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Abatmxct- This work develops relations for 
the mean squared value of internal variables in 
the Fast QRD-RLS. The objective is to derive 
relations based on known characteristics of in- 
put signals that predict the behavior of the in- 
ternal quantities of the algorithm. It is shown 
that the Fast and Conventional QRD-RLS al- 
gorithms have some variables in common, and 
thus previous results of the infinite precision 
analysis of the Conventional algorithm remain 
valid for the Fast version. Conditions for avoid- 
ing overflow in fixed-point implementations are 
presented. Simulation results are also shown. 

I. Introduction 

In 1990, John Cioffi introduced the first QR Decom- 
position based Fast Recursive Least Squares (FQRD-RLS) 
Algorithm [l]. I t  has been claimed that this algorithm has 
very nice numerical properties [l], [2], but a formal proof 
for this result has not yet been developed. In fact, this al- 
gorithm is is expected to be stable, since it uses many of the 
steps found in the Conventional QRD-Algorithm. Recent 
studies have shown that the conventional QRD-Algorithm 
possesses good numerical properties [3]. 

However, for characterizing the mean squared values of 
deviations in the internal quantities of an algorithm caused 
by quantization effects, an infinite precision analysis is first 
required, providing relations for the mean squared values of 
the variables themselves [4]. Besides this, infinite precision 
analysis is required to determine the dynamic range of the 
internal variables that can be used to control overflow and 
to choose registers lengths in fixed-point implementations. 

The notation used here is the same on [2]. On table 
I, the equations for calculating different variables of the 
FQRD-RLS algorithm are shown. 

This work was supported in part by the WAMIS program 
at UCLA under ARPA/CSTO Contract J-FBI-93-112 and by a 
grant from CNPq/National Research Council in Brazil 

11. Mean Squared Values of the Internal Variables 
in the FQRD-RLS Algor i thm 

A .  Mean Squared Value of xg,; 

According to equation (50), if an order N = 1 is used 
for the algorithm, it is possible to write 

Assuming that cos8o(k), ~ ( k ) ,  z , , o ( k  - 1) and sin8o(k) are 
almost uncorrelated with each other, that z(k) and sin &(k) 
are zero mean, and that all these variables are statistically 
stationary [3], it is possible to write from equations (1) and 
(2) 

E { u ? ( ~ ) }  = E { z ~ ( ~ ) } E { ~ ~ s ~  e o ( k ) )  

+ XE{zZ,,o(k))E{sin’ o o ( k ) )  ( 5 )  
E { z ~ , o ( k ) }  = E{z’(k)}E{sin’ O 0 ( k ) }  

+ XE{z;,o(k)}E{cos’ e o ( k ) }  (6) 

Considering that E { c o s 2 8 , ( k ) }  z X and 
that E{sin’ B,(k)} z 1 - X for i = 0,. . . , N, where N is 
the order of the adaptive filter [3], and that z ( k )  is zero- 
mean white gaussian noise with variance a i ,  the following 
values for the mean square values of z , , o ( k )  and ul(k) can 
be derived 
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Using the same assumptions, it is possible to derive the 
following relations for the mean squared values of eaq(k) 
and zq,l(k) 

E{e&(k))  = ~ { d ( k ) ) ~ { c o s ~  e 1 ( q  

E{&(Ic ) )  = E{at(IC))E{sin' o l ( q )  
+ ~ ~ { z 2 , , I ( k ) ) ~ { s i n ~  e,@)) (9) 

+ xE{zZ,,l(t)}E{cos2 el@)} ( i o )  

Again, using the same relations for the mean squared values 
of cosines and sines, the following relations for E{e:,(IC)) 
and E{z;,, (IC)} are derived 

In fact the above results can be generalized for an arbitrary 
order of the adaptive filter 

E{&(k) }  = 6, [-] 2x 
1 + x  1 + x  

B. Mean Squared Value of e,(k) 

According to  (51), the mean of ea(k) can be calculated 
as follows 

Considering that e , ( k )  is stationary, it is possible to derive 
the following relation for the mean, using relation (14) 

If it is considered that the variance of e a ( k )  can be neglected 
if compared to the mean, it is possible to  find the following 
relation for E{eZ,(k)) 

C. Mean Squared Value of ebo(k) 

According to equation (52), the following relation must 
be valid 

since Q , ( k )  is an orthonormal transformation. The value 
of E{llx,(k)ll'} can be calculated in many ways, and one is 
based on the summation of the mean squared values of the 
x , ( k )  vector entries, as follows 

Substituting equations (19) and (16) in (18), it follows that 

If the variance of em(k) is much smaller than its mean, an 
approximation for its mean squared value is 

D. The mean squared value of y N ( k )  

According to [3], E{&(k) }  is given by 

E. The mean squared values of crl(k) and a 2 ( k )  

Using (53), the averaging principle [5], and supposing 
that " ( I C ) ,  & ( I C )  and e,(k) are uncorrelated and statisti- 
cally stationary, the following relation can be derived 

Substituting relations (22), (14) and (16) into the above 
equation, the following result is obtained 

(24) E{(Y;(k)}  = XN+'(l - A )  

Based on equation (54), we can conclude that ( Y ~ ( I C )  and 
cyz(k)  have the same mean squared values, since Q a ( k )  is 
an orthonormal transformation and the elements of g N ( k )  
are assumed to be statistically stationary. 

E{a: (n) )  = A N + l ( l  - A) (25) 
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F. The mean squared values of cos2 cyi(k) and sin2 @ i ( k )  

The calculation of the sines and cosines of a,(k) uses an The entries in g N ( k )  are calculated recursively in time 
internal variable, eb,,(]i), j = 0, .  . . , N in the loop. The val- according to equation (54). It can be verified that the last 
ues of this variable are calculated according to the following entry in the left-side vector of this equation has its value 
difference equation changed after successive rotations. These values will be 

named en,:(k), i = O , . . . , N  . 
Assuming an order N = 2 is used, the equations for 

updating gN,,(k) are as follows 

G. Mean Squared Values of g N , , ( k )  

eb,N-t(k) = Z i , N - t ( k )  + eb,N-z+l(k) (26) 

The expected value of the solution for this difference equa- en,o(k) = gN,o(k - 1) sin ao(k) 

Y N , O ( k )  = "l(k - I)COS(Yl(k) 

~{eb,N-i(k)) = ~ { z Z q , N - j ( k ) )  + E{ea(k)) (27) en,i(k) = g ~ , i ( k  - l ) s ina l (k )  

tion is given as follows + a,(k)c0sa0(k) (33) 

1 - e,.o(k)sinal(k) (34) 

+ en,o(k)cosai(k) (35) 

(17) in the above equation, the following relation is obtained - en,i(k)sinaz(k) (36) 

] =o 

since e b , ~ + l ( k )  = en(k). Substituting relations (13) and gN,l(k) = "'(k - l)cosaZ(k) 

en,z(k) = g ~ , 2 ( k  - l )s inaz(k)  

It can be easily verified that the following relation is used 
for computing sin ai(k)  

Supposing that g,(k), en,:(k), i = O , . . . ,  N are zero mean 
and uncorrelated with each other, and substituting the re- 
lations (31) and (32) into the above equations, it is easy to 
show that 

(29) 

Using the averaging principle [5], and assuming that the 

Z q , N - i  (k) sin cr,(k) = - 
el 12 
b,N-i(k) 1 - X  

-. 
(39) 

'LA numerator and denominator in the above relation can be 
considered almost uncorrelated for approximation purposes, 
it is possible to  obtain 

+ P ' ( 1 - A ) -  
1 + X  
2x 

1 - X  
1 + X  
1 - X  

2 x  

E{g%,o@)) = E{g%,1 ( k ) ) F  

E{4,1(k)) = E { g % , 1 W x  

+ ~ { e 2 , , 0 ( ~ ) 1 ~  

(40) + E{&,O (I;)) - 
(30) 

E{Z: ,N- - i  ( k ) l  
E{eb,N-i(k)) 

Substituting equations (13) and (28) in the above relation 
it follows after simple algebraic calculations that 

E{sin' a i ( k ) )  = 

(41) 

1 - X  
E{sin2 a , ( k ) )  = - 

1 + X  

Using the fundamental trigonometric relation sin' ai(k) + 
cos' cu,(k) = 1, the mean squared value for the cosines fol- 

1 - X  
EG, '  @)I = E{gZN,2 (k)) 1+x 

E{g%,z(W = E{eZn,z(W (3') 
2X 

1 + X  
E{cos' a@)) = - 

The above relations imply 

(44) 

E{e2,,;(k)) = E{gc,,(k)) = x ~ + ' ( I  - A )  (45) 

for i = O , . . . ,  N, when N = 2. In fact this can be easily 
generalized for an arbitrary order. 
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E{ e t  (k)) 
E { ai (k)} 

Etsin’ a . ( k ) }  
E{cosZ a, (k) }  

Using equation (55), it is possible to obtain 

-34.9 -35.1 
-14.2 -14.1 
-0.11 -0.10 
-15.9 -16.4 

E{llgIV(k)ll’} = 1 - E { & ( k ) }  = 1 - AN+’ (46) 

But, if equation (45) is used, another relation for 
E{ l l g N ( k ) l l ’ }  may be obtained 

E { l l g l v ( k ) l l 2 }  = ( N  + 1)(1 - X ) X N + ’  (47) 

In fact, for X close to 1 and large values of order N ,  equation 
(47) is a very good approximation for (46). 

111. Conditions for Avoiding Overflow 

By comparing the derived values for mean squared val- 
ues of the internal variables in the FQRD-RLS algorithm, 
it is easy to verify that E { e b , , ( k ) } ,  i = O , . . - , N  have the 
largest values if fixed-point arithmetic with fractional rep- 
resentation is used. Using (28), it is easy to notice that the 
critical case happens for i = 0, since $ 5 1. Assuming 
that the internal variables must range between -1 and +1, 
we want that 

which implies, by using (28) 

& l - X  (49) 

which is the same relation for avoiding overflow in the Con- 
ventional QRD-RLS algorithm [4]. 

IV. Simulation Results and Conclusions 

Simulations were performed to show the accuracy of the 
obtained relations. The reference signal d(k) is a 4-th or- 
der MA process generated by using the same inputs of the 
adaptive filter z(k) added to a measurement noise mod- 
eled as gaussian white noise with zero mean and variance 
equal to -70 dB. The input signal z(k) was modeled as a 
zero mean white gaussian noise of variance equal to -30 dB. 
The forgetting factor X was chosen equal to  0.95 in order 
to prevent overflow. A total of 10 experiments with 10000 
points each were run. The last 9900 samples were averaged 
to obtain the shown results. 

Some of the results are shown on Table 11. I t  is possible 
to  verify that the experimental results are very close to the 
theoretical values obtained through the relations derived on 
this work. Analysing these results, we can conclude that the 
shown equations are sufficiently accurate for previewing the 
mean squared values of the internal variables in the FQRD- 
RLS algorithm. 

The results shown on this work are important for char- 
acterizing the FQRD-RLS algorithm, providing relations for 
avoiding overflow and equations for the mean squared val- 
ues of the internal variables in the algorithm. 

TABLE I 
FAST QRD-RLS ALGORITHM IN INFINITE PRECISION 

TABLE I1 
RESULTS OF SIMULATIONS. 

Value I[ Simulated (dB) 1 1  Calculated (dB) 1 
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