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ABSTRACT

We present a bidirectional unsupervised model pre-training
(UPT) method and apply it to children’s automatic speech
recognition (ASR). An obstacle to improving child ASR is
the scarcity of child speech databases. A common approach
to alleviate this problem is model pre-training using data
from adult speech. Pre-training can be done using supervised
(SPT) or unsupervised methods, depending on the avail-
ability of annotations. Typically, SPT performs better. In
this paper, we focus on UPT to address the situations when
pre-training data are unlabeled. Autoregressive predictive
coding (APC), a UPT method, predicts frames from only
one direction, limiting its use to uni-directional pre-training.
Conventional bidirectional UPT methods, however, predict
only a small portion of frames. To extend the benefits of APC
to bi-directional pre-training, Bi-APC is proposed. We then
use adaptation techniques to transfer knowledge learned from
adult speech (using the Librispeech corpus) to child speech
(OGI Kids corpus). LSTM-based hybrid systems are inves-
tigated. For the uni-LSTM structure, APC obtains similar
WER improvements to SPT over the baseline. When applied
to BLSTM, however, APC is not as competitive as SPT, but
our proposed Bi-APC has comparable improvements to SPT.

Index Terms— Child ASR, Unsupervised pre-training,
Autoregressive predictive coding, Hybrid BLSTM models

1. INTRODUCTION

One of the challenges faced in developing automated and in-
dividualized educational and assessment tools for children is
the performance lag in child ASR compared to adult ASR [1].
Challenges arise, in part, from difficulties in acoustic and lan-
guage modeling of child speech. Due to different growth pat-
terns of children and motor control issues, children’s speech
has a higher degree of intra-speaker and inter-speaker acoustic
variability [2]. Additionally, children’s speech is character-
ized by significant mispronunciations and disfluencies [3].
Another challenge is the lack of publicly-available child
speech databases. Interestingly, with enough training data,
the performance of child ASR using CLDNN-based hybrid
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models was shown to be comparable to adult systems [4]. To
alleviate the data scarcity problems, data-efficient TDNN-F
network for child ASR was proposed in [5].

Model pre-training with a data-sufficient task is another
successful approach to address the data scarcity issue. When
combined with fine-tuning, model pre-training can transfer
the knowledge learned from one task to another [6]. Su-
pervised pre-training (SPT) has been effectively applied to
cross-lingual [7] and child ASR [8–10]. However, obtaining
transcriptions is not always feasible. Recently unsupervised
representation learning was proposed for situations when
transcriptions are not available. This approach could be
used for–(i) feature extraction, and (ii) model initialization,
referred to as unsupervised pre-training (UPT). Common un-
supervised techniques used as feature extractors include au-
toregressive predictive coding (APC) [11, 12] and contrastive
predictive coding (CPC) [13]. APC predicts a future frame
from previous ones to learn speech representation while CPC
considers samples randomly selected from the waveform,
referred to as ”negative samples”. Most UPT methods ap-
ply BERT-style pre-training mechanisms, which reconstruct
the masked frames (frames masked to zero as input) from
unmasked frames using bidirectional information [14–18].
However, UPT methods have not been used for child ASR.

Unlike APC, most UPT methods mask only partial frames
for prediction limiting the pre-training model from learning a
more comprehensive representation. APC, which is mostly
used for feature extraction, is constrained to learning from
only one direction, limiting its use in bi-directional sequential
models. Bi-directional models provide better performance for
ASR systems in comparison to their uni-directional counter-
parts [19]. To fully exploit the potential of APC for bidirec-
tional models, we propose a novel bidirectional APC to use
as an UPT and we refer to this technique as Bi-APC.

We evaluate supervised and unsupervised pre-training
methods and investigate their ability of transferring knowl-
edge learned from adult speech to child speech in the context
of LSTM-based acoustic models. We also evaluate our pro-
posed Bi-APC technique against conventional bidirectional
pre-training methods such as MPC. The remainder of the
paper is organized as follows. Section 2 presents the pro-
posed Bi-APC technique along with SPT and APC. Section
3 describes the experimental setup, followed by results and



discussion in Section 4. Section 5 concludes the paper.

2. MODEL PRE-TRAINING METHODS

Model pre-training learns common knowledge from a data-
sufficient task and then transfers the knowledge learned to a
low-resource task. In this paper, we aim to transfer the knowl-
edge learned from adult speech to child speech. We use the
pre-training methods described in this section for adult model
training. Long short-term memory (LSTM) based networks
are chosen as acoustic models, which are then used to form
a hybrid HMM-LSTM ASR system. Based on the training
mechanism, we can summarize the pre-training methods into
two categories–supervised and unsupervised.

2.1. Supervised Pre-training

Recently, supervised pre-training has been successfully used
in child ASR [8] and is frequently referred to as transfer learn-
ing. Specifically, suppose the output of the LSTM is Y =
{y1, y2, . . . , yT } and the corresponding frame-level label ob-
tained from forced alignment is Ŷ = {ŷ1, ŷ2, . . . , ŷT }, the
supervised training aims to optimize the cross-entropy loss
function:

LCE = −
T∑

t=1

C∑
c=1

ŷct log(y
c
t ) (1)

where C is the number of output categories (HMM states).
The parameters in the LSTM are then utilized as the initial-
ization for child acoustic model training except for the last
feed-forward layer due to the different state space between
adult and child models.

2.2. Unsupervised Pre-training

Different from supervised pre-training, unsupervised pre-
training does not require speech labels. Most of the unsu-
pervised pre-training methods use either prediction or mask
and reconstruction, where the supervision is the speech signal
itself. In this section, we first review the APC for uni-LSTM
pre-training and then show how we can extend the APC to
bidirectional LSTM (BLSTM) pre-training.

2.2.1. Autoregressive Predictive Coding (APC)

APC utilizes the shifted input sequence as supervision and
tries to predict the frame n steps ahead of the current frame
with information from previous frames. As it is a regression-
based prediction task, we consider the L1 distance. Suppose
the input feature sequence is X = {x1, x2, . . . , xT }, then the
pre-training model is trained with the following loss function:

LAPC =

T−n∑
t=1

(|xt+n − yt|) (2)
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Fig. 1. Illustration of Bi-APC pre-training for BLSTM. Red
parts and blue parts are the forward-related and reversed-
related parameters and computations, respectively. fh and
rh indicate the hidden states of the forward and reversed cal-
culations, respectively, at each layer.

where n is a fixed value as a hyper-parameter. A key dif-
ference from [11] in the usage of APC in this paper is that
we utilize the pre-training model for parameter initialization
instead of feature extraction. The reason is that we do not
expect APC training with adult data as a feature extractor to
result in improvements for child ASR, due to the large acous-
tic mismatch between adult and child speech. Nevertheless,
the mechanism of APC can be used for LSTM pre-training
from only one direction, and thus does not fully exploit infor-
mation from both directions.

2.2.2. Bi-APC: Extending APC to learn from both directions

The mechanism of APC is well suited for uni-directional
structures such as uni-LSTM. However, BLSTMs usually
provide better performance than uni-LSTMs as they learn
from both directions. Therefore, we propose a bidirectional
APC (Bi-APC), which extends APC to exploit its potential
for BLSTM pre-training. The idea of Bi-APC is to add a re-
versed version of APC prediction, where we predict the frame
n steps behind the current frame given all future frames.

Figure 1 shows how to use Bi-APC for BLSTM pre-
training. To prevent equivalent mapping in the network,
the outputs of the BLSTM should not contain informa-
tion about the corresponding supervisions. We, therefore,
split the BLSTM into forward-related and reverse-related
parts as shown in red parts and blue parts in Fig. 1, re-
spectively, including the parameters (arrows) and outputs
(rectangles) at each layer. When computing the outputs
Y fwd = {yfwd

1 , yfwd
2 , . . . , yfwd

T } in the forward direction,
the values of the blue rectangles are set to zero to exclude the
information that are extracted from the frames on the right
side. The reversed-related parameters are also not updated.
The same strategies are used in the computation of outputs
Y rev = {yrev1 , yrev2 , . . . , yrevT } in the reversed direction. The



parameters in black arrows are not trained in the pre-training
since they allow for an illegal information exchange from dif-
ferent directions. The green arrows are the shared parameters
which are not used in the fine-tuning. The BLSTM is then
pre-trained by optimizing the APC from both directions as:

LBi-APC = 0.5 ·
T−n∑
t=1

|xt+n−yfwd
t |+0.5 ·

T∑
t=n+1

|xt−n−yrevt |

(3)
where task ratios are set to 0.5 as both directions have the
same importance. Note that we can also train an APC with
uni-LSTM and only initialize the parameters of the red parts
in Figure 1. We still denote this pre-training as APC in the
experimental results.

3. EXPERIMENTAL SETUP

Experiments were conducted using Kaldi [20] and Pykaldi2
[21]. Pykaldi2 is used to train the neural networks for the
hybrid system and Kaldi is used for WFST-based decoding.

3.1. Database

For the pre-training task, Librispeech [22] was used because
it is the largest publicly-available adult speech corpus and is
mainly read speech. The test set of the Librispeech corpus
is split into “clean” and “other” based on the quality of the
recorded utterances, where the ”other” refers to noisy data,
and are used to evaluate the adult ASR system.

For the fine-tuning experiments, the scripted part of the
OGI Kids’ Speech Corpus [23] was used. It contains speech
from approximately 100 speakers per grade saying single
words, sentences and digit strings. The utterances were ran-
domly split into training and test sets without speaker overlap,
where utterances from 30% of the speakers were chosen as
the testing data, denoted as ogi-test. As a result, nearly 50
hours of child data were used to train the child ASR system.

3.2. Acoustic Model Setup

The initial experiments used GMM model training. The Lib-
rispeech recipe in kaldi was used for pre-training and the JHU
OGI recipe [5] was applied for fine-tuning. The GMM models
were then used to obtain the frame-level alignment for DNN-
based acoustic model training. The HMM states were 5776
and 1360 for adult and child models, respectively.

Uni-LSTM and BLSTM were chosen as acoustic models
to compare pre-training methods. 80-dimensional Mel-filter
bank features (which is common for UPT) were extracted
from each 25ms window with a 10ms frame shift as the in-
put. No frame stacking or skipping was applied. Hence, the
output dimension for the unsupervised pre-training task is 80.
The uni-LSTM model consists of 4 uni-LSTM layers with

Table 1. WERs of baseline systems, including uni-LSTM and
BLSTM trained with Librispeech and OGI data, respectively.

WERs(%)
Libri-adult Children

test-clean test-other ogi-test

Adult Model - Librispeech

uni-LSTM 5.71 15.15 65.90
BLSTM 4.90 12.59 59.12

Child Model - OGI Corpus

TDNN-F [5] - - 10.71
uni-LSTM 95.77 97.28 12.58
BLSTM 86.82 92.15 9.16

800 hidden units, while the BLSTM model has 4 BLSTM lay-
ers with 512 hidden units in each direction. Batch normaliza-
tion and dropout layers with a 0.2 dropout rate were applied
after each LSTM layer. The output of the LSTMs were then
transferred into either the state space for classification or the
feature space for prediction with a single feed-forward layer.

All models were trained with a multi-step schedule, where
the learning rate was held in the first 2 epochs and then was
exponentially decayed to a ratio λ of the initial learning rate in
the remaining epochs. For pre-training tasks, 8 epochs were
used with the initial learning rate of 0.001 and λ = 0.1. For
the fine-tuning tasks, we trained the models with 15 epochs.
The learning rate starts from 2e-4 to 2e-6. The last three
model checkpoints were averaged as the final model for eval-
uation. For both APC and Bi-APC training, the time shift n
was heuristically set to 2. Sequence discriminative training
was not applied in our experiments since our goal is to com-
pare different pre-training methods.

3.3. Language Model Setup

All experiments use the same lexicon and language models
from the original Librispeech corpus. Specifically, the 14M
tri-gram (tgsmall) language model was used for first pass de-
coding, and the 725M tri-gram (tglarge) language model was
used for rescoring. We report the results of rescoring.

4. RESULTS AND DISCUSSION

4.1. Baseline

We first show the results of the baseline models in Table 1.
Here we compared two models–(a) adult model trained us-
ing Librispeech and (b) child model trained using the OGI
speech corpus. We evaluated these models on test-clean and
test-other from Librispeech and also on the OGI test. We
compared uni-LSTM and BLSTM acoustic model architec-
tures for both setups. For the adult model, we obtained per-



Table 2. Performance comparison of supervised pre-training
(SPT) and unsupervised pre-training (UPT) in terms of WER
(%) for both LSTM and BLSTM acoustic model architecture.
The results are for ogi-test. We also provide word error rate
reduction (WERR) compared to the baseline.

WERs(%) uni-LSTM WERR BLSTM WERR
Baseline 12.58 - 9.16 -

SPT 11.85 5.8% 8.46 7.6%

UPT
MPC [14] - - 9.02 1.5%

APC 11.76 6.5% 8.85 3.4%
Bi-APC - - 8.57 6.5%

formances similar to previously published results [22]. Adult
models were also used to test on ogi-test that has an acoustic
domain mismatch resulting in high WERs for LSTM models.

For child models, the performance on Librispeech de-
grades drastically with both uni-LSTM and BLSTM models.
To compare with existing results in the literature, we eval-
uated the TDNN-F acoustic model trained with the OGI
corpus [5]. We see that the uni-LSTM performed worse than
TDNN-F but BLSTM outperformed TDNN-F, thus motivat-
ing us to explore model pre-training for the BLSTM system.

4.2. Comparison of Pre-training Methods for Child ASR

This paper aims at exploring the performance of supervised
(SPT) and unsupervised pre-training (UPT) for children’s
ASR. As mentioned in Section 3.1, we used Librispeech
for pre-training and OGI for fine-tuning the model. Table 2
presents results of fine-tuning on both uni-LSTM and BLSTM
architectures, evaluated on the OGI test. Note that, different
from [8], all layers were updated during fine-tuning since this
was the best setting for our experiments.

Table 2 shows that SPT improved the performance of the
uni-LSTM model to 11.85% and was better than the baseline
without pre-training. Interestingly, unsupervised pre-training
using APC also provides improvement (11.76%) similar to
that of SPT with the uni-LSTM model.

As mentioned earlier, BLSTM has better performance
than uni-LSTM. SPT resulted in the best performance (WER,
8.46%) among the pre-training methods applied to BLSTM.
Note that, to perform UPT, we first used APC to pre-train
only the forward path parameters of BLSTM, resulting in a
WER of 8.85%. We then compared it to a widely used bidi-
rectional pre-training method, the masked predictive coding
(MPC) [14] and showed that MPC (9.02%) performed worse
than APC (8.85%). We assume the reason is that MPC has
fewer frames to be predicted (only 15% of the frames were
randomly masked) although MPC can learn from both direc-
tions. The proposed Bi-APC achieved a WER of 8.57% that
is comparable to the SPT. This can be valuable when there
is a large amount of data without transcriptions. Since the

Table 3. BLSTM-based ASR performance breakdown based
on age groups of kindergarten to grade 2, grade 3-6 and grade
7-10.

WERs(%) K0-G2 G3-G6 G7-G10
Baseline 18.87 7.24 5.51
+SPT 17.43 6.66 5.11
+APC 18.07 7.03 5.40
+Bi-APC 17.23 6.91 5.26

pre-training task is a 960-hour dataset, UPT could possibly
benefit from more unlabeled data. Recent works have shown
that self-attention layers are better for acoustic modeling than
the BLSTM [24,25]. It will be interesting to see how Bi-APC
could be extended to other model topologies, which is an
important issue for future research.

4.3. Performance Breakdown based on Age Groups

To obtain an insight into the influence of the speaker’s
age on the performance of pre-training methods, in Ta-
ble 3, we present results based on age groups in the OGI
dataset. Similar to [26], three different age groups were
selected–kindergarten to grade 2, grade 3-6, and grade 7-
10. We present the results using the BLSTM model. For
younger children (kindergarten- grade 2), the Bi-APC pro-
vided slightly better results compared to SPT. In contrast,
we did not observe any such improvement in the older age
groups for children. This trend could mean that UPT may be
capturing a representation crucial to the performance of very
young child speech, whose speech is more variable and diffi-
cult to recognize than older children [27]. Further research is
required to explore the usage of the approach more effectively
for children’s ASR.

5. CONCLUSIONS

In this paper, we proposed a bidirectional pre-training (Bi-
APC) method. We also compared supervised and unsuper-
vised model pre-training methods for child ASR. We showed
that standard APC could be well applied to uni-LSTM pre-
training, achieving about 6.5% relative WER improvement
over the uni-LSTM baseline without pre-training. However,
APC lost its superiority when applied to the BLSTM struc-
ture and had a performance gap with SPT. Our proposed Bi-
APC addressed these issues and resulted in comparable per-
formance to SPT. We further analyzed the performance of
child speech for different age groups. Results showed the po-
tential of unsupervised pre-training for younger child speech,
and we achieved the best-reported ASR result (a WER of
8.46% for SPT) for the OGI Kids corpus. The proposed Bi-
APC achieved a WER of 8.57%, performing better than other
UPT methods such as APC and MPC.
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