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1. INTRODUCTION

Speech coding is the process of obtaining a compact
representation of voice signals for efficient transmission
over band-limited wired and wireless channels and/or
storage. Today, speech coders have become essential
components in telecommunications and in the multimedia
infrastructure. Commercial systems that rely on efficient
speech coding include cellular communication, voiceover
internet protocol (VOIP), videoconferencing, electronic
toys, archiving, and digital simultaneous voice and data
(DSVD), as well as numerous PC-based games and
multimedia applications.

Speech coding is the art of creating a minimally
redundant representation of the speech signal that can
be efficiently transmitted or stored in digital media, and
decoding the signal with the best possible perceptual
quality. Like any other continuous-time signal, speech may
be represented digitally through the processes of sampling
and quantization; speech is typically quantized using
either 16-bit uniform or 8-bit companded quantization.
Like many other signals, however, a sampled speech
signal contains a great deal of information that is
either redundant (nonzero mutual information between
successive samples in the signal) or perceptually irrelevant
(information that is not perceived by human listeners).
Most telecommunications coders are lossy, meaning that
the synthesized speech is perceptually similar to the
original but may be physically dissimilar.

A speech coder converts a digitized speech signal into
a coded representation, which is usually transmitted in
frames. A speech decoder receives coded frames and syn-
thesizes reconstructed speech. Standards typically dictate
the input–output relationships of both coder and decoder.
The input–output relationship is specified using a ref-
erence implementation, but novel implementations are
allowed, provided that input–output equivalence is main-
tained. Speech coders differ primarily in bit rate (mea-
sured in bits per sample or bits per second), complexity
(measured in operations per second), delay (measured in
milliseconds between recording and playback), and percep-
tual quality of the synthesized speech. Narrowband (NB)
coding refers to coding of speech signals whose bandwidth
is less than 4 kHz (8 kHz sampling rate), while wideband
(WB) coding refers to coding of 7-kHz-bandwidth signals
(14–16 kHz sampling rate). NB coding is more common
than WB coding mainly because of the narrowband nature
of the wireline telephone channel (300–3600 Hz). More
recently, however, there has been an increased effort in

wideband speech coding because of several applications
such as videoconferencing.

There are different types of speech coders. Table 1
summarizes the bit rates, algorithmic complexity, and
standardized applications of the four general classes of
coders described in this article; Table 2 lists a selection
of specific speech coding standards. Waveform coders
attempt to code the exact shape of the speech signal
waveform, without considering the nature of human
speech production and speech perception. These coders
are high-bit-rate coders (typically above 16 kbps). Linear
prediction coders (LPCs) assume that the speech signal
is the output of a linear time-invariant (LTI) model of
speech production. The transfer function of that model
is assumed to be all-pole (autoregressive model). The
excitation function is a quasiperiodic signal constructed
from discrete pulses (1–8 per pitch period), pseudorandom
noise, or some combination of the two. If the excitation
is generated only at the receiver, based on a transmitted
pitch period and voicing information, then the system
is designated as an LPC vocoder. LPC vocoders that
provide extra information about the spectral shape of the
excitation have been adopted as coder standards between
2.0 and 4.8 kbps. LPC-based analysis-by-synthesis coders
(LPC-AS), on the other hand, choose an excitation function
by explicitly testing a large set of candidate excitations
and choosing the best. LPC-AS coders are used in most
standards between 4.8 and 16 kbps. Subband coders are
frequency-domain coders that attempt to parameterize the
speech signal in terms of spectral properties in different
frequency bands. These coders are less widely used than
LPC-based coders but have the advantage of being scalable
and do not model the incoming signal as speech. Subband
coders are widely used for high-quality audio coding.

This article is organized as follows. Sections 2, 3,
4 and 5 present the basic principles behind waveform
coders, subband coders, LPC-based analysis-by-synthesis
coders, and LPC-based vocoders, respectively. Section 6
describes the different quality metrics that are used
to evaluate speech coders, while Section 7 discusses a
variety of issues that arise when a coder is implemented
in a communications network, including voiceover IP,
multirate coding, and channel coding. Section 8 presents
an overview of standardization activities involving speech
coding, and we conclude in Section 9 with some final
remarks.

2. WAVEFORM CODING

Waveform coders attempt to code the exact shape of the
speech signal waveform, without considering in detail the
nature of human speech production and speech perception.
Waveform coders are most useful in applications that
require the successful coding of both speech and nonspeech
signals. In the public switched telephone network (PSTN),
for example, successful transmission of modem and
fax signaling tones, and switching signals is nearly as
important as the successful transmission of speech. The
most commonly used waveform coding algorithms are
uniform 16-bit PCM, companded 8-bit PCM [48], and
ADPCM [46].
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Table 1. Characteristics of Standardized Narrowband Speech Coding Algorithms
in Each of Four Broad Categories

Speech Coder Class Rates (kbps) Complexity Standardized Applications Section

Waveform coders 16–64 Low Landline telephone 2
Subband coders 12–256 Medium Teleconferencing, audio 3
LPC-AS 4.8–16 High Digital cellular 4
LPC vocoder 2.0–4.8 High Satellite telephony, military 5

2.1. Pulse Code Modulation (PCM)

Pulse code modulation (PCM) is the name given to
memoryless coding algorithms that quantize each sample
of s(n) using the same reconstruction levels ŝk, k =
0, . . . , m, . . . , K, regardless of the values of previous
samples. The reconstructed signal ŝ(n) is given by

ŝ(n) = ŝm for s(n) s.t. (s(n) − ŝm)2 = min
k=0,...,K

(s(n) − ŝk)
2

(1)

Many speech and audio applications use an odd number of
reconstruction levels, so that background noise signals
with a very low level can be quantized exactly to
ŝK/2 = 0. One important exception is the A-law companded
PCM standard [48], which uses an even number of
reconstruction levels.

2.1.1. Uniform PCM. Uniform PCM is the name given
to quantization algorithms in which the reconstruction
levels are uniformly distributed between Smax and Smin.
The advantage of uniform PCM is that the quantization
error power is independent of signal power; high-power
signals are quantized with the same resolution as
low-power signals. Invariant error power is considered
desirable in many digital audio applications, so 16-bit
uniform PCM is a standard coding scheme in digital audio.

The error power and SNR of a uniform PCM coder
vary with bit rate in a simple fashion. Suppose that a
signal is quantized using B bits per sample. If zero is a
reconstruction level, then the quantization step size � is

� = Smax − Smin

2B − 1
(2)

Assuming that quantization errors are uniformly dis-
tributed between �/2 and −�/2, the quantization error
power is

10 log10 E[e2(n)] = 10 log10
�2

12
≈ constant

+ 20 log10(Smax − Smin) − 6B (3)

2.1.2. Companded PCM. Companded PCM is the name
given to coders in which the reconstruction levels ŝk are
not uniformly distributed. Such coders may be modeled
using a compressive nonlinearity, followed by uniform
PCM, followed by an expansive nonlinearity:

s(n) → compress → t(n) → uniform PCM

→ t̂(n) → expand → ŝ(n) (4)

Table 2. •A Representative Sample of Speech Coding StandardsQ1

Application
Rate

(kbps)
BW

(kHz)
Standards

Organization
Standard
Number Algorithm Year

Landline 64 3.4 ITU G.711 µ-law or A-law PCM 1988
telephone 32 3.4 ITU G.726 ADPCM 1990

16–40 3.4 ITU G.727 ADPCM 1990
Tele conferencing 48–64 7 ITU G.722 Split-band ADPCM 1988

16 3.4 ITU G.728 Low-delay CELP 1992
Digital 13 3.4 ETSI Full-rate RPE-LTP 1992
cellular 12.2 3.4 ETSI EFR ACELP 1997

7.9 3.4 TIA IS-54 VSELP 1990
6.5 3.4 ETSI Half-rate VSELP 1995
8.0 3.4 ITU G.729 ACELP 1996

4.75–12.2 3.4 ETSI AMR ACELP 1998
1–8 3.4 CDMA-TIA IS-96 QCELP 1993

Multimedia 5.3–6.3 3.4 ITU G.723.1 MPLPC, CELP 1996
2.0–18.2 3.4–7.5 ISO MPEG-4 HVXC, CELP 1998

Satellite 4.15 3.4 INMARSAT M IMBE 1991
telephony 3.6 3.4 INMARSAT Mini-M AMBE 1995
Secure 2.4 3.4 DDVPC FS1015 LPC-10e 1984
communications 2.4 3.4 DDVPC MELP MELP 1996

4.8 3.4 DDVPC FS1016 CELP 1989
16–32 3.4 DDVPC CVSD CVSD
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It can be shown that, if small values of s(n) are more
likely than large values, expected error power is minimized
by a companding function that results in a higher density
of reconstruction levels x̂k at low signal levels than at
high signal levels [78]. A typical example is the µ-law
companding function [48] (Fig. 1), which is given by

t(n) = Smax
log(1 + µ|s(n)/Smax|)

log(1 + µ)
sign(s(n)) (5)

where µ is typically between 0 and 256 and determines
the amount of nonlinear compression applied.

2.2. Differential PCM (DPCM)

Successive speech samples are highly correlated. The long-
term average spectrum of voiced speech is reasonably
well approximated by the function S(f ) = 1/f above about
500 Hz; the first-order intersample correlation coefficient
is approximately 0.9. In differential PCM, each sample
s(n) is compared to a prediction sp(n), and the difference
is called the prediction residual d(n) (Fig. 2). d(n) has
a smaller dynamic range than s(n), so for a given error
power, fewer bits are required to quantize d(n).

Accurate quantization of d(n) is useless unless it
leads to accurate quantization of s(n). In order to avoid
amplifying the error, DPCM coders use a technique copied
by many later speech coders; the encoder includes an
embedded decoder, so that the reconstructed signal ŝ(n) is
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Figure 1. µ-law companding function, µ = 0, 1, 2, 4, 8, . . . , 256.

known at the encoder. By using ŝ(n) to create sp(n), DPCM
coders avoid amplifying the quantization error:

d(n) = s(n) − sp(n) (6)

ŝ(n) = d̂(n) + sp(n) (7)

e(n) = s(n) − ŝ(n) = d(n) − d̂(n) (8)

Two existing standards are based on DPCM. In the
first type of coder, continuously varying slope delta
modulation (CVSD), the input speech signal is upsampled
to either 16 or 32 kHz. Values of the upsampled signal are
predicted using a one-tap predictor, and the difference
signal is quantized at one bit per sample, with an
adaptively varying �. CVSD performs badly in quiet
environments, but in extremely noisy environments (e.g.,
helicopter cockpit), CVSD performs better than any
LPC-based algorithm, and for this reason it remains
the U.S. Department of Defense recommendation for
extremely noisy environments [64,96].

DPCM systems with adaptive prediction and quan-
tization are referred to as adaptive differential PCM
systems (ADPCM). A commonly used ADPCM standard
is G.726, which can operate at 16, 24, 32, or 40 kbps
(2–5 bits/sample) [45]. G.726 ADPCM is frequently used
at 32 kbps in landline telephony. The predictor in G.726
consists of an adaptive second-order IIR predictor in series
with an adaptive sixth-order FIR predictor. Filter coef-
ficients are adapted using a computationally simplified
gradient descent algorithm. The prediction residual is
quantized using a semilogarithmic companded PCM quan-
tizer at a rate of 2–5 bits per sample. The quantization
step size adapts to the amplitude of previous samples of
the quantized prediction error signal; the speed of adapta-
tion is controlled by an estimate of the type of signal, with
adaptation to speech signals being faster than adaptation
to signaling tones.

3. SUBBAND CODING

In subband coding, an analysis filterbank is first used to
filter the signal into a number of frequency bands and
then bits are allocated to each band by a certain criterion.
Because of the difficulty in obtaining high-quality speech
at low bit rates using subband coding schemes, these
techniques have been used mostly for wideband medium
to high bit rate speech coders and for audio coding.
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Figure 2. Schematic of a DPCM coder.
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For example, G.722 is a standard in which ADPCM
speech coding occurs within two subbands, and bit
allocation is set to achieve 7-kHz audio coding at rates
of 64 kbps or less.

In Refs. 12,13, and 30 subband coding is proposed as
a flexible scheme for robust speech coding. A speech pro-
duction model is not used, ensuring robustness to speech
in the presence of background noise, and to nonspeech
sources. High-quality compression can be achieved by
incorporating masking properties of the human auditory
system [54,93]. In particular, Tang et al. [93] present a
scheme for robust, high-quality, scalable, and embedded
speech coding. Figure 3 illustrates the basic structure
of the coder. Dynamic bit allocation and prioritization
and embedded quantization are used to optimize the per-
ceptual quality of the embedded bitstream, resulting in
little performance degradation relative to a nonembedded
implementation. A subband spectral analysis technique
was developed that substantially reduces the complexity
of computing the perceptual model.

The encoded bitstream is embedded, allowing the
coder output to be scalable from high quality at higher
bit rates, to lower quality at lower rates, supporting
a wide range of service and resource utilization. The
lower bit rate representation is obtained simply through
truncation of the higher bit rate representation. Since
source rate adaptation is performed through truncation
of the encoded stream, interaction with the source coder
is not required, making the coder ideally suited for rate
adaptive communication systems.

Even though subband coding is not widely used for
speech coding today, it is expected that new standards
for wideband coding and rate-adaptive schemes will be
based on subband coding or a hybrid technique that
includes subband coding. This is because subband coders
are more easily scalable in bit rate than standard CELP
techniques, an issue which will become more critical for
high-quality speech and audio transmission over wireless
communication channels and the Internet, allowing the
system to seamlessly adapt to changes in both the
transmission environment and network congestion.
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Figure 3. Structure of a perceptual subband speech coder [93].

4. LPC-BASED ANALYSIS BY SYNTHESIS

An analysis-by-synthesis speech coder consists of the
following components:

• A model of speech production that depends on certain
parameters θ :

ŝ(n) = f (θ) (9)

• A list of K possible parameter sets for the model

θ1, . . . , θk, . . . , θK (10)

• An error metric |Ek|2 that compares the original
speech signal s(n) and the coded speech signal ŝ(n).
In LPC-AS coders, |Ek|2 is typically a perceptually
weighted mean-squared error measure.

A general analysis-by-synthesis coder finds the opti-
mum set of parameters by synthesizing all of the K
different speech waveforms ŝk(n) corresponding to the
K possible parameter sets θk, computing |Ek|2 for each
synthesized waveform, and then transmitting the index of
the parameter set which minimizes |Ek|2. Choosing a set
of transmitted parameters by explicitly computing ŝk(n) is
called ‘‘closed loop’’ optimization, and may be contrasted
with ‘‘open-loop’’ optimization, in which coder parameters
are chosen on the basis of an analytical formula without
explicit computation of ŝk(n). Closed-loop optimization of
all parameters is prohibitively expensive, so LPC-based
analysis-by-synthesis coders typically adopt the following
compromise. The gross spectral shape is modeled using an
all-pole filter 1/A(z) whose parameters are estimated in
open-loop fashion, while spectral fine structure is modeled
using an excitation function U(z) whose parameters are
optimized in closed-loop fashion (Fig. 4).

4.1. The Basic LPC Model

In LPC-based coders, the speech signal S(z) is viewed as
the output of a linear time-invariant (LTI) system whose
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Figure 4. General structure of an LPC-AS coder (a) and
decoder (b). LPC filter A(z) and perceptual weighting filter W(z)
are chosen open-loop, then the excitation vector u(n) is chosen in
a closed-loop fashion in order to minimize the error metric |E|2.
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input is the excitation signal U(z), and whose transfer
function is represented by the following:

S(z) = U(z)
A(z)

= U(z)

1 −
p∑

i=1

aiz−i

(11)

Most of the zeros of A(z) correspond to resonant
frequencies of the vocal tract or formant frequencies.
Formant frequencies depend on the geometry of the vocal
tract; this is why men and women, who have different
vocal-tract shapes and lengths, have different formant
frequencies for the same sounds.

The number of LPC coefficients (p) depends on the
signal bandwidth. Since each pair of complex-conjugate
poles represents one formant frequency and since there is,
on average, one formant frequency per 1 kHz, p is typically
equal to 2BW (in kHz) +2 − 4. Thus, for a 4 kHz speech
signal, a 10th–12th-order LPC model would be used.

This system is excited by a signal u(n) that is
uncorrelated with itself over lags of less than p + 1. If
the underlying speech sound is unvoiced (the vocal folds
do not vibrate), then u(n) is uncorrelated with itself even
at larger time lags, and may be modeled using a pseudo-
random-noise signal. If the underlying speech is voiced
(the vocal folds vibrate), then u(n) is quasiperiodic with a
fundamental period called the ‘‘pitch period.’’

4.2. Pitch Prediction Filtering

In an LPC-AS coder, the LPC excitation is allowed to vary
smoothly between fully voiced conditions (as in a vowel)
and fully unvoiced conditions (as in / s /). Intermediate
levels of voicing are often useful to model partially voiced
phonemes such as / z /.

The partially voiced excitation in an LPC-AS coder is
constructed by passing an uncorrelated noise signal c(n)

through a pitch prediction filter [2,79]. A typical pitch
prediction filter is

u(n) = gc(n) + bu(n − T0) (12)

where T0 is the pitch period. If c(n) is unit variance white
noise, then according to Eq. (12) the spectrum of u(n) is

|U(ejω)|2 = g2

1 + b2 − 2b cos ωT0
(13)

Figure 5 shows the normalized magnitude spectrum
(1 − b)|U(ejω)| for several values of b between 0.25 and
1. As shown, the spectrum varies smoothly from a uniform
spectrum, which is heard as unvoiced, to a harmonic
spectrum that is heard as voiced, without the need for
a binary voiced/unvoiced decision.

In LPC-AS coders, the noise signal c(n) is chosen from
a ‘‘stochastic codebook’’ of candidate noise signals. The
stochastic codebook index, the pitch period, and the gains
b and g are chosen in a closed-loop fashion in order to
minimize a perceptually weighted error metric. The search
for an optimum T0 typically uses the same algorithm as
the search for an optimum c(n). For this reason, the list of
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Figure 5. Normalized magnitude spectrum of the pitch predic-
tion filter for several values of the prediction coefficient.

excitation samples delayed by different candidate values
of T0 is typically called an ‘‘adaptive codebook’’ [87].

4.3. Perceptual Error Weighting

Not all types of distortion are equally audible. Many
types of speech coders, including LPC-AS coders, use
simple models of human perception in order to minimize
the audibility of different types of distortion. In LPC-AS
coding, two types of perceptual weighting are commonly
used. The first type, perceptual weighting of the residual
quantization error, is used during the LPC excitation
search in order to choose the excitation vector with the
least audible quantization error. The second type, adaptive
postfiltering, is used to reduce the perceptual importance
of any remaining quantization error.

4.3.1. Perceptual Weighting of the Residual Quantization
Error. The excitation in an LPC-AS coder is chosen to
minimize a perceptually weighted error metric. Usually,
the error metric is a function of the time domain waveform
error signal

e(n) = s(n) − ŝ(n) (14)

Early LPC-AS coders minimized the mean-squared error

∑
n

e2(n) = 1
2π

∫ π

−π

|E(ejω)|2 dω (15)

It turns out that the MSE is minimized if the error
spectrum, E(ejω), is white — that is, if the error signal
e(n) is an uncorrelated random noise signal, as shown in
Fig. 6.

Not all noises are equally audible. In particular, noise
components near peaks of the speech spectrum are hidden
by a ‘‘masking spectrum’’ M(ejω), so that a shaped noise
spectrum at lower SNR may be less audible than a white-
noise spectrum at higher SNR (Fig. 7). The audibility of
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noise may be estimated using a noise-to-masker ratio
|Ew|2:

|Ew|2 = 1
2π

∫ π

−π

|E(ejω)|2
|M(ejω)|2 dω (16)

The masking spectrum M(ejω) has peaks and valleys at
the same frequencies as the speech spectrum, but the
difference in amplitude between peaks and valleys is
somewhat smaller than that of the speech spectrum. A
variety of algorithms exist for estimating the masking
spectrum, ranging from extremely simple to extremely
complex [51]. One of the simplest model masking spectra
that has the properties just described is as follows [2]:

M(z) = |A(z/γ2)|
|A(z/γ1)| , 0 < γ2 < γ1 ≤ 1 (17)

where 1/A(z) is an LPC model of the speech spectrum.
The poles and zeros of M(z) are at the same frequencies
as the poles of 1/A(z), but have broader bandwidths. Since
the zeros of M(z) have broader bandwidth than its poles,
M(z) has peaks where 1/A(z) has peaks, but the difference
between peak and valley amplitudes is somewhat reduced.

The noise-to-masker ratio may be efficiently computed
by filtering the speech signal using a perceptual weighting
filter W(z) = 1/M(z). The perceptually weighted input
speech signal is

Sw(z) = W(z)S(z) (18)

Likewise, for any particular candidate excitation signal,
the perceptually weighted output speech signal is

Ŝw(z) = W(z)Ŝ(z) (19)

Given sw(n) and ŝw(n), the noise-to-masker ratio may be
computed as follows:

|Ew|2 = 1
2π

∫ π

−π

|Sw(ejω) − Ŝw(ejω)|2dω =
∑

n

(s2
w(n) − ŝ2

w(n))

(20)
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Figure 6. The minimum-energy quantization noise is usually
white noise.
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Figure 7. Shaped quantization noise may be less audible than
white quantization noise, even at slightly lower SNR.

4.3.2. Adaptive Postfiltering. Despite the use of per-
ceptually weighted error minimization, the synthesized
speech coming from an LPC-AS coder may contain audible
quantization noise. In order to minimize the perceptual
effects of this noise, the last step in the decoding process is
often a set of adaptive postfilters [11,80]. Adaptive postfil-
tering improves the perceptual quality of noisy speech by
giving a small extra emphasis to features of the spectrum
that are important for human-to-human communication,
including the pitch periodicity (if any) and the peaks in
the spectral envelope.

A pitch postfilter (or long-term predictive postfilter)
enhances the periodicity of voiced speech by applying
either an FIR or IIR comb filter to the output. The time
delay and gain of the comb filter may be set equal to the
transmitted pitch lag and gain, or they may be recalculated
at the decoder using the reconstructed signal ŝ(n). The
pitch postfilter is applied only if the proposed comb filter
gain is above a threshold; if the comb filter gain is below
threshold, the speech is considered unvoiced, and no pitch
postfilter is used. For improved perceptual quality, the
LPC excitation signal may be interpolated to a higher
sampling rate in order to allow the use of fractional pitch
periods; for example, the postfilter in the ITU G.729 coder
uses pitch periods quantized to 1

8 sample.
A short-term predictive postfilter enhances peaks in the

spectral envelope. The form of the short-term postfilter is
similar to that of the masking function M(z) introduced
in the previous section; the filter has peaks at the same
frequencies as 1/A(z), but the peak-to-valley ratio is less
than that of A(z).

Postfiltering may change the gain and the average
spectral tilt of ŝ(n). In order to correct these problems,
systems that employ postfiltering may pass the final signal
through a one-tap FIR preemphasis filter, and then modify
its gain, prior to sending the reconstructed signal to an
A/D converter.

4.4. Frame-Based Analysis

The characteristics of the LPC excitation signal u(n)

change quite rapidly. The energy of the signal may change
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from zero to nearly full amplitude within one millisecond
at the release of a plosive• sound, and a mistake of moreQ4

than about 5 ms in the placement of such a sound is
clearly audible. The LPC coefficients, on the other hand,
change relatively slowly. In order to take advantage of the
slow rate of change of LPC coefficients without sacrificing
the quality of the coded residual, most LPC-AS coders
encode speech using a frame–subframe structure, as
depicted in Fig. 8. A frame of speech is approximately
20 ms in length, and is composed of typically three to four
subframes. The LPC excitation is transmitted only once
per subframe, while the LPC coefficients are transmitted
only once per frame. The LPC coefficients are computed
by analyzing a window of speech that is usually longer
than the speech frame (typically 30–60 ms). In order
to minimize the number of future samples required to
compute LPC coefficients, many LPC-AS coders use an
asymmetric window that may include several hundred
milliseconds of past context, but that emphasizes the
samples of the current frame [21,84].

The perceptually weighted original signal sw(n) and
weighted reconstructed signal ŝw(n) in a given subframe
are often written as L-dimensional row vectors S and Ŝ,
where the dimension L is the length of a subframe:

Sw = [sw(0), . . . , sw(L − 1)], Ŝw = [ŝw(0), . . . , ŝw(L − 1)]
(21)

The core of an LPC-AS coder is the closed-loop
search for an optimum coded excitation vector U, where
U is typically composed of an ‘‘adaptive codebook’’
component representing the periodicity, and a ‘‘stochastic
codebook’’ component representing the noiselike part of
the excitation. In general, U may be represented as
the weighted sum of several ‘‘shape vectors’’ Xm, m =
1, . . . , M, which may be drawn from several codebooks,
including possibly multiple adaptive codebooks and

n

Speech signal s(n)

LPC coefficients Excitation indices and gains

LPC analysis window
(typically 30-60ms)

Sub-frames for excitation search
(typically 3-4/ frame)

Speech frame for codec
synchronization (typically 20ms)

Figure 8. The frame/subframe structure of most LPC analysis
by synthesis coders.

multiple stochastic codebooks:

U = GX, G = [g1, g2, . . .], X =



X1

X2
...


 (22)

The choice of shape vectors and the values of the gains
gm are jointly optimized in a closed-loop search, in
order to minimize the perceptually weighted error metric
|Sw − Ŝw|2.

The value of Sw may be computed prior to any codebook
search by perceptually weighting the input speech vector.
The value of Ŝw must be computed separately for each
candidate excitation, by synthesizing the speech signal
ŝ(n), and then perceptually weighting to obtain ŝw(n).
These operations may be efficiently computed, as described
below.

4.4.1. Zero State Response and Zero Input Response. Let
the filter H(z) be defined as the composition of the LPC
synthesis filter and the perceptual weighting filter, thus
H(z) = W(z)/A(z). The computational complexity of the
excitation parameter search may be greatly simplified
if Ŝw is decomposed into the zero input response (ZIR)
and zero state response (ZSR) of H(z) [97]. Note that the
weighted reconstructed speech signal is

Ŝw = [ŝw(0), . . . , ŝw(L − 1)], ŝw(n) =
∞∑

i=0

h(i)u(n − i)

(23)

where h(n) is the infinite-length impulse response of H(z).
Suppose that ŝw(n) has already been computed for n < 0,
and the coder is now in the process of choosing the optimal
u(n) for the subframe 0 ≤ n ≤ L − 1. The sum above can be
divided into two parts: a part that depends on the current
subframe input, and a part that does not:

Ŝw = ŜZIR + UH (24)

where ŜZIR contains samples of the zero input response
of H(z), and the vector UH contains the zero state
response. The zero input response is usually computed by
implementing the recursive filter H(z) = W(z)/A(z) as the
sequence of two IIR filters, and allowing the two filters to
run for L samples with zero input. The zero state response
is usually computed as the matrix product UH, where

H =




h(0) h(1) . . . h(L − 1)

0 h(0) . . . h(L − 2)
...

...
...

...
0 0 . . . h(0)


 ,

U = [u(0), . . . , u(L − 1)] (25)

Given a candidate excitation vector U, the perceptually
weighted error vector E may be defined as

Ew = Sw − Ŝw = S̃ − UH (26)
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where the target vector S̃ is

S̃ = Sw − ŜZIR (27)

The target vector needs to be computed only once per
subframe, prior to the codebook search. The objective of
the codebook search, therefore, is to find an excitation
vector U that minimizes |S̃ − UH|2.

4.4.2. Optimum Gain and Optimum Excitation. Recall
that the excitation vector U is modeled as the weighted
sum of a number of codevectors Xm, m = 1, . . . , M. The
perceptually weighted error is therefore:

|E|2 = |S̃ − GXH|2 = S̃S̃′ − 2GXHS̃′ + GXH(GXH)′ (28)

where prime denotes transpose. Minimizing |E|2 requires
optimum choice of the shape vectors X and of the gains G. It
turns out that the optimum gain for each excitation vector
can be computed in closed form. Since the optimum gain
can be computed in closed form, it need not be computed
during the closed-loop search; instead, one can simply
assume that each candidate excitation, if selected, would
be scaled by its optimum gain. Assuming an optimum gain
results in an extremely efficient criterion for choosing the
optimum excitation vector [3].

Suppose we define the following additional bits of
notation:

RX = XHS̃′,  = XH(XH)′ (29)

Then the mean-squared error is

|E|2 = S̃S̃′ − 2GRX + GG′ (30)

For any given set of shape vectors X, G is chosen so that
|E|2 is minimized, which yields

G = R′
X−1 (31)

If we substitute the minimum MSE value of G into
Eq. (30), we get

|E|2 = S̃S̃′ − R′
X−1RX (32)

Hence, in order to minimize the perceptually weighted
MSE, we choose the shape vectors X in order to maximize
the covariance-weighted sum of correlations:

Xopt = arg max(R′
X−1RX) (33)

When the shape matrix X contains more than one row,
the matrix inversion in Eq. (33) is often computed using
approximate algorithms [4]. In the VSELP coder [25],
X is transformed using a modified Gram–Schmidt
orthogonalization so that  has a diagonal structure, thus
simplifying the computation of Eq. (33).

4.5. Types of LPC-AS Coder

4.5.1. Multipulse LPC (MPLPC). In the multipulse LPC
algorithm [4,50], the shape vectors are impulses. U is

typically formed as the weighted sum of 4–8 impulses per
subframe.

The number of possible combinations of impulses
grows exponentially in the number of impulses, so joint
optimization of the positions of all impulses is usually
impossible. Instead, most MPLPC coders optimize the
pulse positions one at a time, using something like
the following strategy. First, the weighted zero state
response of H(z) corresponding to each impulse location
is computed. If Ck is an impulse located at n = k, the
corresponding weighted zero state response is

CkH = [0, . . . , 0, h(0), h(1), . . . , h(L − k − 1)] (34)

The location of the first impulse is chosen in order to
optimally approximate the target vector S̃1 = S̃, using the
methods described in the previous section. After selecting
the first impulse location k1, the target vector is updated
according to

S̃m = S̃m−1 − Ckm−1 H (35)

Additional impulses are chosen until the desired number
of impulses is reached. The gains of all pulses may be
reoptimized after the selection of each new pulse [87].

Variations are possible. The multipulse coder described
in ITU standard G.723.1 transmits a single gain for all the
impulses, plus sign bits for each individual impulse. The
G.723.1 coder restricts all impulse locations to be either
odd or even; the choice of odd or even locations is coded
using one bit per subframe [50]. The regular pulse excited
LPC algorithm, which was the first GSM full-rate speech
coder, synthesized speech using a train of impulses spaced
one per 4 samples, all scaled by a single gain term [65].
The alignment of the pulse train was restricted to one
of four possible locations, chosen in a closed-loop fashion
together with a gain, an adaptive codebook delay, and an
adaptive codebook gain.

Singhal and Atal demonstrated that the quality of
MPLPC may be improved at low bit rates by modeling
the periodic component of an LPC excitation vector using
a pitch prediction filter [87]. Using a pitch prediction filter,
the LPC excitation signal becomes

u(n) = bu(n − D) +
M∑

m=1

ckm (n) (36)

where the signal ck(n) is an impulse located at n = k
and b is the pitch prediction filter gain. Singhal and Atal
proposed choosing D before the locations of any impulses
are known, by minimizing the following perceptually
weighted error:

|ED|2 = |S̃ − bXDH|2, XD = [u(−D), . . . , u((L − 1) − D)]
(37)

The G.723.1 multipulse LPC coder and the GSM
(Global System for Mobile Communication) full-rate RPE-
LTP (regular-pulse excitation with long-term prediction)
coder both use a closed-loop pitch predictor, as do all
standardized variations of the CELP coder (see Sections
4.5.2 and 4.5.3). Typically, the pitch delay and gain are
optimized first, and then the gains of any additional
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excitation vectors (e.g., impulses in an MPLPC algorithm)
are selected to minimize the remaining error.

4.5.2. Code-Excited LPC (CELP). LPC analysis finds
a filter 1/A(z) whose excitation is uncorrelated for
correlation distances smaller than the order of the filter.
Pitch prediction, especially closed-loop pitch prediction,
removes much of the remaining intersample correlation.
The spectrum of the pitch prediction residual looks like the
spectrum of uncorrelated Gaussian noise, but replacing the
residual with real noise (noise that is independent of the
original signal) yields poor speech quality. Apparently,
some of the temporal details of the pitch prediction
residual are perceptually important. Schroeder and Atal
proposed modeling the pitch prediction residual using a
stochastic excitation vector ck(n) chosen from a list of
stochastic excitation vectors, k = 1, . . . , K, known to both
the transmitter and receiver [85]:

u(n) = bu(n − D) + gck(n) (38)

The list of stochastic excitation vectors is called a stochastic
codebook, and the index of the stochastic codevector is
chosen in order to minimize the perceptually weighted
error metric |Ek|2. Rose and Barnwell discussed the
similarity between the search for an optimum stochastic
codevector index k and the search for an optimum predictor
delay D [82], and Kleijn et al. coined the term ‘‘adaptive
codebook’’ to refer to the list of delayed excitation signals
u(n − D) which the coder considers during closed-loop
pitch delay optimization (Fig. 9).

The CELP algorithm was originally not considered effi-
cient enough to be used in real-time speech coding, but
a number of computational simplifications were proposed
that resulted in real-time CELP-like algorithms. Trancoso
and Atal proposed efficient search methods based on the
truncated impulse response of the filter W(z)/A(z), as dis-
cussed in Section 4.4 [3,97]. Davidson and Lin separately
proposed center clipping the stochastic codevectors, so that
most of the samples in each codevector are zero [15,67].

c1(n)

cK(n)

Stochastic codebook

sum(||^2)A(z)
W(z)u(n)

b

+ −

g

Adaptive codebook

u(n−Dmin)

u(n−Dmax)

Choose codebook indices
to minimize MSE

sw(n)

sw(n)
∧

Figure 9. The code-excited LPC algorithm (CELP) constructs an
LPC excitation signal by optimally choosing input vectors from
two codebooks: an ‘‘adaptive’’ codebook, which represents the
pitch periodicity; and a ‘‘stochastic’’ codebook, which represents
the unpredictable innovations in each speech frame.

Lin also proposed structuring the stochastic codebook so
that each codevector is a slightly-shifted version of the pre-
vious codevector; such a codebook is called an overlapped
codebook [67]. Overlapped stochastic codebooks are rarely
used in practice today, but overlapped-codebook search
methods are often used to reduce the computational com-
plexity of an adaptive codebook search. In the search of
an overlapped codebook, the correlation RX and autocor-
relation  introduced in Section 4.4 may be recursively
computed, thus greatly reducing the complexity of the
codebook search [63].

Most CELP coders optimize the adaptive codebook
index and gain first, and then choose a stochastic
codevector and gain in order to minimize the remaining
perceptually weighted error. If all the possible pitch
periods are longer than one subframe, then the entire
content of the adaptive codebook is known before the
beginning of the codebook search, and the efficient
overlapped codebook search methods proposed by Lin
may be applied [67]. In practice, the pitch period of a
female speaker is often shorter than one subframe. In
order to guarantee that the entire adaptive codebook is
known before beginning a codebook search, two methods
are commonly used: (1) the adaptive codebook search may
simply be constrained to only consider pitch periods longer
than L samples — in this case, the adaptive codebook will
lock onto values of D that are an integer multiple of
the actual pitch period (if the same integer multiple is not
chosen for each subframe, the reconstructed speech quality
is usually good); and (2) adaptive codevectors with delays
of D < L may be constructed by simply repeating the most
recent D samples as necessary to fill the subframe.

4.5.3. SELP, VSELP, ACELP, and LD-CELP. Rose and
Barnwell demonstrated that reasonable speech quality
is achieved if the LPC excitation vector is computed com-
pletely recursively, using two closed-loop pitch predictors
in series, with no additional information [82]. In their
‘‘self-excited LPC’’ algorithm (SELP), the LPC excitation
is initialized during the first subframe using a vector of
samples known at both the transmitter and receiver. For
all frames after the first, the excitation is the sum of an
arbitrary number of adaptive codevectors:

u(n) =
M∑

m=1

bmu(n − Dm) (39)

Kleijn et al. developed efficient recursive algorithms for
searching the adaptive codebook in SELP coder and other
LPC-AS coders [63].

Just as there may be more than one adaptive codebook,
it is also possible to use more than one stochastic codebook.
The vector-sum excited LPC algorithm (VSELP) models
the LPC excitation vector as the sum of one adaptive and
two stochastic codevectors [25]:

u(n) = bu(n − D) +
2∑

m=1

gmckm (n) (40)

The two stochastic codebooks are each relatively small
(typically 32 vectors), so that each of the codebooks may be
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searched efficiently. The adaptive codevector and the two
stochastic codevectors are chosen sequentially. After selec-
tion of the adaptive codevector, the stochastic codebooks
are transformed using a modified Gram–Schmidt orthog-
onalization, so that the perceptually weighted speech
vectors generated during the first stochastic codebook
search are all orthogonal to the perceptually weighted
adaptive codevector. Because of this orthogonalization,
the stochastic codebook search results in the choice of a
stochastic codevector that is jointly optimal with the adap-
tive codevector, rather than merely sequentially optimal.
VSELP is the basis of the Telecommunications Industry
Associations digital cellular standard IS-54.

The algebraic CELP (ACELP) algorithm creates an
LPC excitation by choosing just one vector from an
adaptive codebook and one vector from a fixed codebook.
In the ACELP algorithm, however, the fixed codebook
is composed of binary-valued or trinary-valued algebraic
codes, rather than the usual samples of a Gaussian noise
process [1]. Because of the simplicity of the codevectors,
it is possible to search a very large fixed codebook very
quickly using methods that are a hybrid of standard CELP
and MPLPC search algorithms. ACELP is the basis of the
ITU standard G.729 coder at 8 kbps. ACELP codebooks
may be somewhat larger than the codebooks in a standard
CELP coder; the codebook in G.729, for example, contains
8096 codevectors per subframe.

Most LPC-AS coders operate at very low bit rates, but
require relatively large buffering delays. The low-delay
CELP coder (LD-CELP) operates at 16 kbps [10,47] and
is designed to obtain the best possible speech quality,
with the constraint that the total algorithmic delay of a
tandem coder and decoder must be no more than 2 ms.
LPC analysis and codevector search are computed once
per 2 ms (16 samples). Transmission of LPC coefficients
once per two milliseconds would require too many bits, so
LPC coefficients are computed in a recursive backward-
adaptive fashion. Before coding or decoding each frame,
samples of ŝ(n) from the previous frame are windowed, and
used to update a recursive estimate of the autocorrelation
function. The resulting autocorrelation coefficients are
similar to those that would be obtained using a relatively
long asymmetric analysis window. LPC coefficients are
then computed from the autocorrelation function using
the Levinson–Durbin algorithm.

4.6. Line Spectral Frequencies (LSFs) or Line Spectral Pairs
(LSPs)

Linear prediction can be viewed as an inverse filtering
procedure in which the speech signal is passed through an
all-zero filter A(z). The filter coefficients of A(z) are chosen
such that the energy in the output, that is, the residual or
error signal, is minimized. Alternatively, the inverse filter
A(z) can be transformed into two other filters P(z) and
Q(z). These new filters turn out to have some interesting
properties, and the representation based on them, called
the line spectrum pairs [89,91], has been used in speech
coding and synthesis applications.

Let A(z) be the frequency response of an LPC inverse
filter of order p:

A(z) = −
p∑

i=0

aiz−i

with a0 = −1. The ai values are real, and all the zeros of
A(z) are inside the unit circle.

If we use the lattice formulation of LPC, we arrive at a
recursive relation between the mth stage [Am(z)] and the
one before it [Am−1(z)] For the pth-order inverse filter, we
have

Ap(z) = Ap−1(z) − kpz−pAp−1(z−1)

By allowing the recursion to go one more iteration, we
obtain

Ap+1(z) = Ap(z) − kp+1z−(p+1)Ap(z−1) (41)

If we choose kp+1 = ±1 in Eq. (41), we can define two new
polynomials as follows:

P(z) = A(z) − z−(p+1)A(z−1) (42)

Q(z) = A(z) + z−(p+1)A(z−1) (43)

Physically, P(z) and Q(z) can be interpreted as the inverse
transfer function of the vocal tract for the open-glottis and
closed-glottis boundary conditions, respectively [22], and
P(z)/Q(z) is the driving-point impedance of the vocal tract
as seen from the glottis [36].

If p is odd, the formulae for pn and qn are as follows:

P(z) = A(z) + z−(p+1)A(z−1)

=
(p+1)/2∏

n=1

(1 − ejpn z−1)(1 − e−jpn z−1) (44)

Q(z) = A(z) − z−(p+1)A(z−1)

= (1 − z−2)

(p−1)/2∏
n=1

(1 − ejqn z−1)(1 − e−jqn z−1) (45)

The LSFs have some interesting characteristics: the
frequencies {pn} and {qn} are related to the formant
frequencies; the dynamic range of {pn} and {qn} is
limited and the two alternate around the unit circle
(0 ≤ p1 ≤ q1 ≤ p2 . . .); {pn} and {qn} are correlated so that
intraframe prediction is possible; and they change slowly
from one frame to another, hence, interframe prediction is
also possible. The interleaving nature of the {pn} and {qn}
allow for efficient iterative solutions [58].

Almost all LPC-based coders today use the LSFs
to represent the LP parameters. Considerable recent
research has been devoted to methods for efficiently
quantizing the LSFs, especially using vector quantization
(VQ) techniques. Typical algorithms include predictive
VQ, split VQ [76], and multistage VQ [66,74]. All of these
methods are used in the ITU standard ACELP coder G.729:
the moving-average vector prediction residual is quantized
using a 7-bit first-stage codebook, followed by second-stage
quantization of two subvectors using independent 5-bit
codebooks, for a total of 17 bits per frame [49,84].



EOT156

SPEECH CODING: FUNDAMENTALS AND APPLICATIONS 11

5. LPC VOCODERS

5.1. The LPC-10e Vocoder

The 2.4-kbps LPC-10e vocoder (Fig. 10) is one of the
earliest and one of the longest-lasting standards for low-
bit-rate digital speech coding [8,16]. This standard was
originally proposed in the 1970s, and was not officially
replaced until the selection of the MELP 2.4-kbps coding
standard in 1996 [64]. Speech coded using LPC-10e sounds
metallic and synthetic, but it is intelligible.

In the LPC-10e algorithm, speech is first windowed
using a Hamming window of length 22.5ms. The gain
(G) and coefficients (ai) of a linear prediction filter are
calculated for the entire frame using the Levinson–Durbin
recursion. Once G and ai have been computed, the LPC
residual signal d(n) is computed:

d(n) = 1
G

(
s(n) −

p∑
i=1

ais(n − i)

)
(46)

The residual signal d(n) is modeled using either a
periodic train of impulses (if the speech frame is voiced)
or an uncorrelated Gaussian random noise signal (if the
frame is unvoiced). The voiced/unvoiced decision is based
on the average magnitude difference function (AMDF),

�d(m) = 1
N − |m|

N−1∑
n=|m|

|d(n) − d(n − |m|)| (47)

The frame is labeled as voiced if there is a trough in �d(m)

that is large enough to be caused by voiced excitation.
Only values of m between 20 and 160 are examined,
corresponding to pitch frequencies between 50 and 400 Hz.
If the minimum value of �d(m) in this range is less than
a threshold, the frame is declared voiced, and otherwise it
is declared unvoiced [8].

If the frame is voiced, then the LPC residual is
represented using an impulse train of period T0, where

T0 = arg
160

min
m=20

�d(m) (48)

If the frame is unvoiced, a pitch period of T0 = 0 is
transmitted, indicating that an uncorrelated Gaussian
random noise signal should be used as the excitation of
the LPC synthesis filter.

Pulse
train

White
noise

Frication, aspiration

Vocal fold oscillation

H(z)
Transfer
function

G

Voiced/unvoiced
switch

Figure 10. A simplified model of speech production whose
parameters can be transmitted efficiently across a digital channel.

5.2. Mixed-Excitation Linear Prediction (MELP)

The mixed-excitation linear prediction (MELP) coder [69]
was selected in 1996 by the United States Department
of Defense Voice Processing Consortium (DDVPC) to
be the U.S. Federal Standard at 2.4 kbps, replacing
LPC-10e. The MELP coder is based on the LPC model
with additional features that include mixed excitation,
aperiodic pulses, adaptive spectral enhancement, pulse
dispersion filtering, and Fourier magnitude modeling [70].
The synthesis model for the MELP coder is illustrated
in Fig. 11. LP coefficients are converted to LSFs and a
multistage vector quantizer (MSVQ) is used to quantize
the LSF vectors. For voiced segments a total of 54 bits that
represent: LSF parameters (25), Fourier magnitudes of the
prediction residual signal (8), gain (8), pitch (7), bandpass
voicing (4), aperiodic flag (1), and a sync bit are sent.
The Fourier magnitudes are coded with an 8-bit VQ and
the associated codebook is searched with a perceptually-
weighted Euclidean distance. For unvoiced segments, the
Fourier magnitudes, bandpass voicing, and the aperiodic
flag bit are not sent. Instead, 13 bits that implement
forward error correction (FEC) are sent. The performance
of MELP at 2.4 kbps is similar to or better than that of the
federal standard at 4.8 kbps (FS 1016) [92]. Versions of
MELP coders operating at 1.7 kbps [68] and 4.0 kbps [90]
have been reported.

5.3. Multiband Excitation (MBE)

In multiband excitation (MBE) coding the voiced/unvoiced
decision is not a binary one; instead, a series of
voicing decisions are made for independent harmonic
intervals [31]. Since voicing decisions can be made in
different frequency bands individually, synthesized speech
may be partially voiced and partially unvoiced. An
improved version of the MBE was introduced in the late
1980s [7,35] and referred to as the IMBE coder. The IMBE
at 2.4 kbps produces better sound quality than does the
LPC-10e. The IMBE was adopted as the Inmarsat-M
coding standard for satellite voice communication at a
total rate of 6.4 kbps, including 4.15 kbps of source coding
and 2.25 kbps of channel coding [104]. The Advanced
MBE (AMBE) coder was adopted as the Inmarsat Mini-M
standard at a 4.8 kbps total data rate, including 3.6 kbps
of speech and 1.2 kbps of channel coding [18,27]. In [14]
an enhanced multiband excitation (EMBE) coder was
presented. The distinguishing features of the EMBE coder
include signal-adaptive multimode spectral modeling
and parameter quantization, a two-band signal-adaptive

Source
spectral
shaping

1/A(z)
Transfer
function

Source
spectral
shaping

G

Pulse
train

White
noise

+

Figure 11. The MELP speech synthesis model.
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frequency-domain voicing decision, a novel VQ scheme for
the efficient encoding of the variable-dimension spectral
magnitude vectors at low rates, and multiclass selective
protection of spectral parameters from channel errors. The
4-kbps EMBE coder accounts for both source (2.9 kbps) and
channel (1.1 kbps) coding and was designed for satellite-
based communication systems.

5.4. Prototype Waveform Interpolative (PWI) Coding

A different kind of coding technique that has proper-
ties of both waveform and LPC-based coders has been
proposed [59,60] and is called prototype waveform interpo-
lation (PWI). PWI uses both interpolation in the frequency
domain and forward–backward prediction in the time
domain. The technique is based on the assumption that, for
voiced speech, a perceptually accurate speech signal can
be reconstructed from a description of the waveform of a
single, representative pitch cycle per interval of 20–30 ms.
The assumption exploits the fact that voiced speech can
be interpreted as a concentration of slowly evolving pitch
cycle waveforms. The prototype waveform is described by
a set of linear prediction (LP) filter coefficients describing
the formant structure and a prototype excitation wave-
form, quantized with analysis-by-synthesis procedures.
The speech signal is reconstructed by filtering an excita-
tion signal consisting of the concatenation of (infinitesimal)
sections of the instantaneous excitation waveforms. By
coding the voiced and unvoiced components separately, a
2.4-kbps version of the coder performed similarly to the
4.8-kbps FS1016 standard [61].

Recent work has aimed at reducing the computational
complexity of the coder for rates between 1.2 and 2.4 kbps
by including a time-varying waveform sampling rate and
a cubic B-spline waveform representation [62,86].

6. MEASURES OF SPEECH QUALITY

Deciding on an appropriate measurement of quality is
one of the most difficult aspects of speech coder design,
and is an area of current research and standardization.
Early military speech coders were judged according to only
one criterion: intelligibility. With the advent of consumer-
grade speech coders, intelligibility is no longer a sufficient
condition for speech coder acceptability. Consumers want
speech that sounds ‘‘natural.’’ A large number of subjective
and objective measures have been developed to quantify
‘‘naturalness,’’ but it must be stressed that any scalar
measurement of ‘‘naturalness’’ is an oversimplification.
‘‘Naturalness’’ is a multivariate quantity, including such
factors as the metallic versus breathy quality of speech,
the presence of noise, the color of the noise (narrowband
noise tends to be more annoying than wideband noise,
but the parameters that predict ‘‘annoyance’’ are not well
understood), the presence of unnatural spectral envelope
modulations (e.g., flutter noise), and the absence of natural
spectral envelope modulations.

6.1. Psychophysical Measures of Speech Quality
(Subjective Tests)

The final judgment of speech coder quality is the
judgment made by human listeners. If consumers (and

reviewers) like the way the product sounds, then the
speech coder is a success. The reaction of consumers
can often be predicted to a certain extent by evaluating
the reactions of experimental listeners in a controlled
psychophysical testing paradigm. Psychophysical tests
(often called ‘‘subjective tests’’) vary depending on the
quantity being evaluated, and the structure of the test.

6.1.1. Intelligibility. Speech coder intelligibility is eval-
uated by coding a number of prepared words, asking lis-
teners to write down the words they hear, and calculating
the percentage of correct transcriptions (an adjustment for
guessing may be subtracted from the score). The diagnostic
rhyme test (DRT) and diagnostic alliteration test (DALT)
are intelligibility tests which use a controlled vocabulary
to test for specific types of intelligibility loss [101,102].
Each test consists of 96 pairs of confusable words spo-
ken in isolation. The words in a pair differ in only one
distinctive feature, where the distinctive feature dimen-
sions proposed by Voiers are voicing, nasality, sustention•, Q5

sibilation, graveness, and compactness. In the DRT, the
words in a pair differ in only one distinctive feature of the
initial consonant; for instance, ‘‘jest’’ and ‘‘guest’’ differ in
the sibilation of the initial consonant. In the DALT, words
differ in the final consonant; for instance, ‘‘oaf’’ and ‘‘oath’’
differ in the graveness of the final consonant. Listeners
hear one of the words in each pair, and are asked to select
the word from two written alternatives. Professional test-
ing firms employ trained listeners who are familiar with
the speakers and speech tokens in the database, in order
to minimize test-retest variability.

Intelligibility scores quoted in the speech coding
literature often refer to the composite results of a DRT.
In a comparison of two federal standard coders, the LPC
10e algorithm resulted in 90% intelligibility, while the
FS-1016 CELP algorithm had 91% intelligibility [64].
An evaluation of waveform interpolative (WI) coding
published DRT scores of 87.2% for the WI algorithm, and
87.7% for FS-1016 [61].

6.1.2. Numerical Measures of Perceptual Qual-
ity. Perhaps the most commonly used speech quality
measure is the mean opinion score (MOS). A mean opin-
ion score is computed by coding a set of spoken phrases
using a variety of coders, presenting all of the coded
speech together with undegraded speech in random order,
asking listeners to rate the quality of each phrase on
a numerical scale, and then averaging the numerical
ratings of all phrases coded by a particular coder. The
five-point numerical scale is associated with a standard
set of descriptive terms: 5 = excellent, 4 = good, 3 = fair,
2 = poor, and 1 = bad. A rating of 4 is supposed to corre-
spond to standard toll-quality speech, quantized at 64 kbps
using ITU standard G.711 [48].

Mean opinion scores vary considerably depending
on background noise conditions; for example, CVSD
performs significantly worse than LPC-based methods in
quiet recording conditions, but significantly better under
extreme noise conditions [96]. Gender of the speaker may
also affect the relative ranking of coders [96]. Expert
listeners tend to give higher rankings to speech coders
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Figure 12. Mean opinion scores from
five published studies in quiet
recording conditions — Jarvinen [53],
Kohler [64], MPEG [39], Yeldener
[107], and the COMSAT and MPC
sites from Tardelli et al. [96]: (A)
unmodified speech, (B) ITU G.722
subband ADPCM, (C) ITU G.726
ADPCM, (D) ISO MPEG-II layer 3
subband audio coder, (E) DDVPC
CVSD, (F) GSM full-rate RPE-LTP,
(G) GSM EFR ACELP, (H) ITU G.729
ACELP, (I) TIA IS54 VSELP, (J)
ITU G.723.1 MPLPC, (K) DDVPC
FS-1016 CELP, (L) sinusoidal trans-
form coding, (M) ISO MPEG-IV
HVXC, (N) Inmarsat mini-M AMBE,
(O) DDVPC FS-1015 LPC-10e, (P)
DDVPC MELP.

with which they are familiar, even when they are not
consciously aware of the order in which coders are
presented [96]. Factors such as language and location of
the testing laboratory may shift the scores of all coders up
or down, but tend not to change the rank order of individual
coders [39]. For all of these reasons, a serious MOS test
must evaluate several reference coders in parallel with the
coder of interest, and under identical test conditions. If an
MOS test is performed carefully, intercoder differences
of approximately 0.15 opinion points may be considered
significant. Figure 12 is a plot of MOS as a function of bit
rate for coders evaluated under quiet listening conditions
in five published studies (one study included separately
tabulated data from two different testing sites [96]).

The diagnostic acceptability measure (DAM) is an
attempt to control some of the factors that lead to
variability in published MOS scores [100]. The DAM
employs trained listeners, who rate the quality of
standardized test phrases on 10 independent perceptual
scales, including six scales that rate the speech itself
(fluttering, thin, rasping, muffled, interrupted, nasal),
and four scales that rate the background noise (hissing,
buzzing, babbling, rumbling). Each of these is a 100-
point scale, with a range of approximately 30 points
between the LPC-10e algorithm (50 points) and clean
speech (80 points) [96]. Scores on the various perceptual
scales are combined into a composite quality rating. DAM
scores are useful for pointing out specific defects in a
speech coding algorithm. If the only desired test outcome
is a relative quality ranking of multiple coders, a carefully
controlled MOS test in which all coders of interest are

tested under the same conditions may be as reliable as
DAM testing [96].

6.1.3. Comparative Measures of Perceptual Quality. It is
sometimes difficult to evaluate the statistical significance
of a reported MOS difference between two coders. A
more powerful statistical test can be applied if coders are
evaluated in explicit A/B comparisons. In a comparative
test, a listener hears the same phrase coded by two
different coders, and chooses the one that sounds better.
The result of a comparative test is an apparent preference
score, and an estimate of the significance of the observed
preference; for example, in a 1999 study, WI coding at
4.0 kbps was preferred to 4 kbps HVXC 63.7% of the
time, to 5.3 kbps G.723.1 57.5% of the time (statistically
significant differences), and to 6.3 kbps G.723.1 53.9% of
the time (not statistically significant) [29]. It should be
noted that ‘‘statistical significance’’ in such a test refers
only to the probability that the same listeners listening to
the same waveforms will show the same preference in a
future test.

6.2. Algorithmic Measures of Speech Quality (Objective
Measures)

Psychophysical testing is often inconvenient; it is not
possible to run psychophysical tests to evaluate every
proposed adjustment to a speech coder. For this reason,
a number of algorithms have been proposed that
approximate, to a greater or lesser extent, the results
of psychophysical testing.
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The signal-to-noise ratio of a frame of N speech samples
starting at sample number n may be defined as

SNR(n) =

n+N−1∑
m=n

s2(m)

n+N−1∑
m=n

e2(m)

(49)

High-energy signal components can mask quantization
error, which is synchronous with the signal component,
or separated by at most a few tens of milliseconds. Over
longer periods of time, listeners accumulate a general
perception of quantization noise, which can be modeled as
the average log segmental SNR:

SEGSNR = 1
K

K−1∑
k=0

10 log10 SNR(kN) (50)

High-amplitude signal components tend to mask
quantization error components at nearby frequencies and
times. A high-amplitude spectral peak in the speech signal
is able to mask quantization error components at the same
frequency, at higher frequencies, and to a much lesser
extent, at lower frequencies. Given a short-time speech
spectrum S(ejω), it is possible to compute a short-time
‘‘masking spectrum’’ M(ejω) which describes the threshold
energy at frequency ω below which noise components are
inaudible. The perceptual salience of a noise signal e(n)

may be estimated by filtering the noise signal into K
different subband signals ek(n), and computing the ratio
between the noise energy and the masking threshold in
each subband:

NMR(n, k) =

n+N−1∑
m=n

e2
k(m)

∫ ωk+1

ωk

|M(ejω)|2 dω

(51)

where ωk is the lower edge of band k, and ωk+1 is the
upper band edge. The band edges must be close enough
together that all of the signal components in band k are
effective in masking the signal ek(n). The requirement of
effective masking is met if each band is exactly one Bark
in width, where the Bark frequency scale is described in
many references [71,77].

Fletcher has shown that the perceived loudness of a
signal may be approximated by adding the cube roots
of the signal power in each one-bark subband, after
properly accounting for masking effects [20]. The total
loudness of a quantization noise signal may therefore be
approximated as

NMR(n) =
K−1∑
k=0




n+N−1∑
m=n

e2
k[m]

∫ ωk+1

ωk

|M(ejω)|2 dω




1/3

(52)

The ITU perceptual speech quality measure (PSQM)
computes the perceptual quality of a speech signal by
filtering the input and quantized signals using a Bark-
scale filterbank, nonlinearly compressing the amplitudes
in each band, and then computing an average subband
signal to noise ratio [51]. The development of algorithms
that accurately predict the results of MOS or comparative
testing is an area of active current research, and a number
of improvements, alternatives, and/or extensions to the
PSQM measure have been proposed. An algorithm that
has been the focus of considerable research activity is the
Bark spectral distortion measure [73,103,105,106]. The
ITU has also proposed an extension of the PSQM standard
called perceptual evaluation of speech quality (PESQ) [81],
which will be released as ITU standard P.862.

7. NETWORK ISSUES

7.1. Voiceover IP

Speech coding for the voiceover Internet Protocol (VOIP)
application is becoming important with the increasing
dependency on the Internet. The first VoIP standard
was published in 1998 as recommendation H.323 [52] by
the International Telecommunications Union (ITU-T). It
is a protocol for multimedia communications over local
area networks using packet switching, and the voice-only
subset of it provides a platform for IP-based telephony.
At high bit rates, H.323 recommends the coders G.711
(3.4 kHz at 48, 56, and 64 kbps) and G.722 (wideband
speech and music at 7 kHz operating at 48, 56, and
64 kbps) while at the lower bit rates G.728 (3.4 kHz at
16 kbps), G.723 (5.3 and 6.5 kbps), and G.729 (8 kbps) are
recommended [52].

In 1999, a competing and simpler protocol named
the Session Initiation Protocol (SIP) was developed by
the Internet Engineering Task Force (IETF) Multiparty
Multimedia Session Control working group and published
as RFC 2543 [19]. SIP is a signaling protocol for Internet
conferencing and telephony, is independent of the packet
layer, and runs over UDP or TCP although it supports
more protocols and handles the associations between
Internet end systems. For now, both systems will coexist
but it is predicted that the H.323 and SIP architectures will
evolve such that two systems will become more similar.

Speech transmission over the Internet relies on sending
‘‘packets’’ of the speech signal. Because of network
congestion, packet loss can occur, resulting in audible
artifacts. High-quality VOIP, hence, would benefit from
variable-rate source and channel coding, packet loss
concealment, and jitter buffer/delay management. These
are challenging issues and research efforts continue to
generate high-quality speech for VOIP applications [38].

7.2. Embedded and Multimode Coding

When channel quality varies, it is often desirable to adjust
the bit rate of a speech coder in order to match the channel
capacity. Varying bit rates are achieved in one of two
ways. In multimode speech coding, the transmitter and
the receiver must agree on a bit rate prior to transmission
of the coded bits. In embedded source coding, on the other
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hand, the bitstream of the coder operating at low bit rates
is embedded in the bitstream of the coder operating at
higher rates. Each increment in bit rate provides marginal
improvement in speech quality. Lower bit rate coding is
obtained by puncturing bits from the higher rate coder
and typically exhibits graceful degradation in quality with
decreasing bit rates.

ITU Standard G.727 describes an embedded ADPCM
coder, which may be run at rates of 40, 32, 24, or
16 kbps (5, 4, 3, or 2 bits per sample) [46]. Embedded
ADPCM algorithms are a family of variable bit rate coding
algorithms operating on a sample per sample basis (as
opposed to, e.g., a subband coder that operates on a frame-
by-frame basis) that allows for bit dropping after encoding.
The decision levels of the lower-rate quantizers are subsets
of those of the quantizers at higher rates. This allows for
bit reduction at any point in the network without the need
of coordination between the transmitter and the receiver.

The prediction in the encoder is computed using a
more coarse quantization of d̂(n) than the quantization
actually transmitted. For example, 5 bits per sample
may be transmitted, but as few as 2 bits may be used
to reconstruct d̂(n) in the prediction loop. Any bits not
used in the prediction loop are marked as ‘‘optional’’ by
the signaling channel mode flag. If network congestion
disrupts traffic at a router between sender and receiver,
the router is allowed to drop optional bits from the coded
speech packets.

Embedded ADPCM algorithms produce codewords that
contain enhancement and core bits. The feedforward (FF)
path of the codec utilizes both enhancement bits and core
bits, while the feedback (FB) path uses core bits only.
With this structure, enhancement bits can be discarded or
dropped during network congestion.

An important example of a multimode coder is QCELP,
the speech coder standard that was adopted by the TIA
North American digital cellular standard based on code-
division multiple access (CDMA) technology [9]. The coder
selects one of four data rates every 20 ms depending on the
speech activity; for example, background noise is coded at a
lower rate than speech. The four rates are approximately
1 kbps (eighth rate), 2 kbps (quarter rate), 4 kbps (half
rate), and 8 kbps (full rate). QCELP is based on the CELP
structure but integrates implementation of the different
rates, thus reducing the average bit rate. For example,
at the higher rates, the LSP parameters are more finely
quantized and the pitch and codebook parameters are
updated more frequently [23]. The coder provides good
quality speech at average rates of 4 kbps.

Another example of a multimode coder is ITU standard
G.723.1, which is an LPC-AS coder that can operate at
2 rates: 5.3 or 6.3 kbps [50]. At 6.3 kbps, the coder is a
multipulse LPC (MPLPC) coder while the 5.3-kbps coder
is an algebraic CELP (ACELP) coder. The frame size is
30 ms with an additional lookahead of 7.5 ms, resulting
in a total algorithmic delay of 67.5 ms. The ACELP and
MPLPC coders share the same LPC analysis algorithm
and frame/subframe structure, so that most of the program
code is used by both coders. As mentioned earlier, in
ACELP, an algebraic transformation of the transmitted
index produces the excitation signal for the synthesizer.

In MPLPC, on the other hand, minimizing the perceptual-
error weighting is achieved by choosing the amplitude and
position of a number of pulses in the excitation signal.
Voice activity detection (VAD) is used to reduce the bit
rate during silent periods, and switching from one bit rate
to another is done on a frame-by-frame basis.

Multimode coders have been proposed over a wide
variety of bandwidths. Taniguchi et al. proposed a
multimode ADPCM coder at bit rates between 10
and 35 kbps [94]. Johnson and Taniguchi proposed a
multimode CELP algorithm at data rates of 4.0–5.3 kbps
in which additional stochastic codevectors are added to
the LPC excitation vector when channel conditions are
sufficiently good to allow high-quality transmission [55].
The European Telecommunications Standards Institute
(ETSI) has recently proposed a standard for adaptive
multirate coding at rates between 4.75 and 12.2 kbps.

7.3. Joint Source-Channel Coding

In speech communication systems, a major challenge is
to design a system that provides the best possible speech
quality throughout a wide range of channel conditions. One
solution consists of allowing the transceivers to monitor
the state of the communication channel and to dynamically
allocate the bitstream between source and channel coding
accordingly. For low-SNR channels, the source coder
operates at low bit rates, thus allowing powerful forward
error control. For high-SNR channels, the source coder
uses its highest rate, resulting in high speech quality,
but with little error control. An adaptive algorithm selects
a source coder and channel coder based on estimates
of channel quality in order to maintain a constant
total data rate [95]. This technique is called adaptive
multirate (AMR) coding, and requires the simultaneous
implementation of an AMR source coder [24], an AMR
channel coder [26,28], and a channel quality estimation
algorithm capable of acquiring information about channel
conditions with a relatively small tracking delay.

The notion of determining the relative importance
of bits for further unequal error protection (UEP)
was pioneered by Rydbeck and Sundberg [83]. Rate-
compatible channel codes, such as Hagenauer’s rate
compatible punctured convolutional codes (RCPC) [34],
are a collection of codes providing a family of channel
coding rates. By puncturing bits in the bitstream, the
channel coding rate of RCPC codes can be varied
instantaneously, providing UEP by imparting on different
segments different degrees of protection. Cox et al. [13]
address the issue of channel coding and illustrate how
RCPC codes can be used to build a speech transmission
scheme for mobile radio channels. Their approach is
based on a subband coder with dynamic bit allocation
proportional to the average energy of the bands. RCPC
codes are then used to provide UEP.

Relatively few AMR systems describing source and
channel coding have been presented. The AMR sys-
tems [99,98,75,44] combine different types of variable rate
CELP coders for source coding with RCPC and cyclic
redundancy check (CRC) codes for channel coding and
were presented as candidates for the European Telecom-
munications Standards Institute (ETSI) GSM AMR codec
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standard. In [88], UEP is applied to perceptually based
audio coders (PAC). The bitstream of the PAC is divided
into two classes and punctured convolutional codes are
used to provide different levels of protection, assuming a
BPSK constellation.

In [5,6], a novel UEP channel encoding scheme is
introduced by analyzing how symbol-wise puncturing of
symbols in a trellis code and the rate-compatibility con-
straint (progressive puncturing pattern) can be used to
derive rate-compatible punctured trellis codes (RCPT).
While conceptually similar to RCPC codes, RCPT codes
are specifically designed to operate efficiently on large con-
stellations (for which Euclidean and Hamming distances
are no longer equivalent) by maximizing the residual
Euclidean distance after symbol puncturing. Large con-
stellation sizes, in turn, lead to higher throughput and
spectral efficiency on high SNR channels. An AMR system
is then designed based on a perceptually-based embed-
ded subband encoder. Since perceptually based dynamic
bit allocations lead to a wide range of bit error sensitiv-
ities (the perceptually least important bits being almost
insensitive to channel transmission errors), the channel
protection requirements are determined accordingly. The
AMR systems utilize the new rate-compatible channel cod-
ing technique (RCPT) for UEP and operate on an 8-PSK
constellation. The AMR-UEP system is bandwidth effi-
cient, operates over a wide range of channel conditions
and degrades gracefully with decreasing channel quality.

Systems using AMR source and channel coding are
likely to be integrated in future communication systems
since they have the capability for providing graceful speech
degradation over a wide range of channel conditions.

8. STANDARDS

Standards for landline public switched telephone service
(PSTN) networks are established by the International
Telecommunication Union (ITU) (http://www.itu.int). The
ITU has promulgated a number of important speech
and waveform coding standards at high bit rates and
with very low delay, including G.711 (PCM), G.727 and
G.726 (ADPCM), and G.728 (LDCELP). The ITU is also
involved in the development of internetworking standards,
including the voiceover IP standard H.323. The ITU has
developed one widely used low-bit-rate coding standard
(G.729), and a number of embedded and multimode speech
coding standards operating at rates between 5.3 kbps
(G.723.1) and 40 kbps (G.727). Standard G.729 is a speech
coder operating at 8 kbps, based on algebraic code-excited
LPC (ACELP) [49,84]. G.723.1 is a multimode coder,
capable of operating at either 5.3 or 6.3 kbps [50]. G.722
is a standard for wideband speech coding, and the ITU
will announce an additional wideband standard within
the near future. The ITU has also published standards
for the objective estimation of perceptual speech quality
(P.861 and P.862).

The ITU is a branch of the International Standards
Organization (ISO) (http://www.iso.ch). In addition to
ITU activities, the ISO develops standards for the Moving
Picture Experts Group (MPEG). The MPEG-2 standard
included digital audiocoding at three levels of complexity,

including the layer 3 codec commonly known as MP3 [72].
The MPEG-4 motion picture standard includes a struc-
tured audio standard [40], in which speech and audio
‘‘objects’’ are encoded with header information specifying
the coding algorithm. Low-bit-rate speech coding is per-
formed using harmonic vector excited coding (HVXC) [43]
or code-excited LPC (CELP) [41], and audiocoding is per-
formed using time–frequency coding [42]. The MPEG
homepage is at drogo.cselt.stet.it/mpeg.

Standards for cellular telephony in Europe are estab-
lished by the European Telecommunications Standards
Institute (ETSI) (http://www.etsi.org). ETSI speech coding
standards are published by the Global System for Mobile
Telecommunications (GSM) subcommittee. All speech cod-
ing standards for digital cellular telephone use are based
on LPC-AS algorithms. The first GSM standard coder was
based on a precursor of CELP called regular-pulse excita-
tion with long-term prediction (RPE-LTP) [37,65]. Current
GSM standards include the enhanced full-rate codec GSM
06.60 [32,53] and the adaptive multirate codec [33]; both
standards use algebraic code-excited LPC (ACELP). At
the time of writing, both ITU and ETSI are expected to
announce new standards for wideband speech coding in
the near future. ETSI’s standard will be based on GSM
AMR.

The Telecommunications Industry Association
(http://www.tiaonline.org) published some of the first
U.S. digital cellular standards, including the vector-sum-
excited LPC (VSELP) standard IS54 [25]. In fact, both the
initial U.S. and Japanese digital cellular standards were
based on the VSELP algorithm. The TIA has been active
in the development of standard TR41 for voiceover IP.

The U.S. Department of Defense Voice Processing
Consortium (DDVPC) publishes speech coding standards
for U.S. government applications. As mentioned earlier,
the original FS-1015 LPC-10e standard at 2.4 kbps [8,16],
originally developed in the 1970s, was replaced in
1996 by the newer MELP standard at 2.4 kbps [92].
Transmission at slightly higher bit rates uses the FS-
1016 CELP (CELP) standard at 4.8 kbps [17,56,57].
Waveform applications use the continuously variable slope
delta modulator (CVSD) at 16 kbps. Descriptions of all
DDVPC standards and code for most are available at
http://www.plh.af.mil/ddvpc/index.html.

9. FINAL REMARKS

In this article, we presented an overview of coders
that compress speech by attempting to match the time
waveform as closely as possible (waveform coders), and
coders that attempt to preserve perceptually relevant
spectral properties of the speech signal (LPC-based
and subband coders). LPC-based coders use a speech
production model to parameterize the speech signal, while
subband coders filter the signal into frequency bands and
assign bits by either an energy or perceptual criterion.
Issues pertaining to networking, such as voiceover IP and
joint source–channel coding, were also touched on. There
are several other coding techniques that we have not
discussed in this article because of space limitations. We
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hope to have provided the reader with an overview of the
fundamental techniques of speech compression.
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