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Data Augmentation in Child Automatic Speech Recognition

Gary Yeung∗, Ruchao Fan, Abeer Alwan
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hild automatic speech recognition (ASR) systems have become increasingly important due to the growin
hnology. Due to the lack of publicly available child speech databases, young child ASR systems ofte
adult speech for training data. However, there is a large acoustic mismatch between child and adult spee
s a novel fundamental frequency ( fo)-based frequency warping technique for both frequency normalization
to combat this acoustic mismatch and address the lack of available child speech training data. The tec
tonotopic distances between formants and fo, developed to model human vowel perception. The tonotopic

ed as a linear relationship between fo and vowel formants on the Mel scale. This reformulation is verified usi
rements from child utterances. The relationship is further generalized such that the frequency warping techn
arameters. The LibriSpeech ASR corpus is used for training, and both the OGI Kids’ Speech and CMU Kids
th training and testing. A single word ASR experiment and a continuous read speech ASR experiment are p

fo-based frequency normalization and data augmentation techniques. In the single word experiment, th
frequency normalization significantly improved over the baseline system with no normalization, with

of up to 22.3%, when the mismatch between training and testing data was large. In the continuous speech ex
on of fo-based frequency normalization and data augmentation resulted in a relative improvement of 19
Additionally, in all experiments, the fo-based techniques outperformed other techniques such as vocal tra
(VTLN) or vocal tract length perturbation (VTLP). Results were validated using Gaussian mixture model
twork (DNN), and bidirectional long-short term memory (BLSTM) acoustic models.

ild speech, speech recognition, frequency normalization, data augmentation, fundamental frequency

on

or child automatic speech recognition (ASR) has
ically in recent years. A major reason for this is
sage of electronic home devices and living-room

tants. Often, speech is one of the only mecha-
children have to interact with such devices due
d reading, writing, and typing abilities. Further-
d child ASR performance can greatly benefit the
f teaching, assessment, and clinical diagnostic
Port et al., 1991; Tepperman et al., 2006; Bunnell

eung et al., 2017; Sadeghian and Zahorian, 2015)
ctive media such as social robots (Kennedy et al.,
ng et al., 2018; Yeung et al., 2019). Yet, while
s experienced significant performance improve-
t years, child ASR continues to perform quite
arison (Kennedy et al., 2017; Gerosa et al., 2009).

article appeared in the proceedings of INTERSPEECH 2019
the proceedings of ICASSP 2021.
g author
ses: garyyeung@g.ucla.edu (Gary Yeung),
cla.edu (Ruchao Fan), alwan@ee.ucla.edu (Abeer

Previous analyses of child ASR have revealed tha
rent performance is inadequate for practical usage. For
Kennedy et al. (2017) examined the ASR performance
old child speech using the Alderbaran NAO, a social ro
monly used for human robot interaction (HRI) researc
study, the ASR system performed insufficiently on
most basic tasks. This included digit recognition, w
a word error rate of over 15%, and scripted speech rec
which had a sentence error rate of over 88% on four co
ASR APIs (Google, Bing, Sphinx, Nuance).

A significant impediment to the development of c
is the lack of publicly available child speech databas
cially for young child speech. This is further compl
the fact that deep learning, which requires large am
speech data to train, is becoming the most prominen
of developing ASR systems. To compensate for thi
data, young child ASR systems often employ speech d
other domains, such as older child speech or even adu
to supplement the training data. However, there are m
ferences between child and adult speech acoustics, fur
plicated by the fact that children’s speech acoustics c
they grow (Lee et al., 1997, 1999; Vorperian and Ke
Smith, 1992; Koenig et al., 2008; Koenig and Lucer
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Kent, 2007), two defining acoustic features of the

tudies have investigated the performance of child
on various age ranges and groupings. Shivaku-
4) examined child ASR systems using Gaussian
l (GMM) hidden Markov model (HMM)-based
ls and found that small differences in a child’s
in dramatic performance changes. Similarly, Ye-
n (2018) examined child ASR systems using both
based and deep neural network (DNN)-HMM-

models and also discovered that the age of the
ave a significant effect on system performance.

the ASR performance for kindergarten speakers
nificantly worse performance than for children
lder.
hniques have been proposed to reduce this mis-
systems. Frequency normalization techniques at-
the speech spectra to a normalized speech space,
-speaker variability in the spectral domain. For
l tract length normalization (VTLN) (Lee and
ses a maximum likelihood approach to warping
ectra. Various implementations of these warp-
have seen success in child ASR (Kathania et al.,
mar et al., 2014; Stemmer et al., 2003; Cui and
Serizel and Giuliani, 2014; Panchapagesan and
Gray et al., 2014). Alternatively, acoustically

h parameters, such as the subglottal resonances
et al., 2015) or third formant frequency (F3) (Cui
06), can be used as normalization factors by warp-
to match a default speaker.

ntly, ASR systems based on deep learning have
entation techniques to increase the available data

neural networks such as bidirectional long-short
(BLSTM) networks. There are several ways to
se techniques such as feature warping (Jaitly and
Cui et al., 2014), adding noise (Ko et al., 2017;
2014), and masking in time or frequency (Park

An analogue to VTLN, vocal tract length pertur-
) uses VTLN warping factors to extract features
utterance several times, creating additional vari-

raining data. Furthermore, data augmentation has
ully explored for child speech, but some known
lude adding noise and reverberation (Wu et al.,
lying out-of-domain adult speech to the training
et al., 2016; Sheng et al., 2019). Notably, while
tion techniques increase the amount of available
many techniques simply create variability with-
g whether these additional features adhere to the
rties of speech.
mmon technique used in training child ASR sys-
retraining and transfer learning. For DNN-based
tems, one common approach is to first train the
e readily available data such as adult speech data

ning the network parameters with child speech
0; Shivakumar and Georgiou, 2020). Transfer

The use of fo as a speech feature has also been
cessfully in adult ASR. Several past studies have repo
the inclusion of fo or some voicing parameter as an i
ture improved ASR performance for adults, even in a
guages (Ghahremani et al., 2014; Fujinaga et al., 200
2002; Magimai-Doss et al., 2003). Faria and Gelba
found that fo could be used to predict the VTLN warp
of an utterance with a maximum likelihood approac
nawazuddin et al. (2016) used fo to determine lifter si
extracting cepstral features. Furthermore, while man
examining the use of fo in ASR were performed on
may also be relevant to children. That is, considerin
ferences in the fo values of adults and children, fo is
contain relevant speaker information.

Research on human speech perception can provid
insight into the use of fo in ASR. The tonotopic dist
tween formants, the distance between adjacent forman
perceptual scale such as Mel or Bark, along with the
distance between the first formant and fo, are a set o
that have been successfully used to model human vo
ception (Chistovich and Lublinskaya, 1979; Chistovi
Syrdal and Gopal, 1986; Traunmüller, 1981; Fahey et a
This set of features can be interpreted as a normali
formant-based vowel models. The inclusion of fo sug
fo contains information that can be exploited to norm
vowel spectrum. This is supported by studies that sug
the perception of vowel quality, vowel production, a
naturalness are dependent on fo when formants are fixe
and Nearey, 2012, 2013; Assmann and Nearey, 2007)
more, fo and the tonotopic distances may also be usefu
ating speech features that are more speech-like than o
augmentation methods.

This study proposes an fo-based feature warping
inspired by the role of fo in vowel perception, for
quency normalization and data augmentation in child
demonstrate that the tonotopic distances between form
fo can be reformulated as a frequency warping functio
dent solely on fo. First, the fo-based frequency normal
examined using a data limited single-word experimen
unwarped features and other normalization procedure
both the fo-based frequency normalization and data a
tion techniques are examined using a continuous rea
experiment with transfer learning from adult speech
experiments, the fo-based methods performed the bes

The remainder of the paper is organized as follows
2 discusses the formulation of the fo-based warping m
both frequency normalization and data augmentation
3 describes the databases and experimental setups use
single-word and continuous speech experiments. Sect
cusses the results of the experiments. Section 5 conc
paper with a summary and directions for future work.
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2. Methods and Formulation
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Distances in Vowel Perception

of previous studies has found success in model-
wel perception using the tonotopic distances be-
t formants (F(n + 1) − F(n) for n ∈ {1, 2, 3, . . .}),
tonotopic distance between the first formant and

requency (F1− fo), in the Mel or Bark scale (Chis-
blinskaya, 1979; Chistovich, 1985; Syrdal and
raunmüller, 1981; Fahey et al., 1996). An equiv-

tation of this set of tonotopic distances can be for-
difference between fo and each formant (F(n) −
, 3, . . .}) (Yeung and Alwan, 2019). This reformu-
several implications for vowel space modeling.

is implies that a linear relationship (with a slope
tween a vowel’s formants and fo in the perceptual
le. It follows that the perception of formant lo-
els is affected by the value of the corresponding
ly, this suggests that humans are capable of using
the vowel quality of an utterance. These impli-

rticularly important for child speech as they have
ormant and fo values than adults.

Distances in Child Vowels

his relationship between formants and fo, we an-
ces of hVd words from the WashU-UCLA Child
sonances Database (Yeung et al., 2018). This
des 43 children, between the ages of 6 and 18
14 different hVd words in the carrier phrase, “I
ain.” Each hVd word was repeated at least 6
of the children. While this database includes
ne and subglottal accelerometer recordings for
, only microphone recordings were used for this

Vd words, four tense vowels, /i/, /æ/, /A/ and /u/,
owels, /I/, /E/, /2/, and /U/, were chosen for anal-
es of fo, F1, F2, and F3 were measured from
these hVd words. All measurements were done
ith manual corrections as needed. Least-squares
on lines relating F1, F2, and F3 to fo for each
mputed, resulting in 24 regression lines. Of all
essions, the slopes from 19 of the 24 regression
ween 0.70 and 1.30, reasonably close to the ex-
f 1. These slopes contributed significantly to the
< 0.001) with Pearson’s correlation coefficients
> 0.5. These results are consistent with the refor-
e tonotopic distances.
nt and fo data of the 8 vowels are displayed in
with least-squares regression lines fixed to have

The data clearly follow the regression lines with
nd in formant values as fo increases. This re-
ates the validity of the reformulation. It should
as fo increases, the variability of the individual
ome of the vowels also increases such as for F1
/i/. This is mostly attributed to mispronuncia-
variability, and developing motor skills of chil-

2.3. fo-based Normalization

Based on the tonotopic distance reformulation a
can derive a frequency normalization method in the
domain that relies solely on the value of fo. The ke
derivation is to note that when fo and the formants
F3, . . .) are measured on a perceptual scale, the diffe
tween formants and fo (F1− fo, F2− fo, F3− fo, . . .)
constant across different productions of the same vow
if we can measure fo for any vowel utterance, we can n
the formants of the vowel to some default values as fo

F(n)norm = F(n)orig − ( fo,utt − fo,de f )

for n ∈ {1, 2, 3, . . .} where fo,utt is the fo of the utteran
is a predetermined value of fo to represent a default
F(n)orig is the n-th formant in the original utterance, F
the n-th formant after normalizing to fo,de f , and all fre
in Eq. 1 are measured in the perceptual scale. This p
use the Mel scale as the perceptual scale of choice.

While Eq. 1 is formulated specifically for form
comes with the added complication of formant estimat
is generally unreliable for children or speakers with hi
formant values. Instead, we can avoid direct manipu
formants by normalizing the entire spectrum as follow

fnorm = forig − ( fo,utt − fo,de f )

where forig is some frequency in the original spectrum
is the corresponding frequency in the normalized spect
is, the frequency content in forig is shifted to fnorm. In
of a discrete spectrum such as for feature computation
reinterpret fnorm as the normalized frequency correspo
some discrete Fourier transform (DFT) index and fo
frequency from the original spectrum mapped to the
fnorm. We will refer to this method as fo normalization

The difference between fo normalization and VTL
be noted. While each technique performs some w
the frequency space, the warping function differs. Spe
VTLN and variations of VTLN that use physical pa
such as F3 normalization (Cui and Alwan, 2006) and
malization (Guo et al., 2015) are generally implemen
piecewise-linear functions. However, fo normalizatio
linear due to the shift in the Mel scale rather than Hz. A
ally, while VTLN usually requires several feature ex
and passes through the ASR system to be effective, fo
SGR normalization all use physical parameters to com
warping function and thus only require a single featu
tion.

An example of the effect of fo normalization is
Figure 2. The Mel filter bank outputs of an 18 year old
7 year old male saying the vowel /i/ are displayed both
without fo normalization. As expected, when fo norm
is applied, the filter bank outputs become more simila

The values of F2 vs. F1 for each of the utteranc
vowels /i/, /æ/, /A/, and /u/ from the microphone s
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Figure 1: F1 vs. of children
between the ages relationship
implied by the ref

Journal Pre-proof
fo (blue), F2 vs. fo (red), and F3 vs. fo (purple) for the vowels /i/, /æ/, /A/,/u/, /I/, /E/, /2/, and /U/ from corresponding hVd words
of 6 and 18 years. Also shown are the least-squares linear regression lines, fixed to have a slope of 1. The data follow the linear
ormulation of the tonotopic distances.
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Figure 2: Mel filte
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r bank outputs of the vowel /i/ spoken by an 18 year old male
ear old male (dashed) computed with 15 filter banks using
e of 20 Hz to 6 kHz. The filter bank outputs are computed
) and with (bottom) fo normalization. When normalization
t fo is chosen to be fo,de f = 100 Hz. The 18 year old male
Hz, and the 7 year old male had fo,utt = 270 Hz. The filter
puted with fo normalization are better aligned than the outputs
lization.

CLA Child Subglottal Resonances Database are
re 3. The top figure shows the formants without
, and the bottom figure shows the formants with
on and fo,de f = 100 Hz. Compared to the for-
t normalization, the F1 and F2 values for each
arly more condensed and better separated from
els. This further exemplifies the objective of fo
.

mentation via fo Perturbation

fo normalization procedure uses Eq. 2 to reduce
ween speakers by fixing fo,de f to a default value
fo,utt, an alternative procedure is to use Eq. 2 to
ity. To perform this procedure, we extract fea-
mes from a single speech utterance while chang-
e resulting set of features is consistent with the

Figure 3: F2 vs. F1 for the vowels /i/, /æ/, /A/, and /u/, both witho
with (bottom) fo normalization, from corresponding hVd words
between the ages of 6 and 18 years. When fo normalization is a
default fo is chosen to be fo,de f = 100 Hz. Clearly, the (F1, F2) l
the formants with fo normalization are more condensed and bette
than for the formants without normalization.

structure of speech defined by the tonotopic distance
be used to augment the training data. This is especia
for training neural network-based systems, which req
amounts of training data. We will refer to this meth
perturbation.

Notably, fo normalization and fo perturbation can
simultaneously by setting fo,utt to be the fo of the utter
choosing multiple values for fo,de f . This allows us t
large inter-speaker variabilities while also generating
like features for additional training data.

2.5. Parameter Considerations

For fo normalization to be effective, the default
fo,de f must be chosen beforehand so features can be no
to the same speech space. After preliminary experim
we have found that a reasonable choice for fo,de f is 1
150 Mels. This can be interpreted as normalizing a
voice to that of an adult male. The following exper
Section 3 will use fo,de f = 100 Hz as an initial value.

To perform fo perturbation, additional values for f
be chosen. This can be done by simply perturbing th
chosen value of fo,de f . After preliminary experiment
have found that adding ±20, ±40, and ±60 Mels to t
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value of fo,de f is effective. For instance, when choosing an ini-
tial value of fo,de f = 100 Hz, the fo perturbation method would
use fo,de f ∈ {5
Hz, repeating

An additio
quired to perfo
accurate pitch
ization. Any a
malization wi
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gram (MBSC)
to compute fo,

It is desira
ance as the va
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plied to an ind
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to many, resul
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traction, it is n
speech signal.
the entire dyna
ple, consider
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ance has fo,utt

approximately
shifts from 20
shifts from 8
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10.2 kHz. As
cies that are b

To compe
width at fo,de f

warping does
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Hz ensures th
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3. Experimen

3.1. Database
Several da

were used in t

Table 1: Number of subjects and utterances in the OGI Kids’ Speech Corpus,
separated by grade level and gender.

s, separated

.

is corpus
les) from
mpled at
s corpus,

’ Speech
(Shobaki

us speech
rade level,
e and fe-
le 1. Ut-
nly used
rpus ver-
was read
eech was
the child
r to these
Note that

kinder-

ids Cor-
d speech
dditional
r of male
Table 2.

nstructed
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8.52, 72.10, 85.93, 100.00, 114.32, 128.90, 143.74}
the feature extraction for each value.
nal consideration is the computation of fo,utt re-
rm fo normalization. Generally, any reasonably
estimation method can be used for this normal-
lgorithm that estimates fo can implement fo nor-
th no computational overhead. The experiments
ection 3 use the Multi-Band Summary Correlo-
pitch detection algorithm (Tan and Alwan, 2013)

utt.
ble to use the median fo over the speech utter-
lue of fo,utt. Using a median can remove errors
om the fo estimation process and compensate for
ariability. Storage of a single number to be ap-

ividual speaker is also an effective way to quickly
system as opposed to needing multiple values of
idual speaker. Finally, DFT computation over an
be implemented much more efficiently when ap-
alization with only one value of fo,utt as opposed

ting in dramatically faster computation times for
ion. The following experiments in Section 3 will
over the utterance as the value of fo,utt.

th Considerations
lying the fo normalization method to feature ex-
ecessary to consider the usable bandwidth of the
This is because the normalization method shifts
mic range of the frequency spectrum. For exam-

an fo normalization setup with fo,de f = 100 Hz
extraction procedure using frequencies from 20
which is standard for speech signals sampled at
tterance has fo,utt = 100 Hz, the frequency range

extraction does not change. However, if an utter-
= 200 Hz, the range of frequencies is shifted by
133 Mels. Thus, the lowest needed frequency
Hz to 110 Hz, and the highest needed frequency
kHz to 9.1 kHz. Similarly, if an utterance has
, the range of frequencies used is from 200 Hz to

such, some values of fo,utt would require frequen-
eyond the signal bandwidth.
nsate for this shift, the feature extraction band-

= fo,utt must be limited such that the use of fo
not exceed the signal’s bandwidth. In the case
0 Hz, limiting the default bandwidth to 20-6200
at the feature extraction will not use frequencies
or a maximum fo,utt of 300 Hz. This guarantee
r most child utterances sampled at 16 kHz, and
Section 3 will use a bandwidth of 20-6200 Hz
fo normalization during feature extraction.

ts

s
tabases containing both adult and child speech
his study. For adult speech data, the LibriSpeech

Grade Male Female
# Sub. # Utt. # Sub. # Utt.

K 39 1142 49 1915
1 58 3921 31 2032
2 53 3584 61 2032
3 63 4194 52 3516
4 47 3178 45 2976
5 49 3361 49 3362
6 57 3912 55 3774
7 46 3136 51 3499
8 49 3362 50 3431
9 69 4606 40 2677

10 75 5084 29 1989

Table 2: Number of subjects and utterances in the CMU Kids Corpu
by grade level and gender.

Grade Male Female
# Sub. # Utt. # Sub. # Utt

K 0 0 1 1
1 6 176 16 944
2 10 812 22 1388
3 8 758 11 942
6 0 0 1 93

Unknown 0 0 1 66

ASR corpus was used (Panayotov et al., 2015). Th
contains adult read speech (1210 males, 1128 fema
various audio books. The speech in this corpus was sa
16 kHz. We specifically used the training set from thi
which contains 960 hours of clean and noisy speech.

The first child speech database was the OGI Kids
Corpus (also know as the CSLU Kids’ Speech Corpus)
et al., 2000). This corpus contains read and spontaneo
from approximately 100 speakers at each educational g
from kindergarten to 10th grade. The number of mal
male children from each grade level is shown in Tab
terances were sampled at 16 kHz. In this study, we o
read speech utterances that were labeled “1” in the co
ification files. This label indicates that the utterance
accurately with limited background noise. The read sp
further split into two datasets depending on whether
read only a single word or a full sentence. We will refe
datasets as “OGI single words” and ”OGI sentences”.
the OGI sentences dataset only contained speech from
garten to 5th grade.

The second child speech database was the CMU K
pus (Eskenazi et al., 1997). This corpus contains rea
from 76 children between 1st and 3rd grade with two a
speakers from kindergarten and 6th grade. The numbe
and female children from each grade level is shown in
Utterances were sampled at 16 kHz. Children were i
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to read several short sentences resulting in a total of 5180 sen-
tence utterances.

3.2. Feature E

The baseli
Mel-frequency
extracted with
point DFT, 23
lifter coefficie
kept for a 13-d

The second
except that th
malized using
be fo,de f = 10
across the utte
algorithm (Ta
performed. Ba
from all uttera

When app
±40, and ±60
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Including the i
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using Eq. 2 to
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143.74} Hz wh
turbation and
standard featu
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unchanged.

3.3. Single Wo

These expe
ization in a sc
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1,654 word ut
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grade was use
single word A
For these expe
of 8 kHz, and
6.2 kHz as ex
ization to othe
child ASR sy
and Rose, 199
normalization
The input to t
to be a 7-fram
ear discrimina
vector. An add
the GMM-bas
tems.

Due to the limited amount of data, the GMMs only used a
maximum of 1250 Gaussians. Similarly, the DNNs only had

t dimen-
t of both

for test-
s a single
the OGI

eline fea-
the ASR
using the
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riSpeech
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Journal Pre-proof
xtraction

ne features for the following experiments were
cepstral coefficients (MFCCs). The MFCCs were

frame length of 25 ms, frame shift of 10 ms, 512-
Mel filters, pre-emphasis coefficient of 0.97, and

nt of 22. For each frame, the first 13 MFCCs were
imensional feature set.
set of features was similar to the baseline MFCCs

e DFT was converted to the Mel scale and nor-
fo normalization. The default fo was chosen to

0 Hz, and fo,utt was chosen to be the median fo
rance computed using the MBSC pitch detection
n and Alwan, 2013) when fo normalization was
seline and fo normalized features were extracted
nces.
lying fo perturbation, fo,de f was shifted by ±20,
Mels, resulting in fo,de f ∈ {58.52, 72.10, 85.93,
, 128.90, 143.74} Hz as explained in Section 2.5.

nitial features, this multiplies the amount of train-

traction implementation is relatively simple when
compute the effective DFT frequency bin shift.

e f ∈ {58.52, 72.10, 85.93, 100.00, 114.32, 128.90,
ere every value is used when performing fo per-

only fo,de f = 100 Hz is used when performing a
re extraction. Also, we choose fo,utt to be the me-
the utterance when performing fo normalization
fo,utt = 100 Hz when extracting non-normalized
remaining feature extraction procedure remains

rd Experiments

riments examined the effectiveness of fo normal-
enario where child speech is limited to train a
SR system. From the OGI single words dataset,
terances were randomly chosen from each grade
by grade for a total of 11 subsets containing ap-
.2 hours of speech. Each subset from 1st to 10th

d to train several GMM-based and DNN-based
SR systems, either with or without normalization.
riments, the baseline MFCCs used a bandwidth
the fo normalized MFCCs used a bandwidth of
plained in Section 2.6. To compare fo normal-
r standard normalization techniques, additional

stems were trained using piecewise VTLN (Lee
8), F3 normalization (Cui and Alwan, 2006), and
using the third SGR (SG3) (Guo et al., 2015).

he GMM-based systems was empirically chosen
e concatenation (3 frames left, 3 frames right) lin-
nt analysis (LDA) mapped to a 40-dimensional
itional 9-frame LDA was applied to the input of

ed systems for the input of the DNN-based sys-

2 hidden layers using 2-norm non-linearities with inpu
sion of 500 and output dimension of 100. The outpu
the GMMs and DNNs was 250 senone probabilities.

The kindergarten subset of 1,654 words was used
ing. The language model (LM) used for decoding wa
word LM that contained the 208 possible words from
single words dataset. The ASR systems trained on bas
tures were tested using baseline features. Similarly,
systems trained on normalized features were testing
same normalized features.

3.4. Continuous Speech Experiments
These experiments examined the effectiveness of f

ization and fo perturbation in a scenario where adult
be used to train a continuous speech child ASR syste
ASR systems were first trained using the LibriSpeech
ther with or without fo normalization. Similar to t
word experiments, the baseline MFCCs in these exp
used a bandwidth of 8 kHz, and the fo normalized MF
a bandwidth of 6.2 kHz. Senone alignments were first
by training GMM-HMM ASR systems using the Lib
tri6b recipe from the Kaldi Speech Recognition Toolk
et al., 2011). The alignments were then used to train
HMM ASR systems using the PyKaldi2 toolbox (Lu et
The input to the BLSTM was empirically chosen t
frame concatenation (3 frames left, 3 frames right)
dimensional feature input. The BLSTM had 3 layers
cells in each direction, followed by a feed-forward
layer that mapped the BLSTM output to approximat
senone probabilities.

Each adult ASR system was adapted to child sp
ing either the OGI sentences dataset or the CMU Kid
Corpus. All the parameters of the adult acoustic mo
used as an initialization for training the child acoust
and the same training procedure was applied using chi
data for parameter fine-tuning. Approximately 70% o
from these child speech datasets was used as adapta
The ASR systems trained on baseline MFCCs were ad
ing baseline MFCCs. Similarly, the ASR systems trai
normalized MFCCs were adapted using fo normalized
Additionally, data augmentation using fo perturbation
applied to the child adaptation data.

To compare fo perturbation to a standard data augm
technique, we applied vocal tract length perturbation
(Jaitly and Hinton, 2013) to the baseline MFCCs extra
the child speech adaptation data. This was used to
adult ASR systems trained on baseline MFCCs. For a
parison, the set of warping factors for VTLP was cho
{0.94, 0.96, 0.98, 1.00, 1.02, 1.04, 1.06}, which mult
training data by 7.

The remaining 30% of utterances in the OGI senten
or the CMU Kids Speech Corpus was used for testi
gram LM trained on approximately 14,500 Project G
books was used for decoding. This LM is one of the
cluded in Kaldi’s LibriSpeech recipe (Panayotov et al
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4. Results and Discussion
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rd Experiments

s of the single word experiments for the GMM-
are displayed in Table 3, separated by grade. The
s the word error rates (WERs) of the child ASR
d with no normalization. The next three rows
Rs of the systems trained with VTLN, F3 nor-
d SG3 normalization. The bottom row shows the
ystems trained with fo normalization. All WERs
nificantly different (p > 0.05) from the fo-based
are in bold.
lts were tested on kindergarten speech, the youngest
OGI Kids’ Speech Corpus, we expect that train-
younger children would be better matched to

ta and produce better performance. Indeed, as
ade increases, the performance dramatically de-
rprisingly, both fo normalization and VTLN did
ormance when training on 1st to 6th grade chil-
since the children from these younger grades are
y similar to kindergarten children, their speech
s are likely well-matched even without warping.
alization will have a limited effect.
ning using speech from 7th grade children and

alization begins to have a more pronounced ef-
stem. Starting from 8th grade, systems using fo
performed significantly better (p < 0.05) than
no normalization with a relative improvement

3%, and 22.3% for 8th grade, 9th grade, and 10th

ively. This is expected due to the speech acous-
etween young and older children. Furthermore,

at the fo normalization procedure was successful
der and younger child speech to a more similar
.
s of the single word experiments for the DNN-
are shown in Table 4. Similar to the GMM-based
fo normalization and VTLN did not affect perfor-
raining on speech from 1st to 6th grade children.
7th grade, systems using fo normalization per-
cantly better (p < 0.05) than systems using no
with a relative improvement of 11.1%, 19.3%,
.0% for 7th grade, 8th grade, 9th grade, and 10th

ively.
rmalization technique outperformed VTLN sig-
0.05) when the GMM-based system was trained
child speech and when the DNN-based system

n 8th grade child speech. This suggests that fo
is slightly more effective than VTLN at normal-
some default space while using less bandwidth.

ormalization has an additional computational ad-
LN requires multiple passes through the system
alization only requires one pass. As such, the fo
method is capable of providing additional com-
iency with no loss in ASR performance.
the fo normalization technique outperformed F3
alization significantly for almost all the training

generally performed worse than the baseline unless
tems were trained on older child speech. Previous s
these normalization techniques did not show such per
degradation (Cui and Alwan, 2006; Guo et al., 2015; Y
Alwan, 2019). This may be attributed to the fact that th
ies trained ASR systems using a bandwidth of 4 kHz.
age F3 and SG3 values are generally between 2 kHz an
applying F3 or SG3 normalization with a 4 kHz bandw
nal normalizes a majority of the frequency content.
applying these normalization techniques to an 8 kHz b
signal may distort the frequency content above the av
or SG3 values causing performance degradation. Re
this suggests that fo normalization is a more suitabl
normalization technique for bandwidths greater than 4
F3 or SG3 normalization.

A few implications arise from the results of thes
ments. Mainly, regardless of the acoustic model used
malization is the most effective at improving ASR per
on young child speech out of the feature normalizat
niques tested, particularly when training data consists
children or adults. This would similarly hold true if th
data contains a mixture of older and younger speake
normalization is far less computationally expensive tha
this further justifies the importance of an effective si
normalization technique. However, fo normalization
not able to fully compensate for extreme acoustic mis
as evidenced by the results in Tables 3 and 4.

4.2. Continuous Speech Experiments

The results of the BLSTM-based system trained
perturbation for data augmentation, along with the sy
ing VTLP, are shown in Table 5. Applying fo pertur
the ASR system using OGI sentences results in a su
improvement from 6.84% to 5.85%, and this result
icant (p < 0.001). However, the ASR system usi
Kids shows less improvement. When applying VTL
of fo perturbation, the OGI sentences system also
an improvement but still performs worse than fo pert
Additionally, the CMU Kids system performs worse
baseline when applying VTLP. This result suggests th
perturbation method is superior to VTLP since fo per
creates additional data that preserves the acoustic pro
speech. This further implies that when performing f
warping for data augmentation, the warping functions
constructed in a way that produces realistic variations
features.

The results of the continuous speech experiments u
fo normalization and fo perturbation are shown in Tab
left two columns indicate whether fo normalization or
bation were applied to the ASR system. The right two
display the WERs of the ASR systems trained and
CMU Kids or OGI sentences.

When applying fo normalization to the ASR system
serve a slight improvement for the OGI sentences sy

8

Jo
ur

na
l P

re
-p

ro
of



Table 3: Word error rates (WERs) (%) of GMM-HMM ASR systems for the single word experiments. Each ASR system was trained on a single grade level
(1st-10th grade) and tested on kindergarten speech from the OGI single words dataset. MFCCs were extracted with no normalization, VTLN, F3 normalization, SG3
normalization, and f normalization. All WERs that are not significantly different (p > 0.05) from the f -based normalization are in bold.

Feature
Normalizati 10

None 44.74
VTLN 38.21

F3 38.75
SG3 36.46

fo Norm 34.76

Table 4: Word er e level (1st-
10th grade) and te zation, SG3
normalization, an

Feature
Normalizati 10

None 41.23
VTLN 34.64

F3 35.85
SG3 35.13

fo Norm 32.56
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Training Grade
on 1 2 3 4 5 6 7 8 9

23.28 22.91 22.85 25.51 25.70 28.72 31.86 36.64 39.66
24.55 22.31 23.64 24.83 23.34 27.51 29.14 31.86 34.10
27.03 26.42 28.66 27.57 27.75 31.92 31.32 33.01 35.25
25.76 25.15 25.76 26.06 25.39 28.72 31.26 31.92 35.97
24.55 22.85 24.61 26.42 25.21 27.87 29.81 32.29 34.40

ror rates (WERs) (%) of DNN-HMM ASR systems for the single word experiments. Each ASR system was trained on a single grad
sted on kindergarten speech from the OGI single words dataset. MFCCs were extracted with no normalization, VTLN, F3 normali

d fo normalization. All WERs that are not significantly different (p > 0.05) from the fo-based normalization are in bold.

Training Grade
on 1 2 3 4 5 6 7 8 9

20.07 20.56 21.22 23.82 22.19 26.12 28.76 32.22 36.22
19.35 19.59 20.62 22.37 20.68 23.82 26.18 29.69 29.56
24.55 24.12 24.30 25.27 25.15 29.99 28.90 29.69 30.89
24.24 23.10 24.61 24.85 24.18 27.21 30.29 29.14 32.71
20.07 20.25 20.74 24.61 21.22 24.43 25.57 26.00 28.66

ent is not as substantial as applying fo perturba-
normalization. Applying fo normalization along

bation provides further improvement to 5.52%,
elative improvement over the baseline of 19.3%.
g both fo normalization and fo perturbation on
s system, the WER decreases to 16.47%, a rel-
ment of 2.4%. Both systems result in improve-
cently reported child ASR systems such as Wu
hich reported WERs of 10.8% when using OGI

speech and 17.3% when using CMU Kids.
pancy between the improvements of the two sys-
due to the age range of the child speakers. The
s dataset used children from kindergarten to 5th

hile, the CMU Kids corpus only used children
grade, excluding two outlier speakers. As seen

, fo normalization is only effective when the age
aining and testing data is large enough. This may
of fo perturbation. That is, since there is less vari-
CMU Kids corpus, adding additional variability
data through fo perturbation is both unnecessary
when training the BLSTM. Meanwhile, since the
dataset has a larger age variability, both fo nor-
fo perturbation provided improvements.

analyze the effectiveness of the fo normalization
BLSTM-based ASR system, we applied fo nor-

the clean and noisy adult speech testing datasets
e LibriSpeech corpus (“test clean”, “test other”)
the effectiveness of fo normalization using the

STMs, that is, systems trained only on the Lib-
The system with no normalization achieved 5.47%
ER on the clean and noisy test sets, respectively.

The system with fo normalization achieved 5.60% an
WER on the clean and noisy test sets, respectively.
sults seem to suggest that fo normalization has virtua
fect on adult ASR. However, this implies that fo norm
can be used in an ASR system to improve the per
on child speech with no sacrifice to the performance
speech.

To further analyze the results of Table 6, we sepa
WERs of the OGI sentences system by grade with an
fo normalization and fo perturbation, shown in Tabl
child ASR systems in Table 7 are the same as in Table
lar to the previous results, the system with both fo norm
and fo perturbation performs better than the baseline s
well as the systems using only fo normalization or on
turbation for all grades present in the experiment. Th
was significantly better than the baseline for kinderg
grade, and 2nd grade speech at p < 0.05. Meanwhile
tem was significantly better than the baseline for 3rd g
4th grade speech at p < 0.1. As such, we can conclude
fo normalization and fo perturbation provide improve
the entire age range for the OGI Kids’ Speech Corpus

5. Conclusion

This paper makes two contributions to the fields
speech acoustics and child ASR. First, it reports an exa
of the tonotopic distances between formants and fo and
plications to ASR. The tonotopic distances were refo
as a linear relationship between formants and fo in th
tual frequency scale. To verify this relationship, the fi
formants and fo were measured from utterances of chil
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Table 5: Word error rates (WERs) (%) of the child ASR experiment using a
BLSTM-based acoustic model adapted from adult speech. ASR systems either
used no data augmentation, VTLP, or f perturbation. WERs for both CMU
Kids and OGI se
formed the best o
significantly bette

Aug
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an examination of the ASR performance on individual grade
levels revealed that the combination of fo normalization and

. The re-
requency
physical
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iques re-
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ASR sys-
ns to ex-
ssary, es-
of partic-
R system
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y’ effect in
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Multiple-
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Review of
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o
ntences are reported. The system using fo perturbation per-
n both datasets. The best performing system that performed
r than the baseline (p < 0.05) is in bold.

mentation CMU Kids OGI Sent.

None 16.88 6.84
VTLP 17.05 6.22
fo Per. 16.63 5.85

rror rates (WERs) (%) of the child ASR experiment using
acoustic model adapted from adult speech. The left two
whether fo normalization (“ fo Norm?”) and data augmen-
rturbation (“ fo Per?”) were used. WERs for both CMU Kids
s are reported in the latter columns. The system using both

and fo perturbation performed the best on both datasets. The
ystem that performed significantly better than the baseline

old.

? fo Per? CMU Kids OGI Sent.

No 16.88 6.84
No 16.93 6.50
Yes 16.63 5.85
Yes 16.47 5.52

, and least squares linear regression lines relating
equencies to fo were computed. The regressions
nt with p < 0.001 and r > 0.51, consistent with
ion of the tonotopic distances.
prompted the second contribution, which was a

ng technique inspired by the relationship between
fo in the vowel space as defined by these tonotopic
choosing to warp the entire spectrum rather than
nts, the warping technique relies on only the me-
the utterance, fo,utt, and a target speech acoustic
as a default speaker, defined by fo,de f . Frequency
is performed simply by choosing a fixed fo,de f

mentation can be applied by choosing multiple
f in a reasonable way.
ency normalization and data augmentation pro-
ted as fo normalization and fo perturbation, re-
re verified on both a limited data single word
periment and a continuous speech ASR experi-
gle word ASR experiment explored the effective-

alization and compared the results against other
techniques. When the child ASR system was
r child speech and tested on kindergarten speech,

on performend significantly better than the base-
ly better than the system using VTLN. The con-
ASR experiment explored the effectivenes of fo
and fo perturbation and found that the combi-
techniques was beneficial to a BLSTM-based

stem when the age range of the child speakers
ditionally, fo perturbation was found to be more
TLP as a data augmentation technique. Finally,

fo perturbation was beneficial across a range of ages
sults of this paper further suggest the importance of f
warping using a warping function that adheres to the
constraints of speech. Furthermore, the experiments p
demonstrate the effectiveness of the fo warping techn
gardless of the acoustic model used.

While the proposed fo normalization and fo per
techniques provide significant improvements to child
tems, there is a number of additional research directio
plore. Further improvement of child ASR is still nece
pecially for the youngest children. Another direction
ular importance is the development of a universal AS
for both adults and children.

Acknowledgements

This work was funded in part by National Science
tion (NSF) Grant #1734380.

References

Assmann, P.F., Nearey, T.M., 2007. Relationship Between Funda
Formant Frequencies in Voice Preference. The Journal of the
Society of America 122, EL35–EL43. doi:10.1121/1.271904

Barreda, S., Nearey, T.M., 2012. The Direct and Indirect Roles of F
Frequency in Vowel Perception. J. Acoust. Soc. Am. 131, 466–4
1121/1.3662068.

Barreda, S., Nearey, T.M., 2013. The Perception of Formant-Frequ
is Affected by Veridical and Judged Fundamental Frequency, in:
ings on Acoustics, p. 060197. doi:10.1121/1.4800915.

Bunnell, H.T., Yarrington, D.M., Polikoff, J.B., 2000. STAR: A
Training for Young Children, in: Proc. ICSLP, pp. 85–88.

Chistovich, L.A., 1985. Central auditory processing of periph
spectra. The Journal of the Acoustical Society of America 77
doi:10.1121/1.392049.

Chistovich, L.A., Lublinskaya, V.V., 1979. The ’center of gravit
vowel spectra and critical distance between the formants: Psych
study of the perception of vowel-like stimuli. Hearing Research

Cui, X., Alwan, A., 2005. MLLR-Like Speaker Adaptation Bas
earization of VTLN with MFCC Features, in: Proc. INTERSP
273–276.

Cui, X., Alwan, A., 2006. Adaptation of Children’s Speech with L
Based on Formant-Like Peak Alignment. Comput. Speech Lan
419. doi:10.1016/j.csl.2005.05.004.

Cui, X., Goel, V., Kingsbury, B., 2014. Data augmentation for
network acoustic modeling, in: Proc. ICASSP, pp. 5582–558
1109/ICASSP.2014.6854671.

Eskenazi, M., Mostow, J., Graff, D., 1997. The CMU Kids Spe
LDC97S63. URL: https://catalog.ldc.upenn.edu/LDC9

Fahey, R.P., Diehl, R.L., Traunmüller, H., 1996. Perception of Ba
Effects of Varying F1-F0 Bark Distance. J. Acoust. Soc. Am
2357.

Fainberg, J., Bell, P., Lincoln, M., Renals, S., 2016. Improving
speech recognition through out-of-domain data augmentation,
INTERSPEECH, pp. 1598–1602.

Faria, A., Gelbart, D., 2005. Efficient Pitch-Based Estimation of V
Factors, in: Proc. of INTERSPEECH, pp. 213–216.

Fujinaga, K., Nakai, M., Shimodaira, H., Sagayama, S., 2001.
Regression Hidden Markov Model, in: Proc. of the IEEE Interna
ference on Acoustics, Speech, and Signal Processing (ICASSP
516.

Gerosa, M., Giuliani, D., Narayanan, S., Potamianos, A., 2009. A
ASR Technologies for Children’s Speech, in: Proc. WOCCI, p
doi:10.1145/1640377.1640384.

10

Jo
ur

na
l P

re
-p

ro
of



Table 7: Word error rates (WERs) (%) of the child ASR experiment using a BLSTM-based acoustic model adapted from adult speech. The left two columns indicate
whether fo normalization (“ fo Norm?”) and data augmentation using fo perturbation (“ fo Per?”) were used. WERs on OGI sentences, separated by testing grade,
are reported in the latter columns. The system using both f normalization and f perturbation performed the best for all grades. The best performing system that
performed signifi

Ghahremani, P., B
pur, S., 2014. A
nition, in: Proc
and Signal Pro

Gray, S.S., Wille
Child Automat
Living-Room-

Guo, J., Paturi, R
Age-Dependen
dren’s Speech
TERSPEECH,

Hannun, A., Case
R., Satheesh, S
Scaling up end

Jaitly, N., Hinton,
speech recogn

Kathania, H.K., K
Modification f
ference on Ac
7429–7433.

Kennedy, J., Lem
los, F., Senft, E
Robot Interact
HRI, pp. 82–9

Kewley-Port, D.,
Indiana Speec
lected Case S
02699209108

Ko, T., Peddinti,
on data augme
in: Proc. of th
Signal Process

Koenig, L.L., L
traoral Pressu
Am. 123, 10
arXiv:NIHMS

Koenig, L.L., Luc
in Fricatives o
J. Acoust. Soc

Lee, L., Rose, R.,
ization. IEEE

Lee, S., Potamian
Duration, Pitch

Lee, S., Potamian
Developmenta
Soc. Am. 105,

Ljolje, A., 2002.
ing in Acoustic
ken Language

Lu, L., Xiao,
other speech
arXiv:arXiv

Magimai-Doss, M
quency Inform
pp. 2525–2528

speech: An
E ICASSP,

arping for
184.
, E.D., Le,
hod for au-
2613–2617.

., Goel, N.,
., Stemmer,
Proc. IEEE

eening Tool
–1654.
Approaches

Proc. SLT,

nt-End Fea-
, pp. 3459–

Generative
, in: Proc.
Workshop

ult to Chil-
endations.

0.101077.
Improving

d Pronunci-

Corpus and

l Variability
:10.1121/

. A Social
: Proc. AA-

alization of

ecognition
Vowels. J.

ased Pitch
:10.1016/

Alwan, A.,
Speech for
845–848.
Vowels. J.

lopment in
eech. Lang.
Vowel.

Journal Pre-proof
o o
cantly better than the baseline (p < 0.05) is in bold.

Testing Grade
fo Norm? fo Per? K 1 2 3 4 5

No No 16.97 9.17 6.73 5.71 4.15 4.99
Yes No 17.44 9.17 6.19 4.80 3.47 4.93
No Yes 13.97 7.89 5.27 5.11 3.72 4.35
Yes Yes 12.87 7.38 4.88 4.78 3.35 4.24

abaAli, B., Povey, D., Riedhammer, K., Trmal, J., Khudan-
pitch extraction algorithm tuned for automatic speech recog-

. of the IEEE International Conference on Acoustics, Speech,
cessing (ICASSP), pp. 2494–2498.
tt, D., Lu, J., Pinto, J., Maergner, P., Bodenstab, N., 2014.
ic Speech Recognition for US English: Child Interaction with
Electronic-Devices, in: Proc. WOCCI, pp. 21–26.
., Yeung, G., Lulich, S.M., Arsikere, H., Alwan, A., 2015.
t Height Estimation and Speaker Normalization for Chil-
Using the First Three Subglottal Resonances, in: Proc. IN-
pp. 1665–1669.

, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger,
., Sengupta, S., Coates, A., Ng, A.Y., 2014. Deep Speech:

-to-end speech recognition. arXiv:arXiv:1412.5567v2.
G.E., 2013. Vocal tract length perturbation (VTLP) improves

ition, in: Proc. ICML.
adiri, S.R., Alku, P., Kurimo, M., 2020. Study of Formant

or Children ASR, in: Proc. of the IEEE International Con-
oustics, Speech, and Signal Processing (ICASSP), IEEE. pp.

aignan, S., Montassier, C., Lavalade, P., Irfan, B., Papadopou-
., Belpaeme, T., 2017. Child Speech Recognition in Human-

ion: Evaluations and Recommendations, in: Proc. ACM/IEEE
0.
Watson, C.S., Elbert, M., Maki, D., Reed, D., 1991. The
h Training Aid (ISTRA) II: Training Curriculum and Se-
tudies. Clin. Linguist. Phon. 5, 13–38. doi:10.3109/
985500.
V., Povey, D., Seltzer, M.L., Khudanpur, S., 2017. A study
ntation of reverberant speech for robust speech recognition,
e IEEE International Conference on Acoustics, Speech, and
ing (ICASSP), pp. 5220–5224.
ucero, J.C., 2008. Stop Consonant Voicing and In-
re Contours in Women and Children. J. Acoust. Soc.
77–1088. doi:10.1109/TMI.2012.2196707.Separate,
150003.
ero, J.C., Perlman, E., 2008. Speech Production Variability

f Children and Adults: Results of Functional Data Analysis.
. Am. 124, 3158–3170. doi:10.1121/1.2981639.
1998. A Frequency Warping Approach to Speaker Normal-

Transactions on Speech and Audio Processing 6, 49–60.
os, A., Narayanan, S., 1997. Analysis of Children’s Speech:
and Formants, in: Proc. EUROSPEECH, pp. 473–476.

os, A., Narayanan, S., 1999. Acoustics of Children’s Speech:
l Changes of Temporal and Spectral Parameters. J. Acoust.
1455–1468.

Speech Recognition Using Fundamental Frequency and Voic-
Modeling, in: Proc. of the International Conference on Spo-

Processing (ICSLP), pp. 2137–2140.
X., Chen, Z., Gong, Y., 2019. PyKaldi2: Yet an-
toolkit based on Kaldi and PyTorch. arXiv:1907.05955
:1907.05955.
., Stephenson, T.A., Bourlard, H., 2003. Using Pitch Fre-
ation in Speech Recognition, in: Proc. of EUROSPEECH,
.

Panayotov, V., Chen, G., Povey, D., Khudanpur, S., 2015. Libri
ASR corpus based on public domain audio books, in: Proc. IEE
pp. 5206–5210. doi:10.1109/ICASSP.2015.7178964.

Panchapagesan, S., Alwan, A., 2006. Multi-Parameter Frequency W
VTLN by Gradient Search, in: Proc. IEEE ICASSP, pp. 1181–1

Park, D.S., Chan, W., Zhang, Y., Chiu, C.C., Zoph, B., Cubuk
Q.V., 2019. SpecAugment: A simple data augmentation met
tomatic speech recognition, in: Proc. INTERSPEECH, pp.
doi:10.21437/Interspeech.2019-2680.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O
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Fundamental frequency-based feature warping formulated from relationship between 
formants and f o

Warping technique can be used for normalization or data augmentation
Applying both f o-based normalization and data augmentation to child ASR provides a
substantial improvement over baseline
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