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Abstract

Effective child automatic speech recognition (ASR) systems have become increasingly important due to the growing use of
interactive technology. Due to the lack of publicly available child speech databases, young child ASR systems often rely on
older child or adult speech for training data. However, there is a large acoustic mismatch between child and adult speech. This
study proposes a novel fundamental frequency (f,)-based frequency warping technique for both frequency normalization and data
augmentation to combat this acoustic mismatch and address the lack of available child speech training data. The technique is
inspired by the tonotopic distances between formants and f,, developed to model human vowel perception. The tonotopic distances
are reformulated as a linear relationship between f, and vowel formants on the Mel scale. This reformulation is verified using f, and
formant measurements from child utterances. The relationship is further generalized such that the frequency warping technique only
relies on two parameters. The LibriSpeech ASR corpus is used for training, and both the OGI Kids’ Speech and CMU Kids Corpora
are used for both training and testing. A single word ASR experiment and a continuous read speech ASR experiment are performed
to evaluate the f,-based frequency normalization and data augmentation techniques. In the single word experiment, the system
using f,-based frequency normalization significantly improved over the baseline system with no normalization, with a relative
improvement of up to 22.3%, when the mismatch between training and testing data was large. In the continuous speech experiment,
the combination of f,-based frequency normalization and data augmentation resulted in a relative improvement of 19.3% over
the baseline. Additionally, in all experiments, the f,-based techniques outperformed other techniques such as vocal tract length
normalization (VTLN) or vocal tract length perturbation (VTLP). Results were validated using Gaussian mixture model (GMM),

deep neural network (DNN), and bidirectional long-short term memory (BLSTM) acoustic models.
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1. Introduction

The need for child automatic speech recognition (ASR) has
grown dramatically in recent years. A major reason for this is
the increased usage of electronic home devices and living-room
personal assistants. Often, speech is one of the only mecha-
nisms young children have to interact with such devices due
to their limited reading, writing, and typing abilities. Further-
more, improved child ASR performance can greatly benefit the
development of teaching, assessment, and clinical diagnostic
tools (Kewley-Port et al., 1991; Tepperman et al., 2006; Bunnell
et al., 2000; Yeung et al., 2017; Sadeghian and Zahorian, 2015)
through interactive media such as social robots (Kennedy et al.,
2017; Spaulding et al., 2018; Yeung et al., 2019). Yet, while
adult ASR has experienced significant performance improve-
ment in recent years, child ASR continues to perform quite

poorly in comparison (Kennedy et al., 2017; Gerosa et al., 2009).
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Previous analyses of child ASR have revealed that the cur-
rent performance is inadequate for practical usage. For instance,
Kennedy et al. (2017) examined the ASR performance of 5 year
old child speech using the Alderbaran NAO, a social robot com-
monly used for human robot interaction (HRI) research. In that
study, the ASR system performed insufficiently on even the
most basic tasks. This included digit recognition, which had
a word error rate of over 15%, and scripted speech recognition,
which had a sentence error rate of over 88% on four commercial
ASR APIs (Google, Bing, Sphinx, Nuance).

A significant impediment to the development of child ASR
is the lack of publicly available child speech databases, espe-
cially for young child speech. This is further complicated by
the fact that deep learning, which requires large amounts of
speech data to train, is becoming the most prominent method
of developing ASR systems. To compensate for this lack of
data, young child ASR systems often employ speech data from
other domains, such as older child speech or even adult speech,
to supplement the training data. However, there are many dif-
ferences between child and adult speech acoustics, further com-
plicated by the fact that children’s speech acoustics change as
they grow (Lee et al., 1997, 1999; Vorperian and Kent, 2007;
Smith, 1992; Koenig et al., 2008; Koenig and Lucero, 2008).
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These changes include the rapid lowering of the fundamental
frequency (f,) and formant frequencies (Lee et al., 1997, 1999;
Vorperian and Kent, 2007), two defining acoustic features of the
speech space.

Previous studies have investigated the performance of child
ASR systems on various age ranges and groupings. Shivaku-
mar et al. (2014) examined child ASR systems using Gaussian
mixture model (GMM) hidden Markov model (HMM)-based
acoustic models and found that small differences in a child’s
age can result in dramatic performance changes. Similarly, Ye-
ung and Alwan (2018) examined child ASR systems using both
GMM-HMM-based and deep neural network (DNN)-HMM-
based acoustic models and also discovered that the age of the
speakers can have a significant effect on system performance.
In particular, the ASR performance for kindergarten speakers
resulted in significantly worse performance than for children
just one year older.

Several techniques have been proposed to reduce this mis-
match in ASR systems. Frequency normalization techniques at-
tempt to warp the speech spectra to a normalized speech space,
reducing inter-speaker variability in the spectral domain. For
instance, vocal tract length normalization (VTLN) (Lee and
Rose, 1998) uses a maximum likelihood approach to warping
the speech spectra. Various implementations of these warp-
ing techniques have seen success in child ASR (Kathania et al.,
2020; Shivakumar et al., 2014; Stemmer et al., 2003; Cui and
Alwan, 2005; Serizel and Giuliani, 2014; Panchapagesan and
Alwan, 2006; Gray et al., 2014). Alternatively, acoustically
relevant speech parameters, such as the subglottal resonances
(SGRs) (Guo et al., 2015) or third formant frequency (F3) (Cui
and Alwan, 2006), can be used as normalization factors by warp-
ing the spectra to match a default speaker.

More recently, ASR systems based on deep learning have
used data augmentation techniques to increase the available data
to train large neural networks such as bidirectional long-short
term memory (BLSTM) networks. There are several ways to
implement these techniques such as feature warping (Jaitly and
Hinton, 2013; Cui et al., 2014), adding noise (Ko et al., 2017;
Hannun et al., 2014), and masking in time or frequency (Park
et al., 2019). An analogue to VTLN, vocal tract length pertur-
bation (VTLP) uses VTLN warping factors to extract features
from the same utterance several times, creating additional vari-
ability in the training data. Furthermore, data augmentation has
not yet been fully explored for child speech, but some known
techniques include adding noise and reverberation (Wu et al.,
2019) and applying out-of-domain adult speech to the training
data (Fainberg et al., 2016; Sheng et al., 2019). Notably, while
data augmentation techniques increase the amount of available
training data, many techniques simply create variability with-
out considering whether these additional features adhere to the
acoustic properties of speech.

Another common technique used in training child ASR sys-
tems is system retraining and transfer learning. For DNN-based
child ASR systems, one common approach is to first train the
system on more readily available data such as adult speech data
before fine-tuning the network parameters with child speech
data (Wu, 2020; Shivakumar and Georgiou, 2020). Transfer

learning from adult data has also seen success in combination
with normalization techniques (Shivakumar and Georgiou, 2020).

The use of f, as a speech feature has also been used suc-
cessfully in adult ASR. Several past studies have reported that
the inclusion of f, or some voicing parameter as an input fea-
ture improved ASR performance for adults, even in atonal lan-
guages (Ghahremani et al., 2014; Fujinaga et al., 2001; Ljolje,
2002; Magimai-Doss et al., 2003). Faria and Gelbart (2005)
found that f, could be used to predict the VTLN warping factor
of an utterance with a maximum likelihood approach. Shah-
nawazuddin et al. (2016) used f, to determine lifter sizes when
extracting cepstral features. Furthermore, while many studies
examining the use of f, in ASR were performed on adults, f,
may also be relevant to children. That is, considering the dif-
ferences in the f, values of adults and children, f, is likely to
contain relevant speaker information.

Research on human speech perception can provide further
insight into the use of f, in ASR. The tonotopic distances be-
tween formants, the distance between adjacent formants in some
perceptual scale such as Mel or Bark, along with the tonotopic
distance between the first formant and f,, are a set of features
that have been successfully used to model human vowel per-
ception (Chistovich and Lublinskaya, 1979; Chistovich, 1985;
Syrdal and Gopal, 1986; Traunmiiller, 1981; Fahey et al., 1996).
This set of features can be interpreted as a normalization of
formant-based vowel models. The inclusion of f, suggests that
f, contains information that can be exploited to normalize the
vowel spectrum. This is supported by studies that suggest that
the perception of vowel quality, vowel production, and voice
naturalness are dependent on f, when formants are fixed (Barreda
and Nearey, 2012, 2013; Assmann and Nearey, 2007). Further-
more, f, and the tonotopic distances may also be useful for cre-
ating speech features that are more speech-like than other data
augmentation methods.

This study proposes an f,-based feature warping method,
inspired by the role of f, in vowel perception, for both fre-
quency normalization and data augmentation in child ASR. We
demonstrate that the tonotopic distances between formants and
[, can be reformulated as a frequency warping function depen-
dent solely on f,. First, the f,-based frequency normalization is
examined using a data limited single-word experiment against
unwarped features and other normalization procedures. Then,
both the f,-based frequency normalization and data augmenta-
tion techniques are examined using a continuous read speech
experiment with transfer learning from adult speech. In both
experiments, the f,-based methods performed the best.

The remainder of the paper is organized as follows. Section
2 discusses the formulation of the f,-based warping method for
both frequency normalization and data augmentation. Section
3 describes the databases and experimental setups used for the
single-word and continuous speech experiments. Section 4 dis-
cusses the results of the experiments. Section 5 concludes the
paper with a summary and directions for future work.



2. Methods and Formulation

2.1. Tonotopic Distances in Vowel Perception

A number of previous studies has found success in model-
ing human vowel perception using the tonotopic distances be-
tween adjacent formants (F(n + 1) — F(n) forn € {1,2,3,...}),
along with the tonotopic distance between the first formant and
fundamental frequency (F1-f,), in the Mel or Bark scale (Chis-
tovich and Lublinskaya, 1979; Chistovich, 1985; Syrdal and
Gopal, 1986; Traunmiiller, 1981; Fahey et al., 1996). An equiv-
alent representation of this set of tonotopic distances can be for-
mulated as the difference between f, and each formant (F(n) —
foforne{l,2,3,...}) (Yeung and Alwan, 2019). This reformu-
lation contains several implications for vowel space modeling.
Specifically, this implies that a linear relationship (with a slope
of 1) exists between a vowel’s formants and f, in the perceptual
frequency scale. It follows that the perception of formant lo-
cations of vowels is affected by the value of the corresponding
f»- Additionally, this suggests that humans are capable of using
[, to perceive the vowel quality of an utterance. These impli-
cations are particularly important for child speech as they have
much higher formant and f, values than adults.

2.2. Tonotopic Distances in Child Vowels

To verify this relationship between formants and f,, we an-
alyzed utterances of hVd words from the WashU-UCLA Child
Subglottal Resonances Database (Yeung et al., 2018). This
database includes 43 children, between the ages of 6 and 18
years, saying 14 different hVd words in the carrier phrase, “I
said a hVd again.” Each hVd word was repeated at least 6
times by each of the children. While this database includes
both microphone and subglottal accelerometer recordings for
each utterance, only microphone recordings were used for this
analysis.

Of the 14 hVd words, four tense vowels, /i/, /ee/, /a/ and /u/,
and four lax vowels, /1/, /e/, /a/, and /u/, were chosen for anal-
ysis. The values of f,, F1, F2, and F3 were measured from
the vowels of these hVd words. All measurements were done
using Praat with manual corrections as needed. Least-squares
linear regression lines relating F1, F2, and F3 to f, for each
vowel were computed, resulting in 24 regression lines. Of all
the linear regressions, the slopes from 19 of the 24 regression
lines were between 0.70 and 1.30, reasonably close to the ex-
pected slope of 1. These slopes contributed significantly to the
regression (p < 0.001) with Pearson’s correlation coefficients
greater than » > 0.5. These results are consistent with the refor-
mulation of the tonotopic distances.

The formant and f, data of the 8 vowels are displayed in
Figure 1 along with least-squares regression lines fixed to have
a slope of 1. The data clearly follow the regression lines with
an upward trend in formant values as f, increases. This re-
sult demonstrates the validity of the reformulation. It should
be noted that as f, increases, the variability of the individual
formants for some of the vowels also increases such as for F'1
of the vowel /i/. This is mostly attributed to mispronuncia-
tions, speech variability, and developing motor skills of chil-

dren. However, even with this variability, the linear trend still
remains.

2.3. f,-based Normalization

Based on the tonotopic distance reformulation above, we
can derive a frequency normalization method in the spectral
domain that relies solely on the value of f,. The key to this
derivation is to note that when f, and the formants (F'1, F2,
F3, ...) are measured on a perceptual scale, the difference be-
tween formants and f, (F1-f,, F2- f,, F3—f,,...) should be
constant across different productions of the same vowel. Thus,
if we can measure f, for any vowel utterance, we can normalize
the formants of the vowel to some default values as follows:

F(n)m)rm = F(n)orig - (f;),utt y ﬁ),def) (1)

forn € {1,2,3,...} where f,,, is the f, of the utterance, f; 4or
is a predetermined value of f, to represent a default speaker,
F(n),yig is the n-th formant in the original utterance, F ()0 is
the n-th formant after normalizing to f, 4., and all frequencies
in Eq. 1 are measured in the perceptual scale. This paper will
use the Mel scale as the perceptual scale of choice.

While Eq. [ is formulated specifically for formants, this
comes with the added complication of formant estimation, which
is generally unreliable for children or speakers with high f, and
formant values. Instead, we can avoid direct manipulation of
formants by normalizing the entire spectrum as follows:

f;mrm = forig - (fo,utr - fo,def) 2)

where f;,;, is some frequency in the original spectrum and f;,y/m
is the corresponding frequency in the normalized spectrum. That
is, the frequency content in f,e is shifted to f,,.,. In the case
of a discrete spectrum such as for feature computation, we can
reinterpret f,,.m» as the normalized frequency corresponding to
some discrete Fourier transform (DFT) index and f,, as the
frequency from the original spectrum mapped to the index of
Jrorm- We will refer to this method as f, normalization.

The difference between f, normalization and VTLN should
be noted. While each technique performs some warping of
the frequency space, the warping function differs. Specifically,
VTLN and variations of VTLN that use physical parameters
such as F3 normalization (Cui and Alwan, 2006) and SGR nor-
malization (Guo et al., 2015) are generally implemented using
piecewise-linear functions. However, f, normalization is non-
linear due to the shift in the Mel scale rather than Hz. Addition-
ally, while VTLN usually requires several feature extractions
and passes through the ASR system to be effective, f,, F3, and
SGR normalization all use physical parameters to compute the
warping function and thus only require a single feature extrac-
tion.

An example of the effect of f, normalization is shown in
Figure 2. The Mel filter bank outputs of an 18 year old male and
7 year old male saying the vowel /i/ are displayed both with and
without f, normalization. As expected, when f, normalization
is applied, the filter bank outputs become more similar.

The values of F2 vs. F1 for each of the utterances of the
vowels /i/, /e&/, /a/, and /u/ from the microphone signals of
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Figure 1: F1 vs. f, (blue), F2 vs. f, (red), and F3 vs. f, (purple) for the vowels /i/, /ee/, /a/,Ju/, /1, [€/, s/, and /u/ from corresponding hVd words of children

between the ages of 6 and 18 years. Also shown are the least-squares linear regression lines, fixed to have a slope of 1. The data follow the linear relationship
implied by the reformulation of the tonotopic distances.
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Figure 2: Mel filter bank outputs of the vowel /i/ spoken by an 18 year old male
(solid) and a 7 year old male (dashed) computed with 15 filter banks using
a frequency range of 20 Hz to 6 kHz. The filter bank outputs are computed
both without (top) and with (bottom) f, normalization. When normalization
is applied, default f, is chosen to be f, 4.y = 100 Hz. The 18 year old male
had f, .+ = 106 Hz, and the 7 year old male had f,,+ = 270 Hz. The filter
bank outputs computed with f, normalization are better aligned than the outputs
without f, normalization.

the WashU-UCLA Child Subglottal Resonances Database are
shown in Figure 3. The top figure shows the formants without
normalization, and the bottom figure shows the formants with
fo normalization and f, 4.y = 100 Hz. Compared to the for-
mants without normalization, the F'1 and F2 values for each
vowel are clearly more condensed and better separated from
the other vowels. This further exemplifies the objective of f,
normalization.

2.4. Data Augmentation via f,, Perturbation

While the f, normalization procedure uses Eq. 2 to reduce
variability between speakers by fixing f, 4.y to a default value
and adjusting f, ., an alternative procedure is to use Eq. 2 to
create variability. To perform this procedure, we extract fea-
tures several times from a single speech utterance while chang-
ing f,qer. The resulting set of features is consistent with the
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Figure 3: F2 vs. F1 for the vowels /i/, /z¢/, /a/, and /u/, both without (top) and
with (bottom) f, normalization, from corresponding hVd words of children
between the ages of 6 and 18 years. When f, normalization is applied, the
default f, is chosen to be f, 40y = 100 Hz. Clearly, the (F1, F2) locations for
the formants with f, normalization are more condensed and better separated
than for the formants without normalization.

structure of speech defined by the tonotopic distances and can
be used to augment the training data. This is especially useful
for training neural network-based systems, which require large
amounts of training data. We will refer to this method as f,
perturbation.

Notably, f, normalization and f, perturbation can be used
simultaneously by setting f, ,;; to be the f; of the utterance and
choosing multiple values for f,4.r. This allows us to remove
large inter-speaker variabilities while also generating speech-
like features for additional training data.

2.5. Parameter Considerations

For f, normalization to be effective, the default value of
Jo.dey must be chosen beforehand so features can be normalized
to the same speech space. After preliminary experimentation,
we have found that a reasonable choice for f, 4.r is 100 Hz or
150 Mels. This can be interpreted as normalizing a speaker’s
voice to that of an adult male. The following experiments in
Section 3 will use f; 4oy = 100 Hz as an initial value.

To perform f, perturbation, additional values for f, 4. must
be chosen. This can be done by simply perturbing the initially
chosen value of f, 4.r. After preliminary experimentation, we
have found that adding +20, +40, and +60 Mels to the initial



value of f; 4. is effective. For instance, when choosing an ini-
tial value of f;, 4.y = 100 Hz, the f, perturbation method would
use f, 4er € {58.52,72.10, 85.93,100.00, 114.32, 128.90, 143.74}
Hz, repeating the feature extraction for each value.

An additional consideration is the computation of f, ,, re-
quired to perform f, normalization. Generally, any reasonably
accurate pitch estimation method can be used for this normal-
ization. Any algorithm that estimates f, can implement f, nor-
malization with no computational overhead. The experiments
described in Section 3 use the Multi-Band Summary Correlo-
gram (MBSC) pitch detection algorithm (Tan and Alwan, 2013)
to compute f;, -

It is desirable to use the median f, over the speech utter-
ance as the value of f,,,. Using a median can remove errors
and outliers from the f, estimation process and compensate for
intra-speaker variability. Storage of a single number to be ap-
plied to an individual speaker is also an effective way to quickly
adapt an ASR system as opposed to needing multiple values of
fo for an individual speaker. Finally, DFT computation over an
utterance can be implemented much more efficiently when ap-
plying f, normalization with only one value of f, ,, as opposed
to many, resulting in dramatically faster computation times for
feature extraction. The following experiments in Section 3 will
use median f, over the utterance as the value of f, .

2.6. Bandwidth Considerations

When applying the f, normalization method to feature ex-
traction, it is necessary to consider the usable bandwidth of the
speech signal. This is because the normalization method shifts
the entire dynamic range of the frequency spectrum. For exam-
ple, consider an f, normalization setup with f, ;. = 100 Hz
and a feature extraction procedure using frequencies from 20
Hz to 8 kHz, which is standard for speech signals sampled at
16 kHz. If an utterance has f, ,» = 100 Hz, the frequency range
of the feature extraction does not change. However, if an utter-
ance has f,,,, = 200 Hz, the range of frequencies is shifted by
approximately 133 Mels. Thus, the lowest needed frequency
shifts from 20 Hz to 110 Hz, and the highest needed frequency
shifts from 8 kHz to 9.1 kHz. Similarly, if an utterance has
Jfo.ur = 300 Hz, the range of frequencies used is from 200 Hz to
10.2 kHz. As such, some values of f, ,,; would require frequen-
cies that are beyond the signal bandwidth.

To compensate for this shift, the feature extraction band-
width at f, 4. = foun must be limited such that the use of f,
warping does not exceed the signal’s bandwidth. In the case
of f,4er = 100 Hz, limiting the default bandwidth to 20-6200
Hz ensures that the feature extraction will not use frequencies
above 8 kHz for a maximum f,, of 300 Hz. This guarantee
is sufficient for most child utterances sampled at 16 kHz, and
experiments in Section 3 will use a bandwidth of 20-6200 Hz
when applying f, normalization during feature extraction.

3. Experiments

3.1. Databases
Several databases containing both adult and child speech
were used in this study. For adult speech data, the LibriSpeech

Table 1: Number of subjects and utterances in the OGI Kids” Speech Corpus,
separated by grade level and gender.

Grade Male Female

#Sub. #Utt. | #Sub. # Utt.
K 39 1142 49 1915
1 58 3921 31 2032
2 53 3584 61 2032
3 63 4194 52 3516
4 47 3178 45 2976
5 49 3361 49 3362
6 57 3912 55 3774
7 46 3136 51 3499
8 49 3362 50 3431
9 69 4606 40 2677
10 75 5084 29 1989

Table 2: Number of subjects and utterances in the CMU Kids Corpus, separated
by grade level and gender.

Grade Male Female
#Sub.  #Utt. | #Sub. #Utt.
K 0 0 1 1
1 6 176 16 944
2 10 812 22 1388
3 8 758 11 942
6 0 0 1 93
Unknown 0 0 1 66

ASR corpus was used (Panayotov et al., 2015). This corpus
contains adult read speech (1210 males, 1128 females) from
various audio books. The speech in this corpus was sampled at
16 kHz. We specifically used the training set from this corpus,
which contains 960 hours of clean and noisy speech.

The first child speech database was the OGI Kids’ Speech
Corpus (also know as the CSLU Kids’ Speech Corpus) (Shobaki
et al., 2000). This corpus contains read and spontaneous speech
from approximately 100 speakers at each educational grade level,
from kindergarten to 10" grade. The number of male and fe-
male children from each grade level is shown in Table 1. Ut-
terances were sampled at 16 kHz. In this study, we only used
read speech utterances that were labeled “1” in the corpus ver-
ification files. This label indicates that the utterance was read
accurately with limited background noise. The read speech was
further split into two datasets depending on whether the child
read only a single word or a full sentence. We will refer to these
datasets as “OGI single words” and ”OGI sentences”. Note that
the OGI sentences dataset only contained speech from kinder-
garten to 5 grade.

The second child speech database was the CMU Kids Cor-
pus (Eskenazi et al., 1997). This corpus contains read speech
from 76 children between 1% and 3™ grade with two additional
speakers from kindergarten and 6™ grade. The number of male
and female children from each grade level is shown in Table 2.
Utterances were sampled at 16 kHz. Children were instructed



to read several short sentences resulting in a total of 5180 sen-
tence utterances.

3.2. Feature Extraction

The baseline features for the following experiments were
Mel-frequency cepstral coefficients (MFCCs). The MFCCs were
extracted with frame length of 25 ms, frame shift of 10 ms, 512-
point DFT, 23 Mel filters, pre-emphasis coefficient of 0.97, and
lifter coefficient of 22. For each frame, the first 13 MFCCs were
kept for a 13-dimensional feature set.

The second set of features was similar to the baseline MFCCs
except that the DFT was converted to the Mel scale and nor-
malized using f, normalization. The default f, was chosen to
be f,q4.r = 100 Hz, and f;,,, was chosen to be the median f,
across the utterance computed using the MBSC pitch detection
algorithm (Tan and Alwan, 2013) when f, normalization was
performed. Baseline and f, normalized features were extracted
from all utterances.

When applying f, perturbation, f, 4. was shifted by +20,
+40, and +60 Mels, resulting in f;, 4.; € {58.52, 72.10, 85.93,
100.00, 114.32, 128.90, 143.74} Hz as explained in Section 2.5.
Including the initial features, this multiplies the amount of train-
ing data by 7.

Feature extraction implementation is relatively simple when
using Eq. 2 to compute the effective DFT frequency bin shift.
We choose f, 4.r € {58.52,72.10, 85.93, 100.00, 114.32, 128.90,
143.74} Hz where every value is used when performing f, per-
turbation and only f, 4. = 100 Hz is used when performing a
standard feature extraction. Also, we choose f, , to be the me-
dian f, across the utterance when performing f, normalization
and simply let £, ,; = 100 Hz when extracting non-normalized
features. The remaining feature extraction procedure remains
unchanged.

3.3. Single Word Experiments

These experiments examined the effectiveness of f, normal-
ization in a scenario where child speech is limited to train a
single word ASR system. From the OGI single words dataset,
1,654 word utterances were randomly chosen from each grade
and separated by grade for a total of 11 subsets containing ap-
proximately 1.2 hours of speech. Each subset from 1% to 10"
grade was used to train several GMM-based and DNN-based
single word ASR systems, either with or without normalization.
For these experiments, the baseline MFCCs used a bandwidth
of 8 kHz, and the f, normalized MFCCs used a bandwidth of
6.2 kHz as explained in Section 2.6. To compare f, normal-
ization to other standard normalization techniques, additional
child ASR systems were trained using piecewise VTLN (Lee
and Rose, 1998), F3 normalization (Cui and Alwan, 2006), and
normalization using the third SGR (SG3) (Guo et al., 2015).
The input to the GMM-based systems was empirically chosen
to be a 7-frame concatenation (3 frames left, 3 frames right) lin-
ear discriminant analysis (LDA) mapped to a 40-dimensional
vector. An additional 9-frame LDA was applied to the input of
the GMM-based systems for the input of the DNN-based sys-
tems.

Due to the limited amount of data, the GMMSs only used a
maximum of 1250 Gaussians. Similarly, the DNNs only had
2 hidden layers using 2-norm non-linearities with input dimen-
sion of 500 and output dimension of 100. The output of both
the GMMs and DNNs was 250 senone probabilities.

The kindergarten subset of 1,654 words was used for test-
ing. The language model (LM) used for decoding was a single
word LM that contained the 208 possible words from the OGI
single words dataset. The ASR systems trained on baseline fea-
tures were tested using baseline features. Similarly, the ASR
systems trained on normalized features were testing using the
same normalized features.

3.4. Continuous Speech Experiments

These experiments examined the effectiveness of f, normal-
ization and f, perturbation in a scenario where adult data can
be used to train a continuous speech child ASR system. Adult
ASR systems were first trained using the LibriSpeech data, ei-
ther with or without f, normalization. Similar to the single
word experiments, the baseline MFCCs in these experiments
used a bandwidth of 8 kHz, and the f, normalized MFCCs used
a bandwidth of 6.2 kHz. Senone alignments were first extracted
by training GMM-HMM ASR systems using the LibriSpeech
tri6b recipe from the Kaldi Speech Recognition Toolkit (Povey
et al., 2011). The alignments were then used to train BLSTM-
HMM ASR systems using the PyKaldi2 toolbox (Lu et al., 2019).
The input to the BLSTM was empirically chosen to be a 7
frame concatenation (3 frames left, 3 frames right) for a 91-
dimensional feature input. The BLSTM had 3 layers with 512
cells in each direction, followed by a feed-forward softmax
layer that mapped the BLSTM output to approximately 5,700
senone probabilities.

Each adult ASR system was adapted to child speech us-
ing either the OGI sentences dataset or the CMU Kids Speech
Corpus. All the parameters of the adult acoustic model were
used as an initialization for training the child acoustic model,
and the same training procedure was applied using child speech
data for parameter fine-tuning. Approximately 70% of the data
from these child speech datasets was used as adaptation data.
The ASR systems trained on baseline MFCCs were adapted us-
ing baseline MFCCs. Similarly, the ASR systems trained on f,
normalized MFCCs were adapted using f, normalized MFCCs.
Additionally, data augmentation using f, perturbation was also
applied to the child adaptation data.

To compare f, perturbation to a standard data augmentation
technique, we applied vocal tract length perturbation (VTLP)
(Jaitly and Hinton, 2013) to the baseline MFCCs extracted from
the child speech adaptation data. This was used to adapt the
adult ASR systems trained on baseline MFCCs. For a fair com-
parison, the set of warping factors for VTLP was chosen to be
{0.94, 0.96, 0.98, 1.00, 1.02, 1.04, 1.06}, which multiplies the
training data by 7.

The remaining 30% of utterances in the OGI sentences dataset
or the CMU Kids Speech Corpus was used for testing. A 4-
gram LM trained on approximately 14,500 Project Gutenburg
books was used for decoding. This LM is one of the LMs in-
cluded in Kaldi’s LibriSpeech recipe (Panayotov et al., 2015).



4. Results and Discussion

4.1. Single Word Experiments

The results of the single word experiments for the GMM-
based systems are displayed in Table 3, separated by grade. The
first row shows the word error rates (WERSs) of the child ASR
systems trained with no normalization. The next three rows
show the WERs of the systems trained with VTLN, F3 nor-
malization, and SG3 normalization. The bottom row shows the
WERSs of the systems trained with f, normalization. All WERs
that are not significantly different (p > 0.05) from the f,-based
normalization are in bold.

As the results were tested on kindergarten speech, the youngest

group from the OGI Kids’ Speech Corpus, we expect that train-
ing data from younger children would be better matched to
the testing data and produce better performance. Indeed, as
the training grade increases, the performance dramatically de-
creases. Unsurprisingly, both f, normalization and VTLN did
not affect performance when training on 1! to 6" grade chil-
dren. That is, since the children from these younger grades are
physiologically similar to kindergarten children, their speech
acoustic spaces are likely well-matched even without warping.
As such, normalization will have a limited effect.

When training using speech from 7™ grade children and
older, the normalization begins to have a more pronounced ef-
fect on the system. Starting from 8™ grade, systems using f,
normalization performed significantly better (p < 0.05) than
systems using no normalization with a relative improvement
of 11.8%, 13.3%, and 22.3% for 8" grade, 9™ grade, and 10™
grade, respectively. This is expected due to the speech acous-
tic mismatch between young and older children. Furthermore,
this implies that the f, normalization procedure was successful
in mapping older and younger child speech to a more similar
acoustic space.

The results of the single word experiments for the DNN-
based systems are shown in Table 4. Similar to the GMM-based
systems, both f, normalization and VTLN did not affect perfor-
mance when training on speech from 1% to 6" grade children.
Starting from 7" grade, systems using f, normalization per-
formed significantly better (p < 0.05) than systems using no
normalization with a relative improvement of 11.1%, 19.3%,
20.9%, and 21.0% for 7" grade, 8" grade, 9" grade, and 10"
grade, respectively.

The f, normalization technique outperformed VTLN sig-
nificantly (p < 0.05) when the GMM-based system was trained
on 10" grade child speech and when the DNN-based system
was trained on 8" grade child speech. This suggests that f,
normalization is slightly more effective than VTLN at normal-
izing speech to some default space while using less bandwidth.
Moreover, f, normalization has an additional computational ad-
vantage as VTLN requires multiple passes through the system
while f, normalization only requires one pass. As such, the f,
normalization method is capable of providing additional com-
putational efficiency with no loss in ASR performance.

Similarly, the f, normalization technique outperformed F3
and SG3 normalization significantly for almost all the training

grades, regardless of whether a GMM-based system or DNN-
based system was used. In fact, F3 and SG3 normalization
generally performed worse than the baseline unless the sys-
tems were trained on older child speech. Previous studies on
these normalization techniques did not show such performance
degradation (Cui and Alwan, 2006; Guo et al., 2015; Yeung and
Alwan, 2019). This may be attributed to the fact that those stud-
ies trained ASR systems using a bandwidth of 4 kHz. As aver-
age F3 and SG3 values are generally between 2 kHz and 4 kHz,
applying F3 or SG3 normalization with a 4 kHz bandwidth sig-
nal normalizes a majority of the frequency content. However,
applying these normalization techniques to an 8§ kHz bandwidth
signal may distort the frequency content above the average F3
or SG3 values causing performance degradation. Regardless,
this suggests that f, normalization is a more suitable feature
normalization technique for bandwidths greater than 4 kHz than
F3 or SG3 normalization.

A few implications arise from the results of these experi-
ments. Mainly, regardless of the acoustic model used, f, nor-
malization is the most effective at improving ASR performance
on young child speech out of the feature normalization tech-
niques tested, particularly when training data consists of older
children or adults. This would similarly hold true if the training
data contains a mixture of older and younger speakers. As f,
normalization is far less computationally expensive than VTLN,
this further justifies the importance of an effective single-pass
normalization technique. However, f, normalization alone is
not able to fully compensate for extreme acoustic mismatches,
as evidenced by the results in Tables 3 and 4.

4.2. Continuous Speech Experiments

The results of the BLSTM-based system trained using f,
perturbation for data augmentation, along with the system us-
ing VTLP, are shown in Table 5. Applying f, perturbation to
the ASR system using OGI sentences results in a substantial
improvement from 6.84% to 5.85%, and this result is signif-
icant (p < 0.001). However, the ASR system using CMU
Kids shows less improvement. When applying VTLP instead
of f, perturbation, the OGI sentences system also results in
an improvement but still performs worse than f, perturbation.
Additionally, the CMU Kids system performs worse than the
baseline when applying VTLP. This result suggests that the f,
perturbation method is superior to VTLP since f, perturbation
creates additional data that preserves the acoustic properties of
speech. This further implies that when performing frequency
warping for data augmentation, the warping functions must be
constructed in a way that produces realistic variations in speech
features.

The results of the continuous speech experiments using both
f, normalization and f, perturbation are shown in Table 6. The
left two columns indicate whether f, normalization or f, pertur-
bation were applied to the ASR system. The right two columns
display the WERs of the ASR systems trained and tested on
CMU Kids or OGI sentences.

When applying f, normalization to the ASR system, we ob-
serve a slight improvement for the OGI sentences system, but



Table 3: Word error rates (WERSs) (%) of GMM-HMM ASR systems for the single word experiments. Each ASR system was trained on a single grade level
(1-10™ grade) and tested on kindergarten speech from the OGI single words dataset. MECCs were extracted with no normalization, VTLN, F3 normalization, SG3
normalization, and f, normalization. All WERs that are not significantly different (p > 0.05) from the f,-based normalization are in bold.

Feature Training Grade
Normalization 1 2 3 4 5 6 7 8 9 10
None 23.28 2291 22.85 25.51 25.70 28.72 31.86 36.64 39.66 44.74
VTLN 24.55 22.31 23.64 24.83 23.34 27.51 29.14 31.86 34.10 38.21
F3 27.03 26.42 28.66 27.57 27.75 31.92 31.32 33.01 35.25 38.75
SG3 25.76 25.15 25.76 26.06 25.39 28.72 31.26 31.92 35.97 36.46
f, Norm 24.55 22.85 24.61 26.42 25.21 27.87 29.81 32.29 34.40 34.76

Table 4: Word error rates (WERs) (%) of DNN-HMM ASR systems for the single word experiments. Each ASR system was trained on a single grade level (1%-
10" grade) and tested on kindergarten speech from the OGI single words dataset. MFCCs were extracted with no normalization, VTLN, F3 normalization, SG3
normalization, and f;, normalization. All WERs that are not significantly different (p > 0.05) from the f,-based normalization are in bold.

Feature Training Grade
Normalization 1 2 3 4 5 6 7 8 9 10
None 20.07 20.56 21.22 23.82 22.19 26.12 28.76 3222 36.22 41.23
VTLN 19.35 19.59 20.62 22.37 20.68 23.82 26.18 29.69 29.56 34.64
F3 24.55 24.12 24.30 25.27 25.15 29.99 28.90 29.69 30.89 35.85
SG3 24.24 23.10 24.61 24.85 24.18 27.21 30.29 29.14 32.71 35.13
f» Norm 20.07 20.25 20.74 24.61 21.22 24.43 25.57 26.00 28.66 32.56

this improvement is not as substantial as applying f, perturba-
tion without f, normalization. Applying f, normalization along
with f,, perturbation provides further improvement to 5.52%,
resulting in a relative improvement over the baseline of 19.3%.
When applying both f, normalization and f, perturbation on
the CMU Kids system, the WER decreases to 16.47%, a rel-
ative improvement of 2.4%. Both systems result in improve-
ments over recently reported child ASR systems such as Wu
et al. (2019), which reported WERSs of 10.8% when using OGI
Kids’ scripted speech and 17.3% when using CMU Kids.

The discrepancy between the improvements of the two sys-
tems is likely due to the age range of the child speakers. The
OGI sentences dataset used children from kindergarten to 5%
grade. Meanwhile, the CMU Kids corpus only used children
from 1% to 3" grade, excluding two outlier speakers. As seen
in Section 4.1, f, normalization is only effective when the age
range of the training and testing data is large enough. This may
also hold true of f, perturbation. That is, since there is less vari-
ability in the CMU Kids corpus, adding additional variability
in the training data through f,, perturbation is both unnecessary
and unhelpful when training the BLSTM. Meanwhile, since the
OGI sentences dataset has a larger age variability, both f, nor-
malization and f, perturbation provided improvements.

To further analyze the effectiveness of the f, normalization
technique on a BLSTM-based ASR system, we applied f, nor-
malization to the clean and noisy adult speech testing datasets
included in the LibriSpeech corpus (“test_clean”, “test_other”)
and evaluated the effectiveness of f, normalization using the
unadapted BLSTMs, that is, systems trained only on the Lib-

riSpeech data. The system with no normalization achieved 5.47%

and 14.83% WER on the clean and noisy test sets, respectively.

The system with f, normalization achieved 5.60% and 14.87%
WER on the clean and noisy test sets, respectively. These re-
sults seem to suggest that f, normalization has virtually no ef-
fect on adult ASR. However, this implies that f, normalization
can be used in an ASR system to improve the performance
on child speech with no sacrifice to the performance on adult
speech.

To further analyze the results of Table 6, we separated the
WERs of the OGI sentences system by grade with and without
f, normalization and f, perturbation, shown in Table 7. The
child ASR systems in Table 7 are the same as in Table 6. Simi-
lar to the previous results, the system with both f, normalization
and f, perturbation performs better than the baseline system as
well as the systems using only f, normalization or only f, per-
turbation for all grades present in the experiment. This system
was significantly better than the baseline for kindergarten, 1%
grade, and 2™ grade speech at p < 0.05. Meanwhile, the sys-
tem was significantly better than the baseline for 3™ grade and
4™ orade speech at p < 0.1. As such, we can conclude that both
[, normalization and f, perturbation provide improvements for
the entire age range for the OGI Kids’ Speech Corpus.

5. Conclusion

This paper makes two contributions to the fields of child
speech acoustics and child ASR. First, it reports an examination
of the tonotopic distances between formants and f, and their ap-
plications to ASR. The tonotopic distances were reformulated
as a linear relationship between formants and f, in the percep-
tual frequency scale. To verify this relationship, the first three
formants and f, were measured from utterances of children say-



Table 5: Word error rates (WERs) (%) of the child ASR experiment using a
BLSTM-based acoustic model adapted from adult speech. ASR systems either
used no data augmentation, VTLP, or f, perturbation. WERs for both CMU
Kids and OGI sentences are reported. The system using f, perturbation per-
formed the best on both datasets. The best performing system that performed
significantly better than the baseline (p < 0.05) is in bold.

Augmentation | CMU Kids  OGI Sent.
None 16.88 6.84
VTLP 17.05 6.22
Jfo Per. 16.63 5.85

Table 6: Word error rates (WERs) (%) of the child ASR experiment using
a BLSTM-based acoustic model adapted from adult speech. The left two
columns indicate whether f, normalization (“f, Norm?”) and data augmen-
tation using f, perturbation (“f, Per?”’) were used. WERs for both CMU Kids
and OGI sentences are reported in the latter columns. The system using both
f, normalization and f, perturbation performed the best on both datasets. The
best performing system that performed significantly better than the baseline
(p < 0.05) is in bold.

fo Norm?  f, Per? | CMUKids OGI Sent.
No No 16.88 6.84
Yes No 16.93 6.50
No Yes 16.63 5.85
Yes Yes 16.47 5.52

ing hVd words, and least squares linear regression lines relating
the formant frequencies to f, were computed. The regressions
were significant with p < 0.001 and r > 0.51, consistent with
the reformulation of the tonotopic distances.

This result prompted the second contribution, which was a
spectral warping technique inspired by the relationship between
formants and f;, in the vowel space as defined by these tonotopic
distances. By choosing to warp the entire spectrum rather than
just the formants, the warping technique relies on only the me-
dian f, across the utterance, f, ., and a target speech acoustic
space to serve as a default speaker, defined by f;, 4.y. Frequency
normalization is performed simply by choosing a fixed f; s.r
while data augmentation can be applied by choosing multiple
values of f, 4.y in a reasonable way.

The frequency normalization and data augmentation pro-
cedures, denoted as f, normalization and f, perturbation, re-
spectively, were verified on both a limited data single word
child ASR experiment and a continuous speech ASR experi-
ment. The single word ASR experiment explored the effective-
ness of f, normalization and compared the results against other
normalization techniques. When the child ASR system was
trained on older child speech and tested on kindergarten speech,
[, normalization performend significantly better than the base-
line and slightly better than the system using VTLN. The con-
tinuous speech ASR experiment explored the effectivenes of f,
normalization and f, perturbation and found that the combi-
nation of both techniques was beneficial to a BLSTM-based
child ASR system when the age range of the child speakers
was large. Additionally, f, perturbation was found to be more
helpful than VTLP as a data augmentation technique. Finally,
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an examination of the ASR performance on individual grade
levels revealed that the combination of f, normalization and
[, perturbation was beneficial across a range of ages. The re-
sults of this paper further suggest the importance of frequency
warping using a warping function that adheres to the physical
constraints of speech. Furthermore, the experiments performed
demonstrate the effectiveness of the f, warping techniques re-
gardless of the acoustic model used.

While the proposed f, normalization and f, perturbation
techniques provide significant improvements to child ASR sys-
tems, there is a number of additional research directions to ex-
plore. Further improvement of child ASR is still necessary, es-
pecially for the youngest children. Another direction of partic-
ular importance is the development of a universal ASR system
for both adults and children.
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Fundamental frequency-based feature warping formulated from relationship between
formants and f,

Warping technique can be used for normalization or data augmentation

Applying both f,-based normalization and data augmentation to child ASR provides a
substantial improvement over baseline
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