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ABSTRACT

This paper derives a non-linear model of dynamic auditory
perception. The model consists of a linear filter bank with
carefully-parameterized logarithmic additive adaptation
after each filter output. An extensive series of perceptual
forward masking experiments discussed here, together
with previously reported forward masking data, determine
the model’s dynamic parameters. The model’s prediction
error of forward masking data has a standard deviation of
less than 3.3 dB across wide ranging frequencies, input
levels, and probe delay times. We present an initial evalua-
tion of the dynamic model as a front end for an isolated
word recognition system, and show an improvement in
robustness to background noise when compared to MFCC
and LPCC front ends.

1. INTRODUCTION

Short-term adaptation and recovery have been mea-
sured in individual auditory nerve firings in response to
simple tones and dynamic speech [1-3]. Similarly, human
speech perception is sensitive to onsets and, more gener-
ally, dynamic spectral cues [4]. Accurate characterization
of dynamic audition, together with functional models, are
necessary to quantify the perception of non-stationary
speech. We also believe that these models will lead to sig-
nificant application improvements.

Several researchers have proposed dynamic auditory
models [e.g. 5-8]. Unfortunately, these models are often
too computationally expensive for many recognition
applications, and typically show little robustness improve-
ment when compared to more common Mel-frequency
cepstral coefficient (MFCC) front ends [9-10]. Other more
direct techniques derive dynamic responses by manipulat-
ing the time evolution of the feature vectors, and have
shown recognition improvements [11-12].

This paper parameterizes a relatively simple dynamic
psychoacoustic model from a series of forward masking
experiments. Our model is tightly coupled to measured
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dynamic human audition, while requiring the same order of
computational complexity as MFCC front ends. After
deriving the dynamic model, we include an initial evalua-
tion using the model in a noise-robust isolated word recog-
nition task. Other applications of the model may extend to
speech coding and hearing aid design.

The model includes a linear filter bank for frequency
selectivity and independent, time-varying, additive loga-
rithmic adaptation stages after each filter output. Tonal for-
ward masking experiments with varying masker levels and
probe delays provide measurements of upward adaptation
(post-stimulus recovery), while forward masking experi-
ments with varying masker durations provide measure-
ments of downward adaptation (attack).

We summarize data from our original forward masking
experiments, derive dynamic parameters for our model, and
then evaluate the noise-robustness of the model’s represen-
tations.

2. FORWARD MASKING

Forward masking reveals that even though our auditory
system may have a 100+ dB dynamic range, over short
durations the usable dynamic range is much smaller and
largely dependent on previous stimuli. A probe following a
masker of similar spectral characteristics is less audible
than a probe following silence. As the duration between
masker and probe decreases, the probe threshold is increas-
ingly a function of the level of the preceding masker, and
decreasingly a function of the absolute probe threshold in
silence. We interpret this as the auditory system adapting to
the masker. After adaptation to the masker, it takes time to
re-adjust so that the relatively quiet probe is audible. The
amount of forward masking is also a function of the dura-
tion of the masker, reflecting the time necessary for the
auditory system to adapt completely to the masker. For-
ward masking experiments therefore provide an opportu-
nity to measure the rate and magnitude of short-term
auditory adaptation and recovery.

We measure the amount of forward masking of a short
tone following a long masking tone of the same frequency



(and phase), across varying masker levels, probe delays,
and center frequencies. These measurements extend previ-
ous data [13]. Experimental details are described in [14].

Figure 1 shows our forward masking data (averaged
across five subjects) together with the model’s fit, at 1
kHz. Additional data, and resulting model parameters,
were also obtained for center frequencies from 250 to
4000 Hz (not shown).
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Figure 1: Forward masking data and model fit at 1 kHz.
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These forward masking data are used to derive the
upward adaptation (recovery) parameters for the model,
while other data [15], which measure the change in short-
delay forward masking with masker duration, are used to
derive downward adaptation (attack) parameters.

3. DERIVATION OF MODEL PARAMETERS

In our perceptual model, a dynamic adaptation stage
follows each output of a linear filter bank. The filter bank
separates sound into appropriate bands, and the adaptation
stages provide a dynamic response largely dependent on
preceding inputs. For this computationally-efficient ver-
sion of the model, Mel-scale filters are implemented by
weighting and adding power spectrum points from a Dis-
crete Fourier Transform incrementing at approximately a
100 Hz rate.

We refer to the dynamic adaptation stages as automatic
gain control (AGC). However, it is significant that the
AGC is implemented as an adapting additive increase to
the log energy of the signal, and not as an adapting multi-
plicative factor after the logarithm [2].

The AGC stages adjust an additive logarithmic offset
slowly in time to keep the output level on an /O target.
The rate of adaptation of the AGC stage is described in
terms of time constants. An AGC time constant can be
defined as the time for the output to settle to within 2 dB of
the /O target in response to an abrupt 25 dB change of the
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input [16]. Different time constants are used for decreasing
offset (attack), and increasing offset (release). Over short
durations relative to the time constant, the AGC stage has
little time to adapt, and is therefore nearly linear. On an I/O
curve, when the input changes abruptly, the output initially
tracks the input, moving in a 45 degree line.

For this first-order model, we impose a piece-wise linear
I/0 curve with a slope of 1 below threshold, a constant
compression slope less than 1 from threshold to a high
value of equal loudness across center frequency (90+ dB
SPL), and a slope of 1 thereafter. The shape of the prototyp-
ical I/O curve is motivated by the motility of outer hair
cells [17]. Here we generalize this I/O shape to derive a
generic model of adaptation. We also impose a fixed inter-
nal threshold, corresponding to the static threshold.

Figure 2 describes the geometry necessary to measure
the model’s prediction of the forward masking threshold
with long maskers as a function of masker level and probe
delay. Before the masker offset, the output trajectory
reaches the target on the /O curve (point A). As the masker
shuts off abruptly, the output trajectory instantly falls along
the diagonal. Once the trajectory is below the compressive
region, the distance to target is constant, and the model
adapts by slowly increasing toward maximum additive off-
set (region B). At some point during this adaptation, the
onset of the probe causes an abrupt transition from below
threshold back up along a new diagonal (point C). If the
probe level is high enough to place the trajectory above
threshold (at the instant of the probe onset) the probe is
audible, if the internal level just reaches threshold, the
model predicts a forward masking threshold.
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Figure 2: Geometry to derive model parameters.

In our digital implementation, the adaptation of the
model is controlled by a first order difference equation
which leads to a corresponding exponential decay of the



(logarithmic) distance to target, while the input is constant.

From Figure 2, the probe threshold P as a function of
masker level M, probe delay nu, /O slope m, and incre-
mental upward adaptation a is:

P=M(1-m)a™

Instantaneously after masker offset, nu is zero, and the
slope parameter determines the predicted short term
usable dynamic range below masker. Therefore forward
masking data with the shortest probe delays provide an
initial estimation for the slope parameters. Iterative mini-
mization of the MSE of the model’s forward masking pre-
dictions determine final parameters.

Similar geometric reasoning relates the model’s down-
ward adaptation to the change in probe threshold as a
function of the duration of the masker. Shorter duration
maskers leave less time for downward adaptation, which
leads to less forward masking shortly after the masker off-
set. The change in probe threshold AP, as a function of the
incremental downward adaptation b, and masker duration
nd is:

AP = M (I - m) b" g™

We solve the probe difference equation for b, and then
estimate its value from the differences reported in [15],
using the m and a parameters derived from the first experi-
ments. Table I summarizes the model parameters and
effective time constants [16] across frequencies. The @ and
b terms are with respect to sampling the spectrum every 10
ms. Two general trends are clear: the model’s slope
increases with increasing center frequency; and downward
(attack) time constants are 3 to 4 times shorter than
upward (recovery) time constants.

TABLE I: Adaptation Parameters

Freq. Hz Slope m a b up TC d,(;%m
250 0.19 0.864 0.474 159ms 31ms
500 0.20 0.854 0.510 146ms 34 ms
1000 0.26 0.816 0543 109ms 45ms
2000 0.29 0.851 0525 135ms  34ms
4000 0.34 0.858 0507 139ms 31ms

Finally, the adapting model predicts dynamic relative
loudness, and forward masking consistent with five points
summarized previously [18]: 1) The amount of forward
masking drops nearly linearly in dB with the log of the
probe delay. 2) The rate of decay of the amount of mask-
ing is greater for increased amounts of masking. 3) An
increase in the masker level leads to a-fractional increase
of the amount of masking (determined by the slope param-
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eter in our model). 4) Shorter duration maskers lead to less
forward masking. 5) Forward masking is a function of the
frequency relationship between the masker and probe.

Figure 3 shows Mel-scale spectrograms before and after
the adaptation stages for the digits “nine six one three,”
spoken by a male talker. Notice that the adaptation stages
emphasize the onset of “nine” and the formant transitions
in “one” and “three.”
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Figure 3: Spectrograms before and after adaptation.

4. ROBUST RECOGNITION EVALUATION

Our goal is to derive a functional model of dynamic
audition as a tool for understanding speech perception
which can be readily applied to engineering applications.
Preliminary evaluation with a dynamic programming-based
word recognition system, shows improved robustness to
background noise when the dynamic perceptual model is
compared with more standard MFCC and LPCC front ends.
The dynamic model highlights onsets and spectral transi-
tions which may remain as perceptually salient cues after
the addition of background noise. Motivated by the sensi-
tivity of our auditory system to the frequency location of
spectral peaks, we also evaluate the dynamic model
together with a novel processing technique which isolates
local spectral peaks. Interestingly, the combination of a
dynamic response with peak isolation is significantly more
robust than either process by itself.

Figure 4 shows the degradation of recognition perfor-
mance in background noise with four front ends: LPCC,
MFCC, the dynamic model (DYN), and the dynamic model
with peak isolation (DYN+PK). A 13 element cepstral vec-
tor, and its temporal derivative are obtained for each front
end. The local distance measure is Euclidean, but does not
include the undifferentiated cepstral level term (cg).

The peak isolation algorithm is a novel form of raised-



sin cepstral liftering [19]. After liftering the cepstral vec-
tor, we transform back to the frequency domain. Points in
frequency that are below zero are set to zero. Then the lift-
ered and zero-clipped spectral vector is combined with the
original spectral vector to derive a peak- (but not valley-)
isolated spectral estimation. Finally, we transform the vec-
tor back to the cepstral domain.

Increasing amounts of noise shaped to match the long-
term average speech spectrum [20] complicate a speaker-
dependent isolated digit recognition task. Consistent with
previous results [9], we find MFCC more robust than
LPCC. However, both the dynamic model (DYN), and the
dynamic model with peak isolation (DYN+PK), are signif-
icantly more robust to background noise than MFCC. Fol-
lowing this initial evaluation, future experiments will
evaluate the robustness of the model’s representations
with more difficult recognition tasks, using more sophisti-
cated recognition systems, and including comparisons
with additional front ends.
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Figure 4: Recognition degradation with background noise.

5. CONCLUSION

This paper derives a model of dynamic auditory percep-
tion. Non-linear adaptation and recovery are parametrized
from perceptual forward masking data. The complete
model provides a tool for analyzing the perception of non-
stationary speech.

As a front end to a simple speech recognition system,
the model shows promise improving noise-robustness.
Other potential applications of the model include hearing
aid design and speech coding. Future work will include
perceptually-parameterized peak isolation and continuing
recognition evaluations.
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