracting features multiple times
from the same speech utterance while adjusting fo,def . By
perturbing the feature extraction, we can augment the training
data by generating acoustic features that are consistent with
the structure of speech defined by the tonotopic distances.
This can be especially useful for training deep neural net-
works that require a large amount of speech data. We will
refer to this technique as fo perturbation. When combined
with the fo normalization procedure, we can simultaneously
remove larger inter-speaker variabilities while perturbing the
features for additional training data.

3. DATABASE AND EXPERIMENTAL SETUP

3.1. Database

Two child speech databases were used in this study. The first
one was the OGI Kids’ Speech Corpus [25]. This corpus con-
tains approximately 100 speakers per American educational
grade level, from kindergarten to 10th grade. Utterances were
recorded with a sampling rate of 16 kHz (8 kHz bandwidth).
Both scripted and spontaneous styles of speech were recorded
from each speaker. In this study, we used the sentence utter-
ances from the scripted speech recordings, which consisted of
a total of 10,072 sentence utterances from children in grades



Fig. 1: Mel filter bank outputs of an 18 year old male (solid) and 7 year old male (dashed) saying the vowel /i/, computed
with 15 filters and a frequency range of 20 Hz to 6 kHz. The filter outputs are computed both without (left) and with (right)
fo normalization. When normalization is applied, default fo is chosen to be fo,def = 100 Hz. The 18 year old male had
fo,utt = 106 Hz, and the 7 year old male had fo,utt = 270 Hz. The Mel filter bank outputs computed with fo normalization
are much more well-aligned than the filter outputs computed without fo normalization.

kindergarten through 5th grade. Approximately 70% of the
utterances in each grade were used as training data for a total
of 7,051 training utterances. The remaining utterances were
used for testing.

The second child speech database was the CMU Kids Cor-
pus [26]. This corpus contains 76 speakers between 1st and
3rd grade with two additional speakers from kindergarten or
6th grade for a total of 78 speakers. Utterances were recorded
with a sampling rate of 16 kHz. A total of 5,180 read sentence
utterances were recorded across these speakers. Exactly 70%
of the utterances in this corpus were used as training data for
a total of 3,626 training utterances. The remaining utterances
were used for testing.

For adult data, the LibriSpeech ASR Corpus was used
[27]. For our experiments, we used all the training data from
the corpus, which contains 960 hours of adults reading audio
books in clean and noisy conditions, for adult model training.

3.2. Feature Extraction

The baseline features used for the ASR experiments were 13-
dimensional MFCCs with a window size of 25 ms and shift of
10 ms. These MFCCs were extracted using a 512-point DFT,
23 Mel filters, and bandwidth from 20 Hz to 8 kHz.

The second set of features was similar to the baseline
features except the DFT was normalized by the procedure
presented in Section 2.2. The default fo was chosen to be
fo,def = 100 Hz representing an adult male fo, and fo,utt was
chosen to be median fo across the utterance, estimated using
MBSC pitch detection. As the value of fo,utt reached as high
as 300 Hz, the bandwidth for these features was limited to 6.2

kHz to compensate for the frequency shift upwards. Notably,
this limits the maximum frequency shift of the fo normaliza-
tion procedure to approximately 250 Mels. Both baseline and
fo normalized features were extracted from all utterances.

When applying fo perturbation, fo,def was adjusted such
that the DFT was shifted by±20,±40, and±60 Mels. Along
with the original features, this multiplies the amount of train-
ing data by 7. Data augmentation was applied to the CMU
Kids and OGI Kids’ training datasets.

Implementation of the feature extraction is relatively sim-
ple when using Eq. 1 to compute the DFT frequency shift.
We let fo,def ∈ {58.52, 72.10, 85.93, 100.00, 114.32, 128.90,
143.74} Hz where every value in the set is used if perform-
ing data augmentation and only 100 Hz is used if performing
a standard feature extraction. Similarly, we let fo,utt = 100
Hz when performing a non-normalized feature extraction and
choose fo,utt as the median fo across the utterance when nor-
malizing.

3.3. Experimental Setup

For both the baseline and fo normalized features, an adult
ASR system was first trained using the LibriSpeech train-
ing set. The acoustic model was a 3-layer BLSTM network
with 512 cells in each direction followed by a feed-forward
layer that mapped the output of the BLSTMs to senone prob-
abilities. The input to the BLSTM was 7 frames (3 frames
forward and backward in time) to form a 91-dimensional in-
put for the acoustic model. The output was approximately
5,700 senone probabilities. The acoustic model was based on
PyKaldi2 [28], while decoding used the Kaldi Speech Recog-



Table 1: Word error rates (WERs) of the child ASR exper-
iment using a BLSTM-based acoustic model adapted from
adult speech. The left two columns indicate whether fo nor-
malization (“Norm?”) and data augmentation using fo pertur-
bation (“Aug?”) were used. WERs for both CMU Kids and
OGI Kids’ are reported in the latter columns.

Norm? Aug? CMU Kids OGI Kids’

No No 16.88 6.84
Yes No 16.93 6.50
No Yes 16.63 5.85
Yes Yes 16.47 5.52

nition Toolkit [29].
The adult ASR systems were adapted to child speech us-

ing either the CMU Kids or OGI Kids’ training data. The
adult ASR system trained with fo normalization was adapted
using child speech features that were extracted with fo nor-
malization. Similarly, the adult ASR system trained without
normalization was adapted using features that were extracted
without normalization. Additionally, data augmentation using
fo perturbation was applied on the child training datasets.

A 4-gram language model (LM) trained on Project Guten-
burg books was chosen for decoding. This LM is one of
the default language models included in Kaldi’s LibriSpeech
recipe [29]. Adapted ASR systems were evaluated using the
corresponding CMU Kids or OGI Kids’ testing datasets. The
ASR system trained with fo normalization was tested using
features extracted with fo normalization.

4. RESULTS AND DISCUSSION

The results of the child ASR experiments described in Section
3 are shown in Table 1. The top row displays the word error
rate (WER) of the baseline system (i.e., no normalization or
augmentation). The second row displays the WER of the sys-
tem using fo normalization. The third row displays the system
adapted with fo perturbed child speech features. Finally, the
last row uses both fo normalization and fo perturbed adap-
tation data. Additionally, we performed the experiment once
more using the acoustic model trained only on LibriSpeech.
This system achieved a WER of 37.49% for CMU Kids and
59.70% for OGI Kids’, significantly worse than any WER in
Table 1, which demonstrates the importance of child speech
adaptation data.

When using adaptation and only applying fo normaliza-
tion, the performance of the OGI Kids’ system saw a small
improvement over the baseline, which has no normalization
or data augmentation, but not enough to be significant. Ap-
plying fo perturbation to the training data, a more substantial
improvement was achieved from 6.84% to 5.85%. However,
when using the CMU Kids system, no major improvements

were observed.

Using both fo normalization and fo perturbation resulted
in the best performing ASR system for both testing sets. The
OGI Kids’ testing set saw a relative WER improvement of
19.3%, reducing the WER to 5.52%, and this result is sta-
tistically significant at p < 0.001. However, the CMU Kids
testing set only saw a relative WER improvement of 2.4%.

While the OGI Kids’ testing set saw a larger improvement
than the CMU Kids testing set, this result may be expected.
We note that the CMU Kids testing set had a narrower age
range (approximately 6-9 years old excluding the two out-
lier children) compared to the OGI Kids’ testing set (approx-
imately 5-11 years old). The fo normalization method has
been shown to produce larger improvements when the range
of ages used in training and testing data is wider [15]. A sim-
ilar phenomenon may be occurring for fo perturbation. That
is, since there is less variability in the CMU Kids testing set,
adding additional variability to the training set through fo per-
turbation was unnecessary to train the BLSTM. Meanwhile,
with the larger variability of the OGI Kids’ dataset, both fo
normalization and fo perturbation proved helpful. Further-
more, these techniques may extend to ASR systems using the
full OGI Kids’ scripted speech dataset, which has been re-
ported to have a WER of 10.8% [18]. Preliminary experi-
ments suggest that fo perturbation also performs better than
VTLN-based data augmentation.

5. CONCLUSION

This study proposes a new data augmentation method for
training child ASR systems based on the fo normalization
method proposed in [15]. Both normalization and data aug-
mentation methods adhere to the physical properties of speech
defined by the relationship between vowel formants and fo.
The two methods can be formulated as a simple shift of DFT
bin frequencies in the Mel domain and are implemented by
manipulating fo,def and fo,utt in Eq. 1. Child ASR sys-
tems were trained using these methods by adapting from a
BLSTM acoustic model trained on adult speech. When using
both fo normalization and fo perturbation, a 19.3% relative
improvement was observed on the OGI Kids’ Speech Corpus.
However, a less substantial improvement was observed on the
CMU Kids Corpus. This suggests, that both fo normalization
and fo perturbation are more effective when the age range of
the speakers is large.

There are a number of possible directions for future work.
We plan to evaluate these methods on ASR systems for both
children and adults for a situation with increased age and fo
variability between speakers. We also plan to apply these sys-
tems to other child ASR applications such as conversational
speech, educational applications, and clinical applications.
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