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Abstract

A novel Statistical Algorithm for FO Estimation, SAFE, isgmosed to improve the accuracy of
FO estimation under both clean and noisy conditions. Prentisignal-to-Noise Ratio (SNR) peaks in
speech spectra constitute a robust information source fahich FO can be inferred. A probabilistic
framework is proposed to model the effect of noise on voigeekesh spectra. Prominent SNR peaks
in the low frequency band (0 - 1000 Hz) are important to FOneation, and prominent SNR peaks
in the middle and high frequency bands (1000 - 3000 Hz) are adeful supplemental information to
FO estimation under noisy conditions, especially the balplgise condition. Experiments show that the
SAFE algorithm has the lowest Gross Pitch Errors (GPE) coetpt prevailing FO trackers in white and
babble noise conditions at low SNRs. Experimental residis show that SAFE is robust in maintaining
a low Mean and Standard Deviation of the Fine Pitch Errors®ERand SDFPE) in noise. The code of

SAFE is available at http://www.ee.ucla.edu/"weichwgsaf

. INTRODUCTION

The source-filter model of speech production [1] assumesgb@ech signals can be modeled as an
excitation signal filtered by a linear vocal-tract transfenction. The fundamental frequency (FO) is
defined as the inverse of the period of the excitation sigmaing the voicing state [2] [3]. Accurate
FO tracking in quiet and in noise is important for severalegpeapplications, such as speech coding,
analysis and recognition.

Some FO tracking algorithms are based on the source-filemryhof speech production and estimate
FO for voiced speech segments. They assume that FO is cobasidthe vocal tract transfer function is
time invariant within a short period of time, e.g, a frame 6f20 milliseconds. These algorithms usually

have two stages. The first stage consists of obtaining FOidated and the likelihood of voicing on a
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frame-by-frame basis. The second stage consists of usingnaig programming to decide the optimal
FO and voicing state for each frame.

The first stage can be classified into two categories: sibgled and multi-band. In the single-band
method, FO candidates are extracted from one frequency [Banthere are several methods to generate
FO candidates. SIFT [4] applies inverse filtering to voicpaexh to obtain the excitation signal from
which it estimates FO by using autocorrelation. Cepstealdol methods (e.g., [5]) separate the excitation
from the vocal tract information in the cepstral domain byngsa homomorphic transformation; the
interval to the first dominant peak in the cepstrum is relatethe fundamental period. RAPT [6] and
YAPPT [7] generate FO candidates by extracting local maxifithe normalized cross correlation function
which is calculated over voiced speech. Praat [8] calcsilatess correlation or autocorrelation functions
on the speech signal and regards local maxima as FO hypethEE& PO [9] obtains FO candidates
by evaluating the ‘fundamentalness’ of speech which adsiew maximum value when the AM and
FM modulation magnitudes are minimized. YIN [10] uses théoaarrelation-based squared difference
function and the cumulative mean normalized differencection calculated over voiced speech, with
little post-processing, to acquire FO candidates. Yegraaaa et al. [11] obtain FO candidates from
exploiting the impulse-like characteristics of excitatim glottal vibrations. Finally, Le Roux et al. [12]
simultaneously perform frame-wise FO candidate generatid time-direction smoothing.

In the multi-band method, a decision module is usually usetoncile the FO candidates generated
from different bands. Gold and Rabiner [13] use measuresnehpeaks and valleys of voiced speech
as input to six separate functions whose values are theregged by an FO estimator to obtain FO
candidates. Lahat et al. [14] calculate autocorrelatiarctions of the spectral magnitudes in different
bands and then obtain FO candidates by evaluating the loaginma of the functions. Sha et al. [15]
detect FO candidates by minimizing the values of sinusaiskd error functions calculated on 4 frequency
bands: 25-100, 50-200, 100-400, and 200-800 Hz. These-bauiti methods focus mainly on the low
frequency bands.

The multi-band approach has also been used to apply Licldighitch perception theory [16] to FO
estimation. The irregular excitation signal may cause ewispeech to be aperiodic in some frequency
bands [17]. It is hypothesized that the higher levels of Eugdiprocessing isolate groups of contiguous
harmonics to infer the fundamental frequency from a sedactf these groups. In this view, it is
hypothesized that auditory nerves and the auditory bminsire capable of using an autocorrelation
mechanism to infer FO over different frequency channelCdeveigne shows that integrating the values

of AMDFs across different channels in the time domain canrowp FO estimation accuracy [18]. Wu



et al. [19] used correlograms to select reliable frequeranyds, modeled FO dynamics using a statistical
approach, and then searched for the optimal FO contour inNM Hramework.

These FO candidate generation methods can also be appliegstp conditions. Krusback et al. [20]
use an autocorrelation function with confidence measurgisn&nura et al. [21] proposed a weighted
autocorrelation function. Abe et al. [22] use the instaatars frequency spectrum to enhance harmonics
and suppress aperiodic components, which improves FOastimaccuracy. Liu et al. [23] use joint time-
frequency analysis to obtain robust adaptive representati the speech spectrum from which important
harmonic structures can be extracted. Nakatani et al. [2d]dominance spectra based on instantaneous
frequencies to evaluate the magnitudes of the harmoniesivelto background noise, and estimate FO
using only the reliable harmonics. Deshmukh et al. [25] usageriodicity, periodicity, and pitch detector
to generate FO candidates by calculating the AMDFs oveedifft frequency channels in the spectral
domain.

According to the experimental results in this study, soméhef methods mentioned above can work
well under relatively noise-free conditions. However, withe low-frequency band is contaminated by
noise, an increase in FO estimation errors is observede$iig possible that FO harmonics in the middle
or high frequency bands are not corrupted, it may be benkfmiaan FO estimation method to utilize
these harmonics in determining FO. Current multi-band wath14] [15] mainly retain FO candidates
obtained from the most reliable band, which is a ‘hard-deniswhile the Licklider’s pitch perception
model uses an empirically-based 'soft-decision’ to mehgeinformation from different bands [18]. Wu et
al. [19] uses a ‘soft-decision’ approach to combine therimfation across bands. We propose a Statistical
Algorithm for FO Estimation (SAFE) which also utilizes a fsdecision’ method. A data-driven approach
is used to learn how the noise affects the amplitude anditotatf the peaks in the Signal-to-Noise
Ratio (SNR) spectra of clean voiced speech. The likelihadds0 candidates are obtained by evaluating
the peaks in the SNR spectrum using the corresponding medetsed from different bands. It is worth
noting that Ying et al. [26] use a probabilistic method toireate FO distribution in order to avoid
local optima in FO estimation. Wang et al. [27] modeled theveen-frame FO transitions in a statistical
approach to improve both FO estimation and unvoiced/vodssision.

In the following sections, the statistical effects of noise clean voiced speech spectra are studied.
This relationship between the noise and information sofacEQO estimation is modeled in a probabilistic
framework. In testing, the posterior probabilities of th@ Eandidates are then calculated. In the
experimental section, the performance of the proposed adetimder different noise types and SNRs

is compared with prevailing FO estimation methods.
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Fig. 1. A flowchart of SAFE.

1. SAFE: A STATISTICAL ALGORITHM FORFO ESTIMATION

A flowchart of SAFE is shown in Fig. 1. This paper focuses omesing fundamental frequency (FO0)
values over voiced frames that may be corrupted by quaiistay noise. Suppose that the range of FO
in human speech is fronfy,,,;,, 10 fo,m42, @nd the frequency resolution of FO estimation\is ThenSgg
is used to denote the set of all possible FO valugs,..,., fomin + 2, s fomaz -

Given the power spectruid of a single observed noisy voiced frame under a stationaigeramndition
N, the probability off, being the fundamental frequency of that frame can be expdessP(f)|Y,IN).

The most likely estimate, denoted lfy, should be:

fo = argmax P(fo|Y,N). (@H)
foE€Sro

Let Y; and N, denote the power spectrum of the noisy voiced frame and ratifeequencyf,

respectively. Then the posteriori SNR at frequency denoted byy; is:

Y
v = 10logyg N—; (2)

As quasi-stationary noise is assumed in this study, theergpgctrum for each utterance is estimated by
averaging the initial 10 and final 10 frames of noisy speedte frame shift is 10 ms, and the frame

length is 40 ms.



The SNR~; is a measure of the spectral magnitude at frequehbging contaminated by the noise.
According to the source-filter theory of speech productimnjoiced speech spectrum has a harmonic
structure. Local SNR peaks (correspond to mainly harmyréositain more information than valleys
regarding FO. It is assumed that the information containetthé set of local SNR peak<C;,--- ,Cy}
is sufficient to estimate FO, wherd is the number of local SNR peaks. Thus, the posterior prdibabi

of fy is:
P(folY,N) = P(fo[C1,---,Cn, N). 3)

In a ROVER system for automatic speech recognition [28],pbsterior probabilities of a word from
different sub-systems are combined with different weightspired by ROVER, local SNR peaks can
be assumed to be independent in inferring FO given the ndiapesand level. The overall posterior

probability can be approximated as a weighted combinatfgmosterior probabilitiesP( fy|C;, N):

M
P(folY,N) = > wiP(fo|Ci,N), 4)
=1

wherew; is the confidence measure of the i-th local SNR peak. If eachl IBNR peak is assumed to
have an equal confidence score, thenis set tol/M. (i =1,2,--- , M)

If the distribution of fy given the noise, i.e.P(fy|N), is assumed to be uniformly distributed when

prior information is not available, theR(fy|C;,N) can be obtained from the Bayesian rule:

P(folCi, N) = PGl M) (5)

" T hesaP(Cilfo. N)

Let f denote the frequency of the local SNR pe@k Becausef is not usually equal to a multiple
of fy, / can be decomposed into a multipte and a residuad as follows:
f j|’ 5 f

% :%—T’% (6)

m=|

where[%] denotes the nearest integer}éOt Hence, the residual ranges from -0.5 to 0.5. If the fraction
of f—fo is exactly 0.5, either rounding upwards or downwards doé<hange FO estimation error rates in
SAFE.

Given fp and noiseN, the local SNR pealC; has the following attributes: multiple:, residuald,
a posteriori SNR v, and frequency band indek in which the frequencyf is. In other words, the

peak C; resides in band3;. The reason whyf is not adequate on its own is because there are not



enough training samples for each frequency bin. Then we:have

p(CZ|f07N) = p(m7577f7Bf|f0>N) (7)
= P(m|fo,N)p(6|m,~y, By, fo,N)
p(vglm, By, fo, N)P(By|m, fo,N).

We assume that the deviation of a local SNR peak from a meliblf,, caused by noise, will not
exceed halffy. Therefore,m is independent of the noisM, i.e., P(m|fy,N) = P(m|fy). After the
decomposition shown in (6), the residuakcan be assumed to be independentofand fy given v,
By, andN, i.e.,p(6|m,~¢, By, fo,IN) = p(6|vf, By, N). The local SNRy; is independent ofn. and fy
given the band index3; and noise conditiolN, i.e., p(v¢|m, By, fo,N) = p(v¢|Bf,N). Furthermore,
P(m|fy) is assumed to be uniformly distributed. SinBg can be assumed to be determinedrbyand
fo regardless of noise, the Dirac functid®(Bs|m, fo,IN) is assumed to be equal to 1. Then we can

have:

= D1 -p(dlvs, By, N)p(v¢|By, N).

where D, is a constant.

A. Prominent SNR Peaks

Before studying the distribution of the residual and lochlRSpeaks, it is important to select useful
local SNR peaks for FO estimation. Short and long-term shembtSNRs denoted byjsf and ’yIJz are
obtained by smoothing; with a Hamming window of lengttyy,,.;, and fo,,.. in Hz, respectively. The
Hamming window is used because of its relatively small sales. Since the short-term smoothing can
reduce the number of false alarm local SNR peaks and retaimf6nation, v, in (8) is replaced by
%Sc. To depict the relationship between the two smoothed SNRSNR difference at the i-th local peak

in fy;i denoted by(; can be expressed as follows:
CZZIVJS‘}_’V%” Z:1>7Msv (9)

where M*® is the number of the local peaks ﬂ? ¢; is further normalized with respect to all the peaks

in the frame as follows:

G=2"FC (i=1,---,MS), (10)
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Fig. 2. The SNR spectrum of a voiced frame of a female speakeuted by different levels of additive white noise (20, 10
and 0 dB). The number on top of each peak of the short-term #red®BNR is the value of the normalized difference SKYR

of that peak. Arrows around 300 Hz indicate peaks with a logyethan their adjacent prominent peaks.

where . ando, are the mean and standard deviation of the sequendéne iy, local SNR peak C;)
is regarded as prominent SN R peak for FO estimation only if(; is above a certain threshold. In this

study, the threshold is empirically set to 0.33.

Figs. 2 and 3 show the SNR spectra of a voiced frame of a fenmtleaamale speaker, respectively,
corrupted by different levels of additive white noise (20,dnd O dB). The number on top of each peak
of the short-term smoothed SNR is the value of the normaldifidrence SNR’; of that peak. It can be
seen that not all local SNR peaks reside in the vicinity oftiplds of FO. Most false alarm or deviated

peaks have a lower normalized SNR difference compared t@pdélags near the multiples of FO. Take
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Fig. 3. The SNR spectrum of a voiced frame of a male speakeumted by different levels of additive white noise (20, 10
and 0 dB). The number on top of each peak of the short-term #r@d®BNR is the value of the normalized difference SR
of that peak.

the false alarm local peaks around 300 Hz of the voiced fraimesdl panels of Fig. 2 for example.
These peaks, indicated by arrows, have a logye¢han their adjacent prominent peaks in the three noise

conditions.

As shown in Figs. 2 and 3, the lower a peak is than the long-temoothed SNR, the more likely
it is corrupted by the noise and shifted from its originaldton, and the less likely it is to be close
to the multiples of FO. Hence, prominent SNR peaks which ass korrupted by the noise and less
deviated from a multiple of FO can provide reliable inforioatfor inferring FOs. When middle and

high frequency bands are less corrupted by noise, it is plestiat prominent peaks can exist in these



bands, e.g., the peaks around 2800 Hz in female voiced frameéthe peaks around 1700 Hz in male
voiced frames under 20, 10 and 0 dB SNR conditions. Retaitiiage prominent peaks and discarding
non-prominent peaks might improve the performance of Fiinesion.

As mentioned above, only prominent peaks are used in (4), Meis changed to the number of

prominent SNR peaks.

B. Distribution of the Residuals

Recall that the residual is dependent on the local SNR value and the band index. Toceethe
model complexity, it can be assumed that the distributiothefp(d|vs, B¢, N) in (8) slightly changes

when~y is rounded, i.e.,

Py, By, N) = p(6]|Q+,, By, N), (11)
whereQ,, denotes the SNR bin whichy is rounded to. The intervals of the SNR bins in dB are spaced
by 3.33 dB and are as follows:, 0], (0, 3.33],---, (66.67, 70], (7000).

The distributions of the residuals given different roun@®R bins, frequency band index and noise
conditions are shown in Fig. 4. Two white noise conditiordald 0 dB SNRs are studied. This analysis
is conducted over all the voiced frames in the KEELE corp@§ j#th FO ground truth values obtained
from the simultaneously recorded laryngograph signalhis study, three bands: 0-1000 Hz, 1000-2000
Hz, and 2000-3000 Hz, are employed to represent the low,lmiddd high frequency bands, respectively.
Note that all the residual distributions in Fig. 4 are dedivanly from the prominent peaks in the low
frequency band. Most distributions are centered on zeragclwmeans that these peaks can generate
unbiased FO estimates. It can be seen that under a certaie oondition, the higher the rounded SNR
is, the smaller the variance of the residuals. Because gavismaller residual variance means that the
frequencies of local SNR peaks are less likely to be affebjedoise, local SNR peaks from higher SNR
bins are more reliable for FO estimation. Under 20 dB coad#j no prominent peak has a local SNR
higher than 56.67 dB; under 0 dB condition, the local SNRsligbraminent peaks are below 36.67 dB.

A comparison of the distributions of the residuals of thempireent and non-prominent peaks is shown
in Fig. 5 for the white noise condition with 0 dB SNR. In the Iésquency band, prominent peaks can
have a local SNR as high as 36.67 dB, while the local SNRs ofprominent peaks are below 26.67 dB.
Furthermore, the residuals of the non-prominent peaks Mithlocal SNRs are mostly distributed away
from zero, which means that it is difficult to infer FO from #genon-prominent peaks. Although the
residuals of the non-prominent peaks with high local SNRsdistributed around zero, the distributions

have larger variances compared to the residuals of the pmrhpeaks with the same local SNR.
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rounded local SNRY.,,.

Curve-fitting or Gaussian mixture modeling can be used toehtte distributions of the residuals;

however, it is important to control the number of parameterthe model which enables training with

limited data and prevent model over-fitting. Poubly truncated Laplacian distribution, denoted by

p(d|p,b), is used for modeling(6|Q,,, By, N), i.e. the distribution of residuals given the rounded SNR
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bin, band index and noise condition:

|6 — p
A _1 5< 1
0 otherwise

where . andb represent the mean and the variance, respectivielg. set to(1 — e~/(?))~1 to ensure

that [; p(d|u,b) = 1. Hence, only two free parametefs, b) need to be estimated.

Given a sequence of residudls;, - -- , 6y} denoted byd, (suppose all the residuals are independent

and identically distributed,) we have:

N
p(8]p,b) = [ ] p(dil, b). (13)

i=1
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Let o = 1/(2b) and L(d|u, o) = log p(d|u, ). Then:

L(0|p, cx) (14)
N
= log p(d; |, )
1

1=

N
= Nloga— Nlog(l —e %) — 2aZ|5i — p.

Under the maximum-likelihood criterion, the estimated mead variance denoted byandb (or &)
should maximize the joint probability(d |, b) which is equivalent to maximiz&€(d|u, o).

Sinced?L/ou* = —2a S°N | 6(8; — ) < 0 whena > 0, £ achieves its maximum whedl/du = 0

for any o, i.e.:
N
—20) "sgr(s; — f1) = 0. (15)
=1
Sinced?L/0a? = 1/(e* — 1) — 1/a? < 0 whena > 0, £ achieves its maximum whei\l/da = 0
andu = [, i.e.:
N
N N .
g—ed_1—2;rai—m—o. (16)
To solveji, letd = {4,,--- ,dx} denote the sorted sequence of the sequérinean ascending order,

we have one feasible solution pf

) Onin N is odd an
fr= I :
1(6x +6x,4) Niseven

2 2

Note that whenN is even, any value betweehv and 5N+1 can satisfy (15). As shown in (17), the
number of residuals that are greater thais equal to the number of residuals that are less {iaafi6)

can be simplified as:

N

a

(18)

Although there is no close-form solution to (16), Newton'sthrod can be used to search féor Note
thath = 1/(2&). When a bin with a high rounded SNR does not have trainingairsts, no effort of
running the mean and variance solvers is spared. In casenoé smseen residuals might have higher
SNRs, the mean is set to 0, and the variance is set to a sma#,valg., 0.01.

There is one similarity between SAFE and Wu et al’'s methd@]: [the use of Laplacian distribution

for data modeling. The meaning and range of the modeled randwiables are different. SAFE models
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the residual derived from the prominent peak in the SNR spectThe residual ranges from -0.5 to 0.5.
Wu et al’'s method models the time lag derived from the peathécorrelogram. The time lag ranges
from —oo to oc.

The logarithms of the averaged estimated variances of thidual distributions for different bands
are shown in Fig. 6. Averaging is across all noise levelsartie20 dB, 10 dB, 5 dB, 0 dB, -5 dB.
The noise type is white noise. It can be seen that the variahtiee lower frequency band at a certain
rounded SNR bin is smaller than the counterpart of the hifleguency band. When the variance of the
estimated residual distribution is small given a frequelnagd, it means that the probability of accurately
estimating FO in that band is high. As mentioned above, itilsssible to use the prominent peaks
lying in the middle and high frequency bands to improve Finegtion. Note that the higher the rounded
local SNR, the smaller the variance is.

In Fig. 7, the estimated means of the residual distributimndifferent bands under clean and noisy
conditions are compared. The noise types are white and daloide. The means under noisy conditions
at different SNRs (20 dB, 10 dB, 5 dB, 0 dB, -5 dB) are averadiedan be seen that the estimated
means are not exactly equal to zero under both clean and norsitions if local SNR is less than 55
dB. FO estimation actually benefits from learning a Lapladstribution with a non-zero mean which

better fits the real distribution of the data.

C. Distribution of the local SNRs

In the previous section, local SNRs of the prominent peaksrannded. It can be assumed that this

rounding does not significantly change thigys| B, N) in (8), i.e.:

where D, is a constant. The distribution can be learned by using adnam-like approach based on the
training set.

The distributions of the rounded local SNRs of the promirgsrks under different bands and noise
conditions are shown in Fig. 8. The distribution under naisyditions at different SNRs (20 dB, 10
dB, 5 dB, 0 dB, -5 dB) are averaged. It can be seen that the pEaksisy speech are more likely to
be distributed in bins with low SNRs compared to clean speetiich can be one of the reasons why
estimating FO values is difficult under noisy conditionsr Either clean or noisy condition, the rounded
local SNRs of the prominent peaks from the low frequency benedalso more likely to be concentrated

in high SNR bins compared to the middle and high frequencylban
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D. Post-Processing

For an utterance, the posterior probabiliti®$ f,| Y, N), for each frame are obtained by calculating (4).
Then, a dynamic programming approach, the same as thatusbdHT, was used to smooth the tracked
FO contour and to allow octave jumps at a certain cost [6].i&flslescription of the dynamic programming
is as follows.

The objective of dynamic programming is to search for an Fotamar that minimizes an objective
function. Given an FO contour, the objective function is defi as a summation of the frame-level
local cost and transition cost functions. The local costcfiom for a certain frequency at one frame is

inversely related to the FO likelihood value. The intemfia FO transition cost function is defined under
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the KEELE corpus. Estimated means from different noisel$ef@ean, 20 dB, 10 dB, 5 dB, 0 dB, -5 dB) and different frequen

bands (low, middle, high) are averaged.

4 conditions: voiced-to-voiced (MV), unvoiced-to-unvoiced (4-U), voiced-to-unvoiced (V-U), and
unvoiced-to-voiced (U-V). In the V—V condition, the cost function is defined as an increasingtion
of inter-frame proportional frequency change, but allows dctave jumps at some specifiable cost. In
the U—U condition, the cost function is defined as 0. In the>\d or U—V conditions, the cost function
is defined as a combination of a spectral stationarity foncand the inverse function of the Itakura
distortion [30].

The focus of the proposed method is to reduce FO estimatimr @inder both clean and noisy
conditions. However, voicing boundaries can affect theultesof FO tracking [31]. Hence, each FO

tracking algorithm is forced to estimate FO values overfad Yoiced frames regardless of the SNRs.
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Fig. 8. A comparison of the distributions of rounded localR&@\under different frequency bands (low-1, middle-2, hgyh-
The noise condition is white noise. The distributions urdiéferent noise levels (20 dB, 10 dB, 5 dB, 0 dB, -5 dB) are aged.

The FO trackers (RAPT, Praat, TEMPO, WWB) also output voigeebiced decisions. If the ground
truth and the FO tracker agree that a frame is voiced or uadpithe FO value is not changed. If a ground
truth unvoiced frame is assumed to be voiced, the FO valuetitose 0. If a ground truth voiced frame

N, is assumed to be unvoiced, . is estimated by using an interpolation-based method:

N.— N,
Jon, = fon, + m(fom — fom) (20)

where N; and N,. denote the left and right closest frame to the current frathemong the frames that
both the ground truth and FO tracker agree to be voiced. Onepéiwn of this interpolation is that if
frame N, is in the first or last assumed unvoiced segment by the FOdraoka ground truth voiced

segment, thefy y_ is set to be eithef, . or foy, depending on whether the right or left frame is closer.
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Fig. 9. The spectrogram, FO posterior probabilities fromF§Aand FO contours from RAPT and SAFE of a segment of an
utterance from the second female speaker (f2nw0000) in tBELKE corpus under babble noise condition at 0 dB SNR.

An example of FO estimation made with SAFE is shown in Fig. Be Begment corresponds to the
beginning of the utterance of the second female speakereirfKEELE corpus. The noise condition is
babble noise at 0 dB SNR. Each vertical strip in the bottormepsinows the FO posterior probabilities over
the voiced frame. The darker a point is, the higher the pritibathat FO corresponds to that frequency.
Since RAPT has the lowest GPE among all the FO estimators S&HE uses the same cost function
as RAPT for the dynamic programming-post processing, dmeyttacked FO of RAPT and SAFE are
shown in Fig. 9. It can be observed from the spectrogram indpeganel that the babble noise is mostly

concentrated on the low frequency band. The babble noisecoanpt the harmonic structure of the
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voiced frame by suppressing or shifting the spectral peakbé original clean speech, or by inserting
new harmonic structures of the periodic babble noise intodthginal spectrum. The new added strong
harmonic structures from babble noise may cause estimations. For some regions in which the target
speech has high energy at high frequencies, e.g., aroung, 1@ prominent peaks in the middle and

high frequency bands, which are less affected by noise, eamsbd to infer the FO value.

[1l. EXPERIMENTS

Three error metrics: Gross Pitch Error (GPE), Mean of thee Fitch Errors (MFPE), and Standard
Deviation of the Fine Pitch Errors (SDFPE) are used [2] todwate the performance of FO estimation
algorithms. LetNyy denote the number of the frames that both the FO tracker amdjitund truth
consider to be voiced/V means ‘both voiced’; andVs represent the number of frames for which

|M_1|>e, i=1,---,Nyy, (21)

foi,reference
wherei is the frame index, and is a threshold which is typically 20%7FE means ‘gross error’. The
number of remaining frames, denoted By-g, is equal toNyy — Ngg. F'E means ‘fine error’.

GPE is defined as:

N,
GPE = —%£ % 100%. (22)
Nyv

MFPE denoted by:rpg is defined as:
1
- E o _f 23
KFPE Nrg (foz,estzmated foz,reference)v ( )

1€ESFE
whereSrg denotes the set of all the frames in which no gross error sccur
SDFPE denoted by rpr is defined as:
1 2
OFPE = Nerm Z foi,estimated — MFPE, (24)
FE ieSms

where MFPE and SDFPE are used to measure the bias and pmegfislee FO estimation when no gross
estimation error is occurred.

In this section, we compare the GPE, MFPE, and SDFPE usindKEBteLE [29] and CSTR [32]
corpora. The 5 minute 37 seconds KEELE corpus contains altsineous recording of speech and
laryngograph signals for a phonetically-balanced textciwhivas read by 5 male and 5 female speakers.
The 5 minute 32 seconds CSTR corpus is composed of larynglognad speech signals from one male

and one female speaker. Each speaker read 50 sentences@$He corpus. Ground truth FOs were
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obtained by running an autocorrelation method on the laograph signal in addition to some manual
correction.

Speech signals are downsampled from 20000 Hz to 16000 Hzdibr dorpora. Noise is artificially
added to the corpora to test the robustness of the FO tragkdes different noise conditions. The program
FaNT [33] with the default command line option (-u -m sBkhz) was used to employ white and babble
noise segments from the NOISEX92 [34] corpus to the speeptals to generate utterances with SNR
of 20, 10, 5, 0, and -5 dB. The white noise is acquired by sargdtigh-quality analog noise generator.
The babble noise is acquired by recording 100 people spgakia canteen with room radius over 2m.

The parameters of SAFE are as follows: FFT size is 16384u&eqgy resolution is 1 Hz; frame length
and step size are 0.04 and 0.01 seconds, respectifgly, and fo,,.. are 50 and 400 Hz, respectively;
the lengths of the short-term and long-term windows for gpec smoothing are 50 and 400 in Hz,
respectively. A peak is regarded as a prominent peak if tnmalized difference SNR; is greater than
an empirically determined threshold of 0.33; the rangesheflow, middle, and high frequency bands
are 0-1, 1-2, and 2-3 kHz, respectively; local SNRs of thekpesre rounded to the nearest value in
the following sequencé0r/3, wherer = 0, 1, ---, 21. The weighting factors in (4) are all set to the
reciprocal of the number of the prominent peaks in that frame

For the KEELE corpus, a 5-fold cross-validation scheme dia@. For each fold under a certain noise
level, the speech of one male and one female speaker are arsexbting, the residual and SNR models
are trained from the remaining speech and its ground trutice54% of the KEELE corpus is voiced
speech, if the frame step size is 0.01 seconds, each folddoag 84000 frames for training. Since there
are 23 rounded local SNR bins, if each voiced frame has 10 ipemhpeaks on average, each residual
model has about 6000 samples for training. Because somevitmiigh SNRs might have fewer training
instances, e.g., 5% of the average - 300 samples, it is s8i$iple to robustly train a doubly-truncated
Laplacian distribution with only two free parameters.

A comparison of the GPEs of RAPT, Praat, TEMPO, YIN, Wu esahethod (WWB), and SAFE on
the KEELE corpus is shown in Table I. Note that Yegnanaraysna.'s [11] results are not included,
because silence was added to the KEELE corpus in their empats. There are two configurations of
Praat: autocorrelation (default) or cross-correlatione Tross-correlation configuration is used, since it
consistently provided better results. The default settwgre used for RAPT, Praat, TEMPO, YIN, and
WWB, except that the voicing thresholds were optimized. Thplementation of WWB was provided
by Prof. Dan Ellis and his group at Columbia University. Tdnmnfigurations of SAFE were compared:

standard (SAFE), only with information from the low frequgnband as the prevailing FO tracking



ONLY THE LOW FREQUENCY BAND (0-1000 Hz) IS USED. #=0: A ZERO MEAN IS USED IN THE DOUBLY TRUNCATED
LAPLACIAN DISTRIBUTION. BOLD NUMBERS REPRESENT THE LOWESGPEIN EACH COLUMN.

TABLE |
THE GPE (%)0OF THERAPT, PRAAT, TEMPO, YIN, WWB,AND SAFEUSING THEKEELE AND CSTRCORPORA LFB:

SNR (dB) | Clean| 20 |

10| 5 [ o] 5|

KEELE White Noise
RAPT 2.62 269 | 310 | 4.09| 7.69| 17.83
Praat 3.22 3.16 | 4.28| 6.11| 11.53| 30.91
TEMPO 2.98 341 | 4.27| 557| 12.79| 22.64
YIN 2.94 294 | 3.20| 3.96| 6.70| 14.48
WWB 4.22 427 | 521| 557| 6.42| 8.87
SAFE (rB) 3.13 3.09| 3.74| 439| 472| 6.29
SAFE (. =0) | 3.00 3.04| 338| 3.71| 4.10| 5.16
SAFE 2.98 3.01| 335| 366 4.06 5.01

KEELE Babble Noise
RAPT 2.87 7.19 | 15.99 | 29.76 | 58.40
Praat 3.18 | 8.33| 17.97| 35.26 | 54.06
TEMPO 4.69 | 13.99| 26.98 | 43.98 | 65.15
YIN 3.27| 889 | 19.71| 36.75| 57.35
WWB 6.76 | 12.48 | 21.20 | 32.84 | 55.40
SAFE (LF8) 3.23| 6.01| 10.21| 20.64 | 47.21
SAFE (1 = 0) 3.14| 4.75| 7.68| 16.23| 39.62
SAFE 3.10| 472 | 7.44 | 1588 | 39.23

CSTR White Noise
RAPT 2.45 246 | 3.04| 394 | 6.73| 17.72
Praat 2.27 227 299 | 4.35| 11.84| 27.54
TEMPO 2.27 229 | 287| 5.07| 11.64| 31.65
YIN 2.25 225 | 236 | 3.34| 5.20| 12.33
WWB 2.75 300| 400| 4.83| 535| 7.64
SAFEwrs) | 249 || 252| 2.97| 3.49| 393 4.14
SAFE(=0) | 240 | 241| 269| 310 | 324 | 368
SAFE 245 || 2.46| 2.73| 3.25| 3.34| 3.76

CSTR Babble Noise
RAPT 286 | 8.36| 24.41| 46.41| 64.52
Praat 2.65| 10.55| 27.15| 46.32 | 64.24
TEMPO 3.56 | 15.24 | 33.10| 54.43 | 66.38
YIN 2.36 | 10.09| 27.53| 51.15| 68.22
WWB 4.82 | 14.15| 30.09 | 49.05 | 66.00
SAFE (LFB) 2.69 | 5.37| 9.97| 23.59| 63.20
SAFE (u = 0) 261 | 414 7.73 | 19.32 | 57.17
SAFE 2.63| 4.23| 8.23| 20.74 | 59.54

20
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algorithms (SAFE (LFB)), and with zero mean residual estioma(SAFE (« = 0)). It can be seen that
all FO trackers have GPEs lower than 3.5% in quiet. All aldponis suffer from performance degradation
when the SNR drops. As expected, it is more difficult to ac®lyaestimate FO in the babble noise
condition compared to the white noise condition with the s8hR. The SAFE algorithm has the lowest
GPE when the SNR is at or below 5 dB under white noise, or at lomb&0 dB under babble noise. It
can be concluded from Table | that discarding informatiamrmiddle and high frequency bands can
cause an increase in GPE, especially for babble noise whidsually concentrated at low frequencies.
Forcing the means of the estimated residual distributianbe zero can also result in an increase in
GPE. The performance of the SAFE algorithm using non-premtipeaks is not tested, because not only
the non-prominent peaks are negative factors in FO estimakiut also the proposed doubly truncated
Laplacian distribution is not supposed to fit the saddle-tikstributions of non-prominent peaks as shown
in Fig. 5.

To determine the generalizablity of SAFE, the model traifiean the KEELE corpus is used for
the CSTR corpus. According to the performances of the FOritiigas shown in the Table |, it can be
seen that FO estimation for the CSTR corpus is easier undite whise, but harder under babble noise
compared to the KEELE corpus. Although there is mismatchveen the KEELE and CSTR corpora,
SAFE still has the lowest GPE under low SNR conditions fohb@he mismatch can explain why SAFE
(v = 0) has a lower GPE compared to the standard SAFE. Thus, it maydse appropriate to use
SAFE (u = 0) when prior information of the testing set is not available.

The MFPEs for the KEELE and CSTR corpora are shown in Tablét kan be seen that the best
configuration of SAFE has less than 1 Hz MFPEs under all noiswlitions. Other FO trackers have
less than 3 Hz MFPEs under most noise conditions. Note that &Hnly 1.2% of the average of all
possible FOs which is 225 Hz. That means all FO trackers donade significantly biased FO estimation
under clean and most noisy conditions. For the KEELE corthesmeans of the residuals are slightly
less than zero most of the time as shown in Fig. 7. Thus, tmelatd SAFE which considers the bias is
supposed to have slightly lower FO estimation than the zexamversion of SAFE. Due to the mismatch
between KEELE and CSTR corpora, the negative bias causedfREs of the standard SAFE to be
more deviated from zero compared to the zero mean versioneoSAFE on the CSTR corpus.

The SDFPEs on KEELE and CSTR corpus are shown in Table lllait ke seen that the SDFPEs
of SAFE are slightly higher (1-2 Hz) than other FO estimatansler some conditions. Since the MFPE
and SDFPE are calculated over the frames in which the FOdradées not have gross FO estimation

errors (less than 20% gross error), the number of framesdtmulating the SDFPE over different FO



THE MFPE (Hz) oF THERAPT, PRRAAT, TEMPO, YIN, WWB,AND SAFEUSING THEKEELE AND CSTRCORPORA

TABLE Il

22

LFB: ONLY THE LOW FREQUENCY BAND(0-1000 Hz) IS USED. #1=0: A ZERO MEAN IS USED IN THE DOUBLY TRUNCATED

LAPLACIAN DISTRIBUTION.

SNR(dB) |Clean| 20 | 10 | 5 | o | 5 |
KEELE White Noise
RAPT 0.79 || 0.60| 0.60| 0.32| -0.18 | -1.87
Praat 0.19 0.21| -0.14 | 0.67 | -1.93| -4.08
TEMPO 0.41 0.36 | 0.27| 0.08 | -1.26 | -2.16
YIN 0.55 0.56| 0.54| 053] 0.53| 0.43
WWB 2.86 287 | 274 | 267 | 235| 2.05
SAFE (LFB) -0.40 || -0.40 | -0.43 | -0.47 | -0.66 | -0.61
SAFEw =0 | 0.15 0.34| 0.34| 0.28| 0.04| -0.05
SAFE -0.36 || -0.46 | -0.50 | -0.57 | -0.72 | -0.86
KEELE Babble Noise
RAPT 0.74| 0.47| 0.23| -0.35| -0.24
Praat 0.24| 0.21| 0.05| 0.16| 0.50
TEMPO 0.34| -0.06 | -1.19 | -0.09 | 1.22
YIN 0.66| 0.83| 0.93| 1.11| 1.03
WWB 266| 2.34| 1.95| 1.35| 0.89
SAFE (Lrs) -0.42| -0.52 | -0.51| -0.33 | 0.10
SAFE (1 = 0) 0.21| 0.04 | -0.12| -0.19 | -0.12
SAFE -0.49 | -0.65| -0.78 | -0.71 | -0.47
CSTR White Noise
RAPT -0.06 || -0.27 | -0.22 | -0.31 | -0.59 | -2.07
Praat -0.77 || -0.78 | -0.97 | -1.34 | -2.79 | -4.71
TEMPO -0.85 || -0.73 | -0.76 | -0.97 | -1.21 | -2.66
YIN -0.39 || -0.40 | -0.44 | -0.47 | 0.60| -0.62
WWB 2.73 2.67| 249 | 234 | 219| 1.93
SAFE (LFB) -1.28 || -1.32| -1.39 | -1.40 | -1.45| -1.53
SAFE (u=0) | -0.78 || -0.53 | -0.50 | -0.53 | -0.62 | -0.81
SAFE -1.39 || -1.43| -1.46 | -1.49| -1.59 | -1.69
CSTR Babble Noise
RAPT -0.19| -0.34 | -0.18| -0.35| -0.14
Praat -0.79| -0.72 | -0.44| -0.30 | 0.13
TEMPO -0.54| -0.71 | -0.77| 0.51| 0.69
YIN -0.36 | -0.14 | -0.06 | 0.04 | 0.28
WWB 205| 155| 1.24| 0.77| 0.34
SAFE (LFB) -1.40| -1.45| -1.39| -1.13 | -0.47
SAFE (u = 0) -0.65| -0.78 | -0.81 | -0.92 | -0.42
SAFE -1.46 | -1.55| -1.52 | -1.40 | -0.69




TABLE 11l
THE SDFPE (H) oF THERAPT, PRAAT, TEMPO, YIN, WWB,AND SAFEUSING THEKEELE AND CSTRCORPORA
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LFB: ONLY THE LOW FREQUENCY BAND(0-1000 Hz) IS USED. #1=0: A ZERO MEAN IS USED IN THE DOUBLY TRUNCATED

LAPLACIAN DISTRIBUTION.

SNR (dB) | Clean| 20 |

10| 5 [ o] 5|

KEELE White Noise
RAPT 4.41 450| 4.75| 554| 6.62| 9.92
Praat 3.69 3.71| 489| 6.05| 8.96 | 12.74
TEMPO 5.04 519 | 584 | 7.25| 9.43| 11.52
YIN 4.45 447 | 460| 482| 521 | 5.59
WWB 5.65 559 | 561| 575| 6.02| 6.82
SAFE (rB) 5.63 562 | 563| 570| 599 | 6.48
SAFE (. =0) | 5.48 549 | 551| 554| 595| 6.43
SAFE 5.53 556 | 5.62| 5.67| 6.07| 6.50

KEELE Babble Noise
RAPT 485| 596 | 6.83| 857 | 9.39
Praat 385| 486| 579| 7.03| 8.86
TEMPO 5.92| 9.06 | 12.01| 13.29| 11.79
YIN 471| 530| 581| 6.76 | 7.94
WWB 562| 6.08| 6.61| 7.17| 8.15
SAFE (Lrs) 560| 6.09| 6.67| 7.65| 8.40
SAFE (u = 0) 556 | 6.04| 6.64| 7.48| 9.35
SAFE 560| 6.07| 6.70| 7.58| 9.34

CSTR White Noise
RAPT 5.49 578 | 6.02| 6.57| 7.92| 10.67
Praat 6.04 6.09| 654 | 7.56| 10.22| 14.38
TEMPO 6.76 7.28 | 7.74| 8.55]| 10.41| 13.29
YIN 6.28 6.29| 6.35| 6.46| 6.68| 6.75
WWB 6.86 6.83| 6.79| 6.90| 7.09| 7.61
SAFE (rB) 8.10 800 797| 7.93| 792 | 831
SAFE(.=0) | 7.85 || 7.81| 7.82| 7.80| 7.89| 8.19
SAFE 7.89 785| 774 7.71| 7.87| 8.19

CSTR Babble Noise
RAPT 584| 686| 7.47| 7.84| 8.78
Praat 6.06| 6.36| 6.45| 6.85| 7.87
TEMPO 7.76 | 10.86 | 13.96 | 14.98 | 12.50
YIN 6.33| 6.25| 596| 559 | 6.25
WWB 6.14| 584 | 585| 574 | 6.46
SAFE (rB) 8.03| 812| 8.19| 834 | 7.09
SAFE (u = 0) 764 | 797| 8.19| 855| 7.62
SAFE 759 | 791| 8.16| 8.49| 7.49
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trackers under the same noise condition is different. Itrievkn that FO estimation accuracy is higher
over less noisy frames [31]. Given a certain noise conditiban estimator only correctly estimates FO
over a few frames that have high frame-level SNRs, it couleehalatively low MFPE and SDFPE, but
a high GPE. Therefore, having higher MFPEs or SDFPEs doegewassarily mean that SAFE is less

accurate in FO estimation.

IV. CONCLUSIONS

Prominent Signal-to-Noise Ratio (SNR) peaks constituterple and an effective information source
for FO inference under both clean and noisy conditions. Tthéssical framework of FO estimation is
promising in modeling the effect of the additive noise on tfean spectra given FO. In addition to low
frequencies, middle and high frequency bands (1-3 kHz)igeosupplemental useful information for FO
inference. The proposed SAFE algorithm is more effectiveeniucing the GPE compared to prevailing
FO trackers especially at low SNRs, and robust in maintgitesv Mean and Standard Deviation of the

Fine Pitch Errors.
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