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Abstract

A novel Statistical Algorithm for F0 Estimation, SAFE, is proposed to improve the accuracy of

F0 estimation under both clean and noisy conditions. Prominent Signal-to-Noise Ratio (SNR) peaks in

speech spectra constitute a robust information source fromwhich F0 can be inferred. A probabilistic

framework is proposed to model the effect of noise on voiced speech spectra. Prominent SNR peaks

in the low frequency band (0 - 1000 Hz) are important to F0 estimation, and prominent SNR peaks

in the middle and high frequency bands (1000 - 3000 Hz) are also useful supplemental information to

F0 estimation under noisy conditions, especially the babble noise condition. Experiments show that the

SAFE algorithm has the lowest Gross Pitch Errors (GPE) compared to prevailing F0 trackers in white and

babble noise conditions at low SNRs. Experimental results also show that SAFE is robust in maintaining

a low Mean and Standard Deviation of the Fine Pitch Errors (MFPE and SDFPE) in noise. The code of

SAFE is available at http://www.ee.ucla.edu/˜weichu/safe .

I. INTRODUCTION

The source-filter model of speech production [1] assumes that speech signals can be modeled as an

excitation signal filtered by a linear vocal-tract transferfunction. The fundamental frequency (F0) is

defined as the inverse of the period of the excitation signal during the voicing state [2] [3]. Accurate

F0 tracking in quiet and in noise is important for several speech applications, such as speech coding,

analysis and recognition.

Some F0 tracking algorithms are based on the source-filter theory of speech production and estimate

F0 for voiced speech segments. They assume that F0 is constant and the vocal tract transfer function is

time invariant within a short period of time, e.g, a frame of 10-20 milliseconds. These algorithms usually

have two stages. The first stage consists of obtaining F0 candidates and the likelihood of voicing on a
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frame-by-frame basis. The second stage consists of using dynamic programming to decide the optimal

F0 and voicing state for each frame.

The first stage can be classified into two categories: single-band and multi-band. In the single-band

method, F0 candidates are extracted from one frequency band[2]. There are several methods to generate

F0 candidates. SIFT [4] applies inverse filtering to voiced speech to obtain the excitation signal from

which it estimates F0 by using autocorrelation. Cepstral-based methods (e.g., [5]) separate the excitation

from the vocal tract information in the cepstral domain by using a homomorphic transformation; the

interval to the first dominant peak in the cepstrum is relatedto the fundamental period. RAPT [6] and

YAPPT [7] generate F0 candidates by extracting local maximaof the normalized cross correlation function

which is calculated over voiced speech. Praat [8] calculates cross correlation or autocorrelation functions

on the speech signal and regards local maxima as F0 hypotheses. TEMPO [9] obtains F0 candidates

by evaluating the ‘fundamentalness’ of speech which achieves a maximum value when the AM and

FM modulation magnitudes are minimized. YIN [10] uses the autocorrelation-based squared difference

function and the cumulative mean normalized difference function calculated over voiced speech, with

little post-processing, to acquire F0 candidates. Yegnanarayana et al. [11] obtain F0 candidates from

exploiting the impulse-like characteristics of excitation in glottal vibrations. Finally, Le Roux et al. [12]

simultaneously perform frame-wise F0 candidate generation and time-direction smoothing.

In the multi-band method, a decision module is usually used to reconcile the F0 candidates generated

from different bands. Gold and Rabiner [13] use measurements of peaks and valleys of voiced speech

as input to six separate functions whose values are then processed by an F0 estimator to obtain F0

candidates. Lahat et al. [14] calculate autocorrelation functions of the spectral magnitudes in different

bands and then obtain F0 candidates by evaluating the local maxima of the functions. Sha et al. [15]

detect F0 candidates by minimizing the values of sinusoid-based error functions calculated on 4 frequency

bands: 25-100, 50-200, 100-400, and 200-800 Hz. These multi-band methods focus mainly on the low

frequency bands.

The multi-band approach has also been used to apply Licklider’s pitch perception theory [16] to F0

estimation. The irregular excitation signal may cause voiced speech to be aperiodic in some frequency

bands [17]. It is hypothesized that the higher levels of auditory processing isolate groups of contiguous

harmonics to infer the fundamental frequency from a selection of these groups. In this view, it is

hypothesized that auditory nerves and the auditory brainstem are capable of using an autocorrelation

mechanism to infer F0 over different frequency channels. deCheveigne shows that integrating the values

of AMDFs across different channels in the time domain can improve F0 estimation accuracy [18]. Wu
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et al. [19] used correlograms to select reliable frequency bands, modeled F0 dynamics using a statistical

approach, and then searched for the optimal F0 contour in an HMM framework.

These F0 candidate generation methods can also be applied tonoisy conditions. Krusback et al. [20]

use an autocorrelation function with confidence measures. Shimamura et al. [21] proposed a weighted

autocorrelation function. Abe et al. [22] use the instantaneous frequency spectrum to enhance harmonics

and suppress aperiodic components, which improves F0 estimation accuracy. Liu et al. [23] use joint time-

frequency analysis to obtain robust adaptive representation of the speech spectrum from which important

harmonic structures can be extracted. Nakatani et al. [24] use dominance spectra based on instantaneous

frequencies to evaluate the magnitudes of the harmonics relative to background noise, and estimate F0

using only the reliable harmonics. Deshmukh et al. [25] use an aperiodicity, periodicity, and pitch detector

to generate F0 candidates by calculating the AMDFs over different frequency channels in the spectral

domain.

According to the experimental results in this study, some ofthe methods mentioned above can work

well under relatively noise-free conditions. However, when the low-frequency band is contaminated by

noise, an increase in F0 estimation errors is observed. Since it is possible that F0 harmonics in the middle

or high frequency bands are not corrupted, it may be beneficial for an F0 estimation method to utilize

these harmonics in determining F0. Current multi-band methods [14] [15] mainly retain F0 candidates

obtained from the most reliable band, which is a ‘hard-decision’, while the Licklider’s pitch perception

model uses an empirically-based ’soft-decision’ to merge the information from different bands [18]. Wu et

al. [19] uses a ‘soft-decision’ approach to combine the information across bands. We propose a Statistical

Algorithm for F0 Estimation (SAFE) which also utilizes a ‘soft-decision’ method. A data-driven approach

is used to learn how the noise affects the amplitude and location of the peaks in the Signal-to-Noise

Ratio (SNR) spectra of clean voiced speech. The likelihoodsof F0 candidates are obtained by evaluating

the peaks in the SNR spectrum using the corresponding modelslearned from different bands. It is worth

noting that Ying et al. [26] use a probabilistic method to estimate F0 distribution in order to avoid

local optima in F0 estimation. Wang et al. [27] modeled the between-frame F0 transitions in a statistical

approach to improve both F0 estimation and unvoiced/voiceddecision.

In the following sections, the statistical effects of noiseon clean voiced speech spectra are studied.

This relationship between the noise and information sourcefor F0 estimation is modeled in a probabilistic

framework. In testing, the posterior probabilities of the F0 candidates are then calculated. In the

experimental section, the performance of the proposed method under different noise types and SNRs

is compared with prevailing F0 estimation methods.
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Fig. 1. A flowchart of SAFE.

II. SAFE: A STATISTICAL ALGORITHM FOR F0 ESTIMATION

A flowchart of SAFE is shown in Fig. 1. This paper focuses on estimating fundamental frequency (F0)

values over voiced frames that may be corrupted by quasi-stationary noise. Suppose that the range of F0

in human speech is fromf0min to f0max, and the frequency resolution of F0 estimation is∆. ThenSF0

is used to denote the set of all possible F0 values{f0min, f0min + ∆, · · · , f0max}.

Given the power spectrumY of a single observed noisy voiced frame under a stationary noise condition

N, the probability off0 being the fundamental frequency of that frame can be expressed asP (f0|Y,N).

The most likely estimate, denoted bŷf0, should be:

f̂0 = arg max
f0∈SF0

P (f0|Y,N). (1)

Let Yf and Nf denote the power spectrum of the noisy voiced frame and noiseat frequencyf ,

respectively. Then thea posteriori SNR at frequencyf denoted byγf is:

γf = 10 log10

Yf

Nf
. (2)

As quasi-stationary noise is assumed in this study, the noise spectrum for each utterance is estimated by

averaging the initial 10 and final 10 frames of noisy speech. The frame shift is 10 ms, and the frame

length is 40 ms.



5

The SNRγf is a measure of the spectral magnitude at frequencyf being contaminated by the noise.

According to the source-filter theory of speech production,a voiced speech spectrum has a harmonic

structure. Local SNR peaks (correspond to mainly harmonics) contain more information than valleys

regarding F0. It is assumed that the information contained in the set of local SNR peaks{C1, · · · ,CM}

is sufficient to estimate F0, whereM is the number of local SNR peaks. Thus, the posterior probability

of f0 is:

P (f0|Y,N) = P (f0|C1, · · · ,CM ,N). (3)

In a ROVER system for automatic speech recognition [28], theposterior probabilities of a word from

different sub-systems are combined with different weights. Inspired by ROVER, local SNR peaks can

be assumed to be independent in inferring F0 given the noise shape and level. The overall posterior

probability can be approximated as a weighted combination of posterior probabilitiesP (f0|Ci,N):

P (f0|Y,N) ≈

M
∑

i=1

wiP (f0|Ci,N), (4)

wherewi is the confidence measure of the i-th local SNR peak. If each local SNR peak is assumed to

have an equal confidence score, thenwi is set to1/M . (i = 1, 2, · · · ,M )

If the distribution off0 given the noise, i.e.,P (f0|N), is assumed to be uniformly distributed when

prior information is not available, thenP (f0|Ci,N) can be obtained from the Bayesian rule:

P (f0|Ci,N) =
p(Ci|f0,N)

∑

f0∈SF0
p(Ci|f0,N)

. (5)

Let f denote the frequency of the local SNR peakCi. Becausef is not usually equal to a multiple

of f0, f can be decomposed into a multiplem and a residualδ as follows:

m =
[ f

f0

]

, δ =
f

f0
− m, (6)

where[ f
f0

] denotes the nearest integer off
f0

. Hence, the residual ranges from -0.5 to 0.5. If the fraction

of f
f0

is exactly 0.5, either rounding upwards or downwards does not change F0 estimation error rates in

SAFE.

Given f0 and noiseN, the local SNR peakCi has the following attributes: multiplem, residualδ,

a posteriori SNR γf , and frequency band indexBf in which the frequencyf is. In other words, the

peakCi resides in bandBf . The reason whyf is not adequate on its own is because there are not
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enough training samples for each frequency bin. Then we have:

p(Ci|f0,N) = p(m, δ, γf , Bf |f0,N) (7)

= P (m|f0,N)p(δ|m,γf , Bf , f0,N)

p(γf |m,Bf , f0,N)P (Bf |m, f0,N).

We assume that the deviation of a local SNR peak from a multiple of f0, caused by noise, will not

exceed halff0. Therefore,m is independent of the noiseN, i.e., P (m|f0,N) = P (m|f0). After the

decomposition shown in (6), the residualδ can be assumed to be independent ofm and f0 given γf ,

Bf , andN, i.e., p(δ|m,γf , Bf , f0,N) = p(δ|γf , Bf ,N). The local SNRγf is independent ofm andf0

given the band indexBf and noise conditionN, i.e., p(γf |m,Bf , f0,N) = p(γf |Bf ,N). Furthermore,

P (m|f0) is assumed to be uniformly distributed. SinceBf can be assumed to be determined bym and

f0 regardless of noise, the Dirac functionP (Bf |m, f0,N) is assumed to be equal to 1. Then we can

have:

p(Ci|f0,N) (8)

= D1 · p(δ|γf , Bf ,N)p(γf |Bf ,N).

whereD1 is a constant.

A. Prominent SNR Peaks

Before studying the distribution of the residual and local SNR peaks, it is important to select useful

local SNR peaks for F0 estimation. Short and long-term smoothed SNRs denoted byγS

f and γL

f are

obtained by smoothingγf with a Hamming window of lengthf0min andf0max in Hz, respectively. The

Hamming window is used because of its relatively small side lobes. Since the short-term smoothing can

reduce the number of false alarm local SNR peaks and retain F0information,γf in (8) is replaced by

γS

f . To depict the relationship between the two smoothed SNRs, an SNR difference at the i-th local peak

in γS

f denoted byζi can be expressed as follows:

ζi = γS

fi
− γL

fi
, i = 1, · · · ,MS, (9)

whereMS is the number of the local peaks inγS

f . ζi is further normalized with respect to all the peaks

in the frame as follows:

ζ̄i =
ζi − µζ

σζ
, (i = 1, · · · ,MS.), (10)
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Fig. 2. The SNR spectrum of a voiced frame of a female speaker corrupted by different levels of additive white noise (20, 10

and 0 dB). The number on top of each peak of the short-term smoothed SNR is the value of the normalized difference SNRζ̄i

of that peak. Arrows around 300 Hz indicate peaks with a lowerζ̄i than their adjacent prominent peaks.

whereµζ andσζ are the mean and standard deviation of the sequenceζi. The ith local SNR peak (Ci)

is regarded as aprominent SNR peak for F0 estimation only ifζ̄i is above a certain threshold. In this

study, the threshold is empirically set to 0.33.

Figs. 2 and 3 show the SNR spectra of a voiced frame of a female and a male speaker, respectively,

corrupted by different levels of additive white noise (20, 10 and 0 dB). The number on top of each peak

of the short-term smoothed SNR is the value of the normalizeddifference SNRζ̄i of that peak. It can be

seen that not all local SNR peaks reside in the vicinity of multiples of F0. Most false alarm or deviated

peaks have a lower normalized SNR difference compared to thepeaks near the multiples of F0. Take
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Fig. 3. The SNR spectrum of a voiced frame of a male speaker corrupted by different levels of additive white noise (20, 10

and 0 dB). The number on top of each peak of the short-term smoothed SNR is the value of the normalized difference SNRζ̄i

of that peak.

the false alarm local peaks around 300 Hz of the voiced framesin all panels of Fig. 2 for example.

These peaks, indicated by arrows, have a lowerζ̄i than their adjacent prominent peaks in the three noise

conditions.

As shown in Figs. 2 and 3, the lower a peak is than the long-termsmoothed SNR, the more likely

it is corrupted by the noise and shifted from its original location, and the less likely it is to be close

to the multiples of F0. Hence, prominent SNR peaks which are less corrupted by the noise and less

deviated from a multiple of F0 can provide reliable information for inferring F0s. When middle and

high frequency bands are less corrupted by noise, it is possible that prominent peaks can exist in these
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bands, e.g., the peaks around 2800 Hz in female voiced framesand the peaks around 1700 Hz in male

voiced frames under 20, 10 and 0 dB SNR conditions. Retainingthese prominent peaks and discarding

non-prominent peaks might improve the performance of F0 estimation.

As mentioned above, only prominent peaks are used in (4), i.e., M is changed to the number of

prominent SNR peaks.

B. Distribution of the Residuals

Recall that the residualδ is dependent on the local SNR value and the band index. To reduce the

model complexity, it can be assumed that the distribution ofthe p(δ|γf , Bf ,N) in (8) slightly changes

whenγf is rounded, i.e.,

p(δ|γf , Bf ,N) ≈ p(δ|Qγf
, Bf ,N), (11)

whereQγf
denotes the SNR bin whichγf is rounded to. The intervals of the SNR bins in dB are spaced

by 3.33 dB and are as follows: (-∞, 0], (0, 3.33],· · · , (66.67, 70], (70,∞).

The distributions of the residuals given different roundedSNR bins, frequency band index and noise

conditions are shown in Fig. 4. Two white noise conditions: 20 and 0 dB SNRs are studied. This analysis

is conducted over all the voiced frames in the KEELE corpus [29] with F0 ground truth values obtained

from the simultaneously recorded laryngograph signal. In this study, three bands: 0-1000 Hz, 1000-2000

Hz, and 2000-3000 Hz, are employed to represent the low, middle, and high frequency bands, respectively.

Note that all the residual distributions in Fig. 4 are derived only from the prominent peaks in the low

frequency band. Most distributions are centered on zero, which means that these peaks can generate

unbiased F0 estimates. It can be seen that under a certain noise condition, the higher the rounded SNR

is, the smaller the variance of the residuals. Because having a smaller residual variance means that the

frequencies of local SNR peaks are less likely to be affectedby noise, local SNR peaks from higher SNR

bins are more reliable for F0 estimation. Under 20 dB conditions, no prominent peak has a local SNR

higher than 56.67 dB; under 0 dB condition, the local SNRs of all prominent peaks are below 36.67 dB.

A comparison of the distributions of the residuals of the prominent and non-prominent peaks is shown

in Fig. 5 for the white noise condition with 0 dB SNR. In the lowfrequency band, prominent peaks can

have a local SNR as high as 36.67 dB, while the local SNRs of non-prominent peaks are below 26.67 dB.

Furthermore, the residuals of the non-prominent peaks withlow local SNRs are mostly distributed away

from zero, which means that it is difficult to infer F0 from these non-prominent peaks. Although the

residuals of the non-prominent peaks with high local SNRs are distributed around zero, the distributions

have larger variances compared to the residuals of the prominent peaks with the same local SNR.
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Fig. 4. The distributions of the residuals given different rounded local SNRs for a 3.33 dB interval at the low frequency band

(0-1000Hz). Different white noise conditions (20 and 0 dB global SNRs) are shown. The horizontal axes are the residuals with

a bin size of 0.01. The vertical axes are the probabilities ofoccurrences. The title on each sub-figure shows the intervalof

rounded local SNRQγf
.

Curve-fitting or Gaussian mixture modeling can be used to model the distributions of the residuals;

however, it is important to control the number of parametersin the model which enables training with

limited data and prevent model over-fitting. ADoubly truncated Laplacian distribution, denoted by

p(δ|µ, b), is used for modelingp(δ|Qγf
, Bf ,N), i.e. the distribution of residuals given the rounded SNR
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Fig. 5. A comparision of the distributions of the residuals of prominent SNR peaks (PP) and non-prominent SNR peaks (Non

PP) given different rounded local SNRs at the low frequency band (0-1000Hz). The noise condition is white noise at 0 dB

global SNR. The horizontal axes are the residuals with a bin size of 0.01. The vertical axes are the probabilities of occurrences.

The title on each sub-figure shows the interval of rounded local SNRQγf
.

bin, band index and noise condition:

p(δ|µ, b) =















A

2b
e
−
|δ − µ|

b −
1

2
≤ δ ≤

1

2

0 otherwise

, (12)

whereµ andb represent the mean and the variance, respectively.A is set to(1 − e−1/(2b))−1 to ensure

that
∫

δ p(δ|µ, b) = 1. Hence, only two free parameters(µ, b) need to be estimated.

Given a sequence of residuals{δ1, · · · , δN} denoted byδ, (suppose all the residuals are independent

and identically distributed,) we have:

p(δ|µ, b) =
N
∏

i=1

p(δi|µ, b). (13)
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Let α = 1/(2b) andL(δ|µ, α) = log p(δ|µ, b). Then:

L(δ|µ, α) (14)

=

N
∑

i=1

log p(δi|µ, b)

= N log α − N log(1 − e−α) − 2α

N
∑

i=1

|δi − µ|.

Under the maximum-likelihood criterion, the estimated mean and variance denoted bŷµ and b̂ (or α̂)

should maximize the joint probabilityp(δ|µ, b) which is equivalent to maximizeL(δ|µ, α).

Since∂2L/∂µ2 = −2α
∑N

i=1 δ(δi − µ) ≤ 0 whenα > 0, L achieves its maximum when∂L/∂µ = 0

for any α, i.e.:

−2α

N
∑

i=1

sgn(δi − µ̂) = 0. (15)

Since∂2L/∂α2 = 1/(eα − 1) − 1/α2 < 0 whenα > 0, L achieves its maximum when∂L/∂α = 0

andµ = µ̂, i.e.:

N

α̂
−

N

eα̂ − 1
− 2

N
∑

i=1

|δi − µ̂| = 0. (16)

To solveµ̂, let δ̃ = {δ̃1, · · · , δ̃N} denote the sorted sequence of the sequenceδ in an ascending order,

we have one feasible solution ofµ̂:

µ̂ =







δ̃N+1

2

N is odd

1
2(δ̃N

2

+ δ̃N

2
+1) N is even

. (17)

Note that whenN is even, any value betweeñδN

2

and δ̃N

2
+1 can satisfy (15). As shown in (17), the

number of residuals that are greater thanµ̂ is equal to the number of residuals that are less thanµ̂. (16)

can be simplified as:

N

α̂
−

N

eα̂ − 1
− 2

N
∑

i=1

|δi| = 0. (18)

Although there is no close-form solution to (16), Newton’s method can be used to search forα̂. Note

that b̂ = 1/(2α̂). When a bin with a high rounded SNR does not have training instances, no effort of

running the mean and variance solvers is spared. In case of some unseen residuals might have higher

SNRs, the mean is set to 0, and the variance is set to a small value, e.g., 0.01.

There is one similarity between SAFE and Wu et al.’s method [19]: the use of Laplacian distribution

for data modeling. The meaning and range of the modeled random variables are different. SAFE models
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the residual derived from the prominent peak in the SNR spectrum. The residual ranges from -0.5 to 0.5.

Wu et al.’s method models the time lag derived from the peak inthe correlogram. The time lag ranges

from −∞ to ∞.

The logarithms of the averaged estimated variances of the residual distributions for different bands

are shown in Fig. 6. Averaging is across all noise levels: clean, 20 dB, 10 dB, 5 dB, 0 dB, -5 dB.

The noise type is white noise. It can be seen that the varianceof the lower frequency band at a certain

rounded SNR bin is smaller than the counterpart of the higherfrequency band. When the variance of the

estimated residual distribution is small given a frequencyband, it means that the probability of accurately

estimating F0 in that band is high. As mentioned above, it is still possible to use the prominent peaks

lying in the middle and high frequency bands to improve F0 estimation. Note that the higher the rounded

local SNR, the smaller the variance is.

In Fig. 7, the estimated means of the residual distributionsfor different bands under clean and noisy

conditions are compared. The noise types are white and babble noise. The means under noisy conditions

at different SNRs (20 dB, 10 dB, 5 dB, 0 dB, -5 dB) are averaged.It can be seen that the estimated

means are not exactly equal to zero under both clean and noisyconditions if local SNR is less than 55

dB. F0 estimation actually benefits from learning a Laplacian distribution with a non-zero mean which

better fits the real distribution of the data.

C. Distribution of the local SNRs

In the previous section, local SNRs of the prominent peaks are rounded. It can be assumed that this

rounding does not significantly change thep(γf |Bf ,N) in (8), i.e.:

p(γf |Bf ,N) ≈ D2P (Qγf
|Bf ,N), (19)

whereD2 is a constant. The distribution can be learned by using a histogram-like approach based on the

training set.

The distributions of the rounded local SNRs of the prominentpeaks under different bands and noise

conditions are shown in Fig. 8. The distribution under noisyconditions at different SNRs (20 dB, 10

dB, 5 dB, 0 dB, -5 dB) are averaged. It can be seen that the peaksof noisy speech are more likely to

be distributed in bins with low SNRs compared to clean speech, which can be one of the reasons why

estimating F0 values is difficult under noisy conditions. For either clean or noisy condition, the rounded

local SNRs of the prominent peaks from the low frequency bandare also more likely to be concentrated

in high SNR bins compared to the middle and high frequency bands.
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Fig. 6. A comparison of the log of the averaged estimated variances of the residual distributions under different frequency

bands (low, middle, high). The noise condition is white noise. Estimated variances from different noise levels (clean,20 dB, 10

dB, 5 dB, 0 dB, -5 dB) are averaged.

D. Post-Processing

For an utterance, the posterior probabilities,P (f0|Y,N), for each frame are obtained by calculating (4).

Then, a dynamic programming approach, the same as that used in RAPT, was used to smooth the tracked

F0 contour and to allow octave jumps at a certain cost [6]. A brief description of the dynamic programming

is as follows.

The objective of dynamic programming is to search for an F0 contour that minimizes an objective

function. Given an F0 contour, the objective function is defined as a summation of the frame-level

local cost and transition cost functions. The local cost function for a certain frequency at one frame is

inversely related to the F0 likelihood value. The inter-frame F0 transition cost function is defined under
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Fig. 7. A comparison of the averaged estimated means of the distributions of residuals under different noise conditionsusing

the KEELE corpus. Estimated means from different noise levels (clean, 20 dB, 10 dB, 5 dB, 0 dB, -5 dB) and different frequency

bands (low, middle, high) are averaged.

4 conditions: voiced-to-voiced (V→V), unvoiced-to-unvoiced (U→U), voiced-to-unvoiced (V→U), and

unvoiced-to-voiced (U→V). In the V→V condition, the cost function is defined as an increasing function

of inter-frame proportional frequency change, but allows for octave jumps at some specifiable cost. In

the U→U condition, the cost function is defined as 0. In the V→U or U→V conditions, the cost function

is defined as a combination of a spectral stationarity function and the inverse function of the Itakura

distortion [30].

The focus of the proposed method is to reduce F0 estimation error under both clean and noisy

conditions. However, voicing boundaries can affect the results of F0 tracking [31]. Hence, each F0

tracking algorithm is forced to estimate F0 values over all the voiced frames regardless of the SNRs.
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The noise condition is white noise. The distributions underdifferent noise levels (20 dB, 10 dB, 5 dB, 0 dB, -5 dB) are averaged.

The F0 trackers (RAPT, Praat, TEMPO, WWB) also output voiced/unvoiced decisions. If the ground

truth and the F0 tracker agree that a frame is voiced or unvoiced, the F0 value is not changed. If a ground

truth unvoiced frame is assumed to be voiced, the F0 value is set to be 0. If a ground truth voiced frame

Nc is assumed to be unvoiced,f0Nc
is estimated by using an interpolation-based method:

f0Nc
= f0Nl

+
Nc − Nl

Nr − Nl
(f0Nr

− f0Nl
), (20)

whereNl andNr denote the left and right closest frame to the current frameNc among the frames that

both the ground truth and F0 tracker agree to be voiced. One exception of this interpolation is that if

frame Nc is in the first or last assumed unvoiced segment by the F0 tracker in a ground truth voiced

segment, thef0Nc
is set to be eitherf0Nr

or f0Nl
depending on whether the right or left frame is closer.
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Fig. 9. The spectrogram, F0 posterior probabilities from SAFE, and F0 contours from RAPT and SAFE of a segment of an

utterance from the second female speaker (f2nw0000) in the KEELE corpus under babble noise condition at 0 dB SNR.

An example of F0 estimation made with SAFE is shown in Fig. 9. The segment corresponds to the

beginning of the utterance of the second female speaker in the KEELE corpus. The noise condition is

babble noise at 0 dB SNR. Each vertical strip in the bottom panel shows the F0 posterior probabilities over

the voiced frame. The darker a point is, the higher the probability that F0 corresponds to that frequency.

Since RAPT has the lowest GPE among all the F0 estimators, andSAFE uses the same cost function

as RAPT for the dynamic programming-post processing, only the tracked F0 of RAPT and SAFE are

shown in Fig. 9. It can be observed from the spectrogram in thetop panel that the babble noise is mostly

concentrated on the low frequency band. The babble noise cancorrupt the harmonic structure of the
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voiced frame by suppressing or shifting the spectral peaks in the original clean speech, or by inserting

new harmonic structures of the periodic babble noise into the original spectrum. The new added strong

harmonic structures from babble noise may cause estimationerrors. For some regions in which the target

speech has high energy at high frequencies, e.g., around 1.6s, the prominent peaks in the middle and

high frequency bands, which are less affected by noise, can be used to infer the F0 value.

III. E XPERIMENTS

Three error metrics: Gross Pitch Error (GPE), Mean of the Fine Pitch Errors (MFPE), and Standard

Deviation of the Fine Pitch Errors (SDFPE) are used [2] to evaluate the performance of F0 estimation

algorithms. LetNV V denote the number of the frames that both the F0 tracker and the ground truth

consider to be voiced,V V means ‘both voiced’; andNGE represent the number of frames for which

|
f0i,estimated

f0i,reference

− 1| > ǫ, i = 1, · · · , NV V , (21)

wherei is the frame index, andǫ is a threshold which is typically 20%,GE means ‘gross error’. The

number of remaining frames, denoted byNFE, is equal toNV V − NGE . FE means ‘fine error’.

GPE is defined as:

GPE =
NGE

NV V
× 100%. (22)

MFPE denoted byµFPE is defined as:

µFPE =
1

NFE

∑

i∈SF E

(f0i,estimated − f0i,reference), (23)

whereSFE denotes the set of all the frames in which no gross error occurs.

SDFPE denoted byσFPE is defined as:

σFPE =
1

NFE

∑

i∈SF E

f0
2
i,estimated − µFPE, (24)

where MFPE and SDFPE are used to measure the bias and precision of the F0 estimation when no gross

estimation error is occurred.

In this section, we compare the GPE, MFPE, and SDFPE using theKEELE [29] and CSTR [32]

corpora. The 5 minute 37 seconds KEELE corpus contains a simultaneous recording of speech and

laryngograph signals for a phonetically-balanced text which was read by 5 male and 5 female speakers.

The 5 minute 32 seconds CSTR corpus is composed of laryngograph and speech signals from one male

and one female speaker. Each speaker read 50 sentences in theCSTR corpus. Ground truth F0s were
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obtained by running an autocorrelation method on the laryngograph signal in addition to some manual

correction.

Speech signals are downsampled from 20000 Hz to 16000 Hz for both corpora. Noise is artificially

added to the corpora to test the robustness of the F0 trackersunder different noise conditions. The program

FaNT [33] with the default command line option (-u -m snr8khz) was used to employ white and babble

noise segments from the NOISEX92 [34] corpus to the speech signals to generate utterances with SNR

of 20, 10, 5, 0, and -5 dB. The white noise is acquired by sampling high-quality analog noise generator.

The babble noise is acquired by recording 100 people speaking in a canteen with room radius over 2m.

The parameters of SAFE are as follows: FFT size is 16384; frequency resolution is 1 Hz; frame length

and step size are 0.04 and 0.01 seconds, respectively;f0min andf0max are 50 and 400 Hz, respectively;

the lengths of the short-term and long-term windows for spectrum smoothing are 50 and 400 in Hz,

respectively. A peak is regarded as a prominent peak if the normalized difference SNR̄ζi is greater than

an empirically determined threshold of 0.33; the ranges of the low, middle, and high frequency bands

are 0-1, 1-2, and 2-3 kHz, respectively; local SNRs of the peaks are rounded to the nearest value in

the following sequence10r/3, wherer = 0, 1, · · · , 21. The weighting factors in (4) are all set to the

reciprocal of the number of the prominent peaks in that frame.

For the KEELE corpus, a 5-fold cross-validation scheme is applied. For each fold under a certain noise

level, the speech of one male and one female speaker are used for testing, the residual and SNR models

are trained from the remaining speech and its ground truth. Since 54% of the KEELE corpus is voiced

speech, if the frame step size is 0.01 seconds, each fold has about 14000 frames for training. Since there

are 23 rounded local SNR bins, if each voiced frame has 10 prominent peaks on average, each residual

model has about 6000 samples for training. Because some binswith high SNRs might have fewer training

instances, e.g., 5% of the average - 300 samples, it is still possible to robustly train a doubly-truncated

Laplacian distribution with only two free parameters.

A comparison of the GPEs of RAPT, Praat, TEMPO, YIN, Wu et al.’s method (WWB), and SAFE on

the KEELE corpus is shown in Table I. Note that Yegnanarayanaet al.’s [11] results are not included,

because silence was added to the KEELE corpus in their experiments. There are two configurations of

Praat: autocorrelation (default) or cross-correlation. The cross-correlation configuration is used, since it

consistently provided better results. The default settings were used for RAPT, Praat, TEMPO, YIN, and

WWB, except that the voicing thresholds were optimized. Theimplementation of WWB was provided

by Prof. Dan Ellis and his group at Columbia University. Three configurations of SAFE were compared:

standard (SAFE), only with information from the low frequency band as the prevailing F0 tracking
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TABLE I

THE GPE (%)OF THE RAPT, PRAAT, TEMPO, YIN, WWB,AND SAFEUSING THE KEELE AND CSTRCORPORA. LFB:

ONLY THE LOW FREQUENCY BAND (0-1000 HZ) IS USED. µ=0: A ZERO MEAN IS USED IN THE DOUBLY TRUNCATED

LAPLACIAN DISTRIBUTION . BOLD NUMBERS REPRESENT THE LOWESTGPE IN EACH COLUMN.

SNR (dB) Clean 20 10 5 0 -5

KEELE White Noise

RAPT 2.62 2.69 3.10 4.09 7.69 17.83

Praat 3.22 3.16 4.28 6.11 11.53 30.91

TEMPO 2.98 3.41 4.27 5.57 12.79 22.64

YIN 2.94 2.94 3.20 3.96 6.70 14.48

WWB 4.22 4.27 5.21 5.57 6.42 8.87

SAFE (LFB) 3.13 3.09 3.74 4.39 4.72 6.29

SAFE (µ = 0) 3.00 3.04 3.38 3.71 4.10 5.16

SAFE 2.98 3.01 3.35 3.66 4.06 5.01

KEELE Babble Noise

RAPT 2.87 7.19 15.99 29.76 58.40

Praat 3.18 8.33 17.97 35.26 54.06

TEMPO 4.69 13.99 26.98 43.98 65.15

YIN 3.27 8.89 19.71 36.75 57.35

WWB 6.76 12.48 21.20 32.84 55.40

SAFE (LFB) 3.23 6.01 10.21 20.64 47.21

SAFE (µ = 0) 3.14 4.75 7.68 16.23 39.62

SAFE 3.10 4.72 7.44 15.88 39.23

CSTR White Noise

RAPT 2.45 2.46 3.04 3.94 6.73 17.72

Praat 2.27 2.27 2.99 4.35 11.84 27.54

TEMPO 2.27 2.29 2.87 5.07 11.64 31.65

YIN 2.25 2.25 2.36 3.34 5.20 12.33

WWB 2.75 3.00 4.00 4.83 5.35 7.64

SAFE (LFB) 2.49 2.52 2.97 3.49 3.93 4.14

SAFE (µ = 0) 2.40 2.41 2.69 3.10 3.24 3.68

SAFE 2.45 2.46 2.73 3.25 3.34 3.76

CSTR Babble Noise

RAPT 2.86 8.36 24.41 46.41 64.52

Praat 2.65 10.55 27.15 46.32 64.24

TEMPO 3.56 15.24 33.10 54.43 66.38

YIN 2.36 10.09 27.53 51.15 68.22

WWB 4.82 14.15 30.09 49.05 66.00

SAFE (LFB) 2.69 5.37 9.97 23.59 63.20

SAFE (µ = 0) 2.61 4.14 7.73 19.32 57.17

SAFE 2.63 4.23 8.23 20.74 59.54
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algorithms (SAFE (LFB)), and with zero mean residual estimation (SAFE (µ = 0)). It can be seen that

all F0 trackers have GPEs lower than 3.5% in quiet. All algorithms suffer from performance degradation

when the SNR drops. As expected, it is more difficult to accurately estimate F0 in the babble noise

condition compared to the white noise condition with the same SNR. The SAFE algorithm has the lowest

GPE when the SNR is at or below 5 dB under white noise, or at or below 10 dB under babble noise. It

can be concluded from Table I that discarding information from middle and high frequency bands can

cause an increase in GPE, especially for babble noise which is usually concentrated at low frequencies.

Forcing the means of the estimated residual distributions to be zero can also result in an increase in

GPE. The performance of the SAFE algorithm using non-prominent peaks is not tested, because not only

the non-prominent peaks are negative factors in F0 estimation, but also the proposed doubly truncated

Laplacian distribution is not supposed to fit the saddle-like distributions of non-prominent peaks as shown

in Fig. 5.

To determine the generalizablity of SAFE, the model trainedfrom the KEELE corpus is used for

the CSTR corpus. According to the performances of the F0 algorithms shown in the Table I, it can be

seen that F0 estimation for the CSTR corpus is easier under white noise, but harder under babble noise

compared to the KEELE corpus. Although there is mismatch between the KEELE and CSTR corpora,

SAFE still has the lowest GPE under low SNR conditions for both. The mismatch can explain why SAFE

(µ = 0) has a lower GPE compared to the standard SAFE. Thus, it may bemore appropriate to use

SAFE (µ = 0) when prior information of the testing set is not available.

The MFPEs for the KEELE and CSTR corpora are shown in Table II.It can be seen that the best

configuration of SAFE has less than 1 Hz MFPEs under all noise conditions. Other F0 trackers have

less than 3 Hz MFPEs under most noise conditions. Note that 3 Hz is only 1.2% of the average of all

possible F0s which is 225 Hz. That means all F0 trackers do notmake significantly biased F0 estimation

under clean and most noisy conditions. For the KEELE corpus,the means of the residuals are slightly

less than zero most of the time as shown in Fig. 7. Thus, the standard SAFE which considers the bias is

supposed to have slightly lower F0 estimation than the zero mean version of SAFE. Due to the mismatch

between KEELE and CSTR corpora, the negative bias causes theMFPEs of the standard SAFE to be

more deviated from zero compared to the zero mean version of the SAFE on the CSTR corpus.

The SDFPEs on KEELE and CSTR corpus are shown in Table III. It can be seen that the SDFPEs

of SAFE are slightly higher (1-2 Hz) than other F0 estimatorsunder some conditions. Since the MFPE

and SDFPE are calculated over the frames in which the F0 tracker does not have gross F0 estimation

errors (less than 20% gross error), the number of frames for calculating the SDFPE over different F0
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TABLE II

THE MFPE (HZ) OF THE RAPT, PRAAT, TEMPO, YIN, WWB,AND SAFEUSING THE KEELE AND CSTRCORPORA.

LFB: ONLY THE LOW FREQUENCY BAND (0-1000 HZ) IS USED. µ=0: A ZERO MEAN IS USED IN THE DOUBLY TRUNCATED

LAPLACIAN DISTRIBUTION .

SNR (dB) Clean 20 10 5 0 -5

KEELE White Noise

RAPT 0.79 0.60 0.60 0.32 -0.18 -1.87

Praat 0.19 0.21 -0.14 0.67 -1.93 -4.08

TEMPO 0.41 0.36 0.27 0.08 -1.26 -2.16

YIN 0.55 0.56 0.54 0.53 0.53 0.43

WWB 2.86 2.87 2.74 2.67 2.35 2.05

SAFE (LFB) -0.40 -0.40 -0.43 -0.47 -0.66 -0.61

SAFE (µ = 0) 0.15 0.34 0.34 0.28 0.04 -0.05

SAFE -0.36 -0.46 -0.50 -0.57 -0.72 -0.86

KEELE Babble Noise

RAPT 0.74 0.47 0.23 -0.35 -0.24

Praat 0.24 0.21 0.05 0.16 0.50

TEMPO 0.34 -0.06 -1.19 -0.09 1.22

YIN 0.66 0.83 0.93 1.11 1.03

WWB 2.66 2.34 1.95 1.35 0.89

SAFE (LFB) -0.42 -0.52 -0.51 -0.33 0.10

SAFE (µ = 0) 0.21 0.04 -0.12 -0.19 -0.12

SAFE -0.49 -0.65 -0.78 -0.71 -0.47

CSTR White Noise

RAPT -0.06 -0.27 -0.22 -0.31 -0.59 -2.07

Praat -0.77 -0.78 -0.97 -1.34 -2.79 -4.71

TEMPO -0.85 -0.73 -0.76 -0.97 -1.21 -2.66

YIN -0.39 -0.40 -0.44 -0.47 0.60 -0.62

WWB 2.73 2.67 2.49 2.34 2.19 1.93

SAFE (LFB) -1.28 -1.32 -1.39 -1.40 -1.45 -1.53

SAFE (µ = 0) -0.78 -0.53 -0.50 -0.53 -0.62 -0.81

SAFE -1.39 -1.43 -1.46 -1.49 -1.59 -1.69

CSTR Babble Noise

RAPT -0.19 -0.34 -0.18 -0.35 -0.14

Praat -0.79 -0.72 -0.44 -0.30 0.13

TEMPO -0.54 -0.71 -0.77 0.51 0.69

YIN -0.36 -0.14 -0.06 0.04 0.28

WWB 2.05 1.55 1.24 0.77 0.34

SAFE (LFB) -1.40 -1.45 -1.39 -1.13 -0.47

SAFE (µ = 0) -0.65 -0.78 -0.81 -0.92 -0.42

SAFE -1.46 -1.55 -1.52 -1.40 -0.69
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TABLE III

THE SDFPE (HZ) OF THE RAPT, PRAAT, TEMPO, YIN, WWB,AND SAFEUSING THE KEELE AND CSTRCORPORA.

LFB: ONLY THE LOW FREQUENCY BAND (0-1000 HZ) IS USED. µ=0: A ZERO MEAN IS USED IN THE DOUBLY TRUNCATED

LAPLACIAN DISTRIBUTION .

SNR (dB) Clean 20 10 5 0 -5

KEELE White Noise

RAPT 4.41 4.50 4.75 5.54 6.62 9.92

Praat 3.69 3.71 4.89 6.05 8.96 12.74

TEMPO 5.04 5.19 5.84 7.25 9.43 11.52

YIN 4.45 4.47 4.60 4.82 5.21 5.59

WWB 5.65 5.59 5.61 5.75 6.02 6.82

SAFE (LFB) 5.63 5.62 5.63 5.70 5.99 6.48

SAFE (µ = 0) 5.48 5.49 5.51 5.54 5.95 6.43

SAFE 5.53 5.56 5.62 5.67 6.07 6.50

KEELE Babble Noise

RAPT 4.85 5.96 6.83 8.57 9.39

Praat 3.85 4.86 5.79 7.03 8.86

TEMPO 5.92 9.06 12.01 13.29 11.79

YIN 4.71 5.30 5.81 6.76 7.94

WWB 5.62 6.08 6.61 7.17 8.15

SAFE (LFB) 5.60 6.09 6.67 7.65 8.40

SAFE (µ = 0) 5.56 6.04 6.64 7.48 9.35

SAFE 5.60 6.07 6.70 7.58 9.34

CSTR White Noise

RAPT 5.49 5.78 6.02 6.57 7.92 10.67

Praat 6.04 6.09 6.54 7.56 10.22 14.38

TEMPO 6.76 7.28 7.74 8.55 10.41 13.29

YIN 6.28 6.29 6.35 6.46 6.68 6.75

WWB 6.86 6.83 6.79 6.90 7.09 7.61

SAFE (LFB) 8.10 8.00 7.97 7.93 7.92 8.31

SAFE (µ = 0) 7.85 7.81 7.82 7.80 7.89 8.19

SAFE 7.89 7.85 7.74 7.71 7.87 8.19

CSTR Babble Noise

RAPT 5.84 6.86 7.47 7.84 8.78

Praat 6.06 6.36 6.45 6.85 7.87

TEMPO 7.76 10.86 13.96 14.98 12.50

YIN 6.33 6.25 5.96 5.59 6.25

WWB 6.14 5.84 5.85 5.74 6.46

SAFE (LFB) 8.03 8.12 8.19 8.34 7.09

SAFE (µ = 0) 7.64 7.97 8.19 8.55 7.62

SAFE 7.59 7.91 8.16 8.49 7.49
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trackers under the same noise condition is different. It is known that F0 estimation accuracy is higher

over less noisy frames [31]. Given a certain noise condition, if an estimator only correctly estimates F0

over a few frames that have high frame-level SNRs, it could have relatively low MFPE and SDFPE, but

a high GPE. Therefore, having higher MFPEs or SDFPEs does notnecessarily mean that SAFE is less

accurate in F0 estimation.

IV. CONCLUSIONS

Prominent Signal-to-Noise Ratio (SNR) peaks constitute a simple and an effective information source

for F0 inference under both clean and noisy conditions. The statistical framework of F0 estimation is

promising in modeling the effect of the additive noise on theclean spectra given F0. In addition to low

frequencies, middle and high frequency bands (1-3 kHz) provide supplemental useful information for F0

inference. The proposed SAFE algorithm is more effective inreducing the GPE compared to prevailing

F0 trackers especially at low SNRs, and robust in maintaining low Mean and Standard Deviation of the

Fine Pitch Errors.
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