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Professor Abeer Alwan, Chair

A model that predicts dynamic auditory perception is presented.

Physiological and psychophysical results suggest the qualitative model for the

structure presented, a simple set of perceptual forward masking experiments

determine quantitative model parameters. The model uses a parallel filter bank

combined with carefully parameterized logarithmic automatic gain control on each

band to model adaptation in human audition. This structure re-creates several

measurable aspects of dynamic, or time varying, audition including: emphasis of

onsets and transitions, level-dependent effective filter shapes, a relatively small

short-term dynamic range, and reduced sensitivity to slowly varying channel

characteristics. This model, as the front end for DTW-based speech recognition,

together with a perceptually motivated spectral distance measure, improves system

resilience to background noise by 5-10 dB, when compared to LP-cepstral

representations using weighted-cepstral distance measures.
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Chapter 1

Introduction

1.1 Psychophysical and Physiological Auditory

Modeling

Fletcher [1940], and later Zwicker et al., [1957, 1980] quantified the

frequency-selectivity of the human auditory system through a series of static

perceptual masking experiments. These observations and resulting models, which

define the critical bandwidths of effective auditory filters, continue to provide

significant insight for speech perception models, and perceptually-based speech

signal processing.

Bekesy [1953, 1960] directly observed the mechanical operation of the

cochlea, and how the non-uniform basilar membrane leads to mechanical frequency

selectivity (and won the Nobel Prize). More recently, precise measuring techniques
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have shown that cochlear mechanics, and therefore the frequency selectivity of the

basilar membrane, is extremely active and fragile, adapting to the input waveform

and deteriorating quickly with the health of the specimen [Sellick et al., 1982]

[Ashmore, 1987].

In addition to static (or simultaneous) masking, where one static sound

masks the perception of another, researchers also measure dynamic (or forward)

masking, where a loud sound masks the perception of a following quiet sound

[Plomb, 1964], [Jesteadt et al., 1982]. Further, perceptual experiments with speech

stimuli show that our auditory system is acutely sensitive to transitions and onsets

in speech [Furui, 1986]. Together with evidence of an adapting, active cochlea,

these experiments firmly support a dynamic model of speech perception.

Although there are exceptions (e.g. Hermansky et al., [1992], Ghitza

[1991], Seneff [1990], Lyon [1988, 1982]), the predominant model of hearing used

for speech recognition directly incorporates static critical-bandwidth frequency-

selectivity and does not include an explicit model of dynamic auditory perception.

The critical bandwidth model of auditory frequency selectivity predicts

static auditory masking, provides significant insight into auditory perception, and

has important implications for speech processing applications. Following this

example, a well-quantified model of dynamic auditory adaptation, which predicts

dynamic auditory masking, should provide additional insight into auditory

perception, and may similarly improve speech processing applications. This thesis
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quantifies a dynamic auditory model which predicts both static and dynamic

auditory masking, and evaluates the model in a simple speech recognition system.

1.2 Speech Recognition Overview

Most speech recognition systems divide the recognition problem into two

parts: a short-term spectral estimation, followed by a comparison of a collection of

short-term spectral estimations with previously observed spectral estimations. In

some sense, the short-term spectral estimation models our ears, changing pressure

waves into an internal time-frequency representation, and the comparison of these

spectral estimations models higher-level brain functions, comparing the sequence

of internal representations to previously observed sequences associated with some

meaning. A single short-term spectral estimation is often called a feature vector, and

a collection of them ordered in time is the observation sequence. Figure 1.1 shows

a block diagram for this overview.

Figure 1.1   Speech Recognition Overview

Spectral

Extraction

Pattern

Comparison

Speech Recognition

“Ears” “Higher-Level Brain”

Signal Processing

DFT, LPC, Cepstrum

Observation

Sequence

Stochastic Modeling

Hidden Markov Models
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Several signal processing techniques have been used for spectral extraction

for speech recognition, although currently most systems use some type of cepstral

representation [Rabiner and Juang 1993]. There are computationally efficient

algorithms to obtain cepstral representations, these representations have relatively

few elements per feature vector, and they retain a subset of the available acoustic

information which has proven to be suitable for recognition. Further, there are

techniques to incorporate aspects of static auditory perception in the cepstral

representation, which have improved recognition performance.

There are several common approaches for pattern comparison. A dynamic

programming technique provides a deterministic solution to measure the best

alignment, and thereby, the closest match between an observation sequence and a

set of stored template observation sequences, subject to imposed alignment

constraints. Neural Networks have been used in different parts of pattern

comparison algorithms, making the comparison processes more flexible and

trainable.

However, recent advances in the application of stochastic modeling, using

Hidden Markov Models, have greatly improved speech recognition systems’

performance [Rabiner and Juang 1993]. These techniques provide a stochastic

framework for rigorous statistical training from observation sequences.

Applications of HMMs have successfully lead to speaker-independent, connected-

speech, and with higher-level grammar and context models, large vocabulary
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recognition systems [Lee et al., 1991].

1.3 The Problem and Proposed Solution

Despite advances from stochastic modeling in the areas of connected

speech, speaker-independence, and increased vocabulary size, recognition systems

typically do not work well with even slight changes in the acoustic environment.

Different background noise from that present in the training data, or even a different

microphone can greatly reduce recognition performance. Without a robust solution,

wide-spread speech recognition applications do not yet exist.

We assume speech recognition systems will be more robust if they use

spectral estimations more consistent with those estimated by the human auditory

system. A well-quantified model of short-term auditory dynamics provides the next

level of modeling detail after critical band frequency-selectivity.

Although several models incorporating auditory adaptation have been

proposed [Hermansky et al., 1992, Kates, 1991, Seneff, 1990, Lyon, 1988 and 1982,

Goldhor, 1985], choosing parameters for the adaptation remains a consistent

challenge. In perhaps the most complete derivation of these, Seneff [1990], using

the adaptation structure from Goldhor [1985], chooses adaptation parameters for a

specific (and single) stage of the auditory system based on detailed physiological

data. By definition, this approach neglects significant adaptation at higher-levels of

the auditory system. Others typically use parameters either loosely motivated by

perceptual or physiological observations, or simply those parameters which provide



6

good results for the specific application.

The significant contribution of this work is the ‘closed-loop’ quantification

of a dynamic auditory model. Specifically, the shape of the I/O curves and the

logarithmic adaptation time constants are obtained through a complete set of

perceptual forward masking experiments.

1.4 Thesis Overview

This thesis relies on evidence from cochlear mechanics and psychoacoustics

to develop a relatively simple time-varying model which captures several

prominent auditory phenomena. The model is evaluated as the front end for a

speech recognition system. Original forward masking experiments across a wide

range of frequencies, levels, and delays provide model parameters.

Chapter 2 describes the physiological and perceptual motivation for the

dynamic model and includes a qualitative description of its implementation and

functionality. Chapter 3 summarizes the perceptual experiments and results which

lead to model parameters. Chapter 4 translates the experimental results into model

parameters. Chapter 5 is a description of the speech recognition system. Finally,

Chapter 6 discusses incorporating the model as the front end to the recognizer, and

the impact the model has on improving recognition performance in noisy

environments. The summary includes discussions of other applications of the

model, possible extensions to the model, as well as future developments of the

recognition system.
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Chapter 2

Time-Varying Spectral Extraction

2.1 Motivation

There is significant physiological and psychoacoustical evidence for a time-

varying active adaptation in the human auditory system. Physiologically, there is

evidence that outer hair cells provide varying amounts of amplification to the wave

traveling down the basilar membrane in the cochlea. Psychophysically, we can

measure how quickly the auditory system adapts to changing input levels. These

measurements combined with static frequency-selectivity data quantify a first order

model of adaptive auditory perception.

2.1.1 Physiological Review

The ear is divided into an outer, middle and inner ear. The outer and middle

ear are often modeled as a single passive system. The inner ear contains the cochlea
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and is the interface between the pressure wave and the neural signals sent to the

brain. Mechanically, the cochlea separates signals by their frequency components,

while outer hair cells within the cochlea provide active, time-varying amplification.

This thesis proposes a model of these last two functions leading to a dynamic

spectral representation of sound.

2.1.1.1 Outer and Middle Ear

A pressure wave traveling through the human auditory system first passes

through the outer ear which consists of the pinna and the ear canal. The pinna and

head provide different frequency responses as a function of the relative position of

the sound source, while the ear canal provides a relatively broad and fixed

resonance around 1.5 kHz. The middle ear is mostly an impedance matching device

between air and the fluid within the cochlea. The tympanic membrane, or ear drum,

is attached to three bones forming a lever which, in turn, is attached to the oval

window opening to the cochlea. The middle ear changes the small pressure over the

relatively large area of the ear drum into a large pressure over the relative small area

of the oval window. There are muscles attached to the bones of the middle ear which

can change their relative position reducing the amount of energy passed to the

cochlea (when the listener speaks for example), but typically this effect is not

significant. Therefore the entire outer and middle ear are mostly passive devices,

often modeled as a single linear system [Pickles, 1988].
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2.1.1.2 The Cochlea

The cochlea converts the acoustic pressure wave from the middle ear into

sequences of neural spikes sent to the brain. The pressure wave travels from the oval

window at the base of the fluid-filled cochlea, along the basilar membrane toward

the apex of the cochlea. At the apex of the cochlea, the chambers above and below

the basilar membrane are connected. The lower chamber continues back from the

apex to the round window near the base of the cochlea. Inner hair cells along the

basilar membrane respond to the traveling pressure wave by firing neural spikes

sent along the seventh cranial nerve to the brain. For every inner hair cell, there are

approximately three larger outer hair cells connected to neurons travelling from the

brain to the outer hair cells [Pickles, 1988].

The basilar membrane is not uniform. At its base it is broad and stiff; toward

the apex it becomes narrower and less rigid [von Bekesy, 1960]. Because of this

change in shape and stiffness, pressure waves travelling on the basilar membrane

slow exponentially by a factor of about 100 as they travel from base to apex [Lyon

and Mead, 1988]. As the wave speed slows, the energy per period from the wave

concentrates over a shorter distance and the displacement per unit length of the

basilar membrane increases. Inner hair cells fire in response to the change in

displacement with length [Lyon and Mead, 1988]. Eventually, depending on the

period (or frequency) of oscillation, the wave concentrates the deformation along a

short enough distance of the basilar membrane, that the losses due to the
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deformation of the membrane dominate the propagating wave. After this point, the

wave propagation becomes two and three dimensional, and the wave energy per

unit length drops abruptly as it moves toward the apex. This mechanism effectively

separates the frequency components of the input signal. Higher frequency

components concentrate per unit length and dissipate earlier, closer to the base,

while lower frequencies concentrate and dissipate later, closer the apex. The

collection of neural spikes from inner hair cells along the length of the basilar

membrane form a spectral estimation, as well as a detailed frequency-divided time

domain representation, sent to the brain. Figure 2.1 [von Bekesy, 1960] shows the

concentration and dissipation of a sinusoidal wave along the basilar membrane in

the cochlea.

Figure 2.1   Displacement of the basilar membrane in response to a sinusoid at 4
stages in its propagation (after von Bekesy, [1960]).

G. von Bekesy[1953, 1960] pioneered cochlear mechanics, by directly

observing the vibrations of the basilar membrane in human and animal cadavers
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using mechanical stimulation and an optically-based microscopic stroboscope. We

now understand that the mechanical vibrations in the cochlea change dramatically

with the condition of the cochlea and the animal. However, understanding the

passive mechanical process of gradually concentrating and then quickly dissipating

as a function of stimulus frequency is the first step toward physiologically defining

auditory frequency selectivity. Further, this process suggests individual band-pass

filters which are sloped more gradually toward lower frequencies and more abruptly

toward higher frequencies. Lower frequency components concentrate slowly as

they propagate past, and partially stimulate, “high-frequency” inner hair cells,

while higher frequency components dissipate quickly and do not propagate past

many “low-frequency” inner hair cells. Figure 2.2, after Ghitza [1991], shows the

frequency response of specific inner-hair cells along a healthy cat’s basilar

membrane.
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Figure 2.2   Frequency response of neural fibers along a cat’s basilar membrane
(after Ghitza 1991).

Using the Moessbauer technique, Sellick et al. [1982] and Johnstone et al.

[1986] have more precisely measured the displacement of the basilar membrane in

healthy guinea-pigs as a function of input frequency and level. Figure 2.3.a from

Johnstone et al. [1986] shows the change of basilar motion, at a point corresponding

to an 18 kHz center frequency, with input frequency and level. Along the lowest

input, 20 dB SPL, notice that the basilar motion is extremely sharply tuned: a small

deviation from the center frequency results in a large reduction of basilar motion.

However, as the level of the input increases, the curves become increasingly

broader: small deviations in frequency are no longer as significant. Figure 2.3.b
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[Sellick et al., 1982] records the level of an input, of varying frequencies, necessary

for a constant amplitude basilar motion. The dotted line indicates the threshold of a

neuron attached to the basilar membrane with an 18 kHz center frequency. Again,

notice the tuning is sharpest with lower inputs. A frequency response that changes

with input level necessitates at least a non-linear system, and may suggest level-

dependent active amplification.

Figure 2.3   Measured at 18 kHz center frequencies: A) Basilar motion in response
to constant level inputs of varying frequency (after Johnstone et al., 1986). B)
Constant basilar motion in response to inputs of varying frequency and level: the
dotted line marks the threshold of an associated inner hair cell (after Sellick et
al.,1982).

2.1.2 Evidence Supporting a Mechanically Active Cochlea

There is significant direct evidence that the cochlea is not a mechanically
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passive device. Cochlear emissions may provide the strongest evidence for active

amplification in the cochlea. Responding to a quiet click, the cochlea can generate

more acoustic energy in the ear canal, than the click itself [Kemp, 1978]. More

obviously, during tinnitus, we can acoustically measure the ringing produced by the

cochlea [Wilson, 1980], most likely the result of an instability introduced by active

amplification. In addition, healthy outer hair cells change their shape (with time

constants near 200 usec) in response to electrical stimulation, suggesting a suitable

mechanism for active amplification, perhaps even on a cycle by cycle basis

[Ashmore, 1987]. Further, experiments that selectively disable outer hair cells in the

cochlea show increased thresholds and broader tuning curves [Evans and Harrison,

1976].

Ignoring influences from outer hair cells, a passive mechanical model does

not explain extremely sharp tuning curves of healthy hearing, nor does it explain the

enormous usable dynamic range. Careful measurements and simulations of the

passive mechanical system predict relatively broad (fixed) filter shapes [Viergever

and Diependaal, 1986], similar to those measured with dead cochlea. By adjusting

model parameters for less damping, the passive mechanical model can approximate

the sharp tuning, if not the level-dependence, however in order to produce the

magnitude of the tuning in Figure 2.3.a, the tip of the resonance becomes too narrow

[Viergever and Diependaal, 1986]. Instead, evidence supports an adaptive influx of

energy from the cochlea to the traveling wave just before the wave reaches its peak
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displacement, as shown in Figure 2.4 from Pickles [1988].

Figure 2.4   An active mechanism explaining basilar motion: dotted lines shows
passive mechanics, after Pickles [1988].

Models incorporating such an active mechanism reproduce the level-

dependent basilar membrane responses and neural tuning curves of Figures 2.3.a,b

[Neely and Kim, 1986]. Analysis of the firing rates of inner hair cells indicates that

even though some cells fire in response to low level inputs, and others fire in

response to higher-level inputs, 80% of these cells have thresholds in the lowest 20

dB [Liberman, 1978], suggesting at least difficulty encoding our 100+ dB usable

range. Interestingly, a reduced dynamic range, and wider filter shapes are more

characteristic of sensorineural hearing loss.

This evidence, combined with number of outer hair cells and the neural

connection from the brain to the outer hair cells, suggests an active feedback loop

from the brain to the outer hair cells [Pickles, 1988]. The outer hair cells add energy

to the propagating wave, increasing stimulation of specific regions of inner hair
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cells. When a sound at a specific frequency is barely audible, outer hair cells at the

corresponding region provide their maximum amplification. As the sound increases

in level, the outer hair cells apply increasingly less amplification. Above some input

level, and perhaps below some lower input level, outer hair cells provide little or no

amplification.

 Adaptive amplification of the input increases the usable dynamic range;

otherwise inaudible sounds are amplified to audibility, while sounds that would not

need amplification are not amplified. This adaptation compresses a wide dynamic

range into a smaller one. More subtly, adaptive amplification, a non-linearity, makes

the effective frequency response of each filter level-dependent. The adaptive

change of amplification, presumably controlled or at least influenced through

neurons from the brain, is a primary physiological mechanism for the dynamic

auditory model presented in this thesis.

2.1.3 Psychoacoustical Evidence Supporting Adaptation

There are three categories of evidence supporting auditory adaptation: more

directly measurable psychoacoustic phenomena, secondary evidence of perceptual

effects consistent with a model of auditory adaptation, and comparisons of hearing

impaired perception with that of healthy hearing. The first provides an opportunity

to quantify model parameters, while the second and third provide confirmation that

ramifications of the model are consistent with other measurable effects; the model

is not specific to a single perceptual experiment nor phenomenon. In fact, this
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relatively simple model, provides a framework that explains a surprising amount of

non-linear auditory perception.

2.1.3.1 Direct Psychoacoustic Evidence

The most direct psychoacoustic effects supporting an underlying model of

adaptation are forward- or post-masking, and level-dependent perceptual tuning

curves. Forward masking is relatively quantifiable, however, due to non-linearities

in the cochlea, perceptual tuning curves are slightly more elusive.

Forward masking reveals that even though our auditory system may have a

100+ dB dynamic range, over short durations the actual dynamic range is much

smaller and largely dependent on previous stimuli. When a probe signal follows a

masking signal with similar spectral characteristics, the probe signal is less audible

than a similar probe signal following silence. As the duration between probe and

masker decrease, the threshold of the probe is increasingly a function of the level of

the proceeding masker, and decreasingly a function of the probe signal threshold in

silence. We interpret this phenomena as the auditory system adapting to the masker.

Once the system adapts to the level of the masker, it takes time for the system to

adjust so that the lower-level probe is audible. Over short durations, the audible

dynamic range below a masker is far less than that predicted by static threshold

measurements. In fact, we show over the range of durations and levels significant

for speech perception, this is an enormous effect which shifts thresholds by as much

as 40-50 dB from their static levels. Further, the shift is a function of the duration
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of the masker [Zwislocki et al., 1959], reflecting the time necessary for the auditory

system to adapt completely to the masker. Forward masking experiments provide

the opportunity to measure the rate of adaptation as a function of input level and

frequency, in addition to the magnitude of this phenomenon.

To a first order, psychophysical tuning curves approximate physiological

tuning curves. Figure 2.5 shows estimates of psychophysical tuning curves at three

center frequencies [Zwicker, 1974]. The subject adjusts the level of a narrow-band

masker until a low level sinusoid held fixed at the center frequency is just audible.

Notice the general similarity to the physiological curves of Figure 2.3.

Figure 2.5   Psychophysical Tuning Curves, from Zwicker [1974].

However, Houtgast [1977] explains that because psychophysical tuning

curves are usually measured with simultaneous masking of tones by noise, the

presence of the masker affects the perception of the tone; both signals are processed
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through a non-linear cochlea. Instead, Houtgast proposes measuring

psychoacoustic filter shapes with non-simultaneous (forward) masking, by probing

the after-effects of a single tone. A short (10-20ms) probe tone of varying frequency

immediately follows a longer masking tone. The frequency-dependent threshold of

the short probe indicates how much neighboring filters, or neurons, are stimulated

by the tonal masker. Collections of these data indicate filter responses significantly

narrower, less symmetric, and more similar to the physiologically estimated filters

in Figure 2.3, than those from simultaneous masking data [Moore et al., 1984].

Figure 2.6 compares the tuning curves derived from simultaneous and non-

simultaneous masking, highlighting the differences in bandwidth and symmetry.

Figure 2.6   Tuning curves from simultaneous and non-simultaneous (forward)
masking experiments, after Moore [1978].

Clearly, we can not define a single, ideal, cochlear filter frequency response.

Such a definition reflects the imposition of an idealized linear model on a
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fundamentally non-linear system. Nonetheless, the perceptual and physiological

evidence do support filters of: increasing bandwidth with increasing center

frequency, more abrupt high frequency cut-off than low, and increasing sharpness

with decreasing level.

2.1.3.2 Secondary Perceptual Evidence Supporting Adaptation

There is a second group of perceptual evidence supporting auditory

adaptation which does not provide readily measurable model parameters, but does

confirm that ramifications of auditory adaptation are consistent with other

measurable perceptual phenomena.

The human auditory system is relatively insensitive to fixed, or even slowly

changing, channel frequency-characteristics. The location of spectral peaks, and not

so much their relative strength nor bandwidth, provide the most salient cues for

static vowel perception [Klatt series: 1979, 1980, 1981, 1982, 1986]. An adaptive

auditory system adjusts to the channel frequency-characteristics so that fixed

average energy differences across frequency are less significant.

Perhaps equally important for the perception of speech, onsets and spectral

transitions are more salient than static sounds [Furui, 1986]. As the input to an

adaptive model transitions from low-level (or near silence) to higher-level, the

adaptive model takes time to adjust to the high-level input. At the onset the model

applies large amplification to a higher-level input, greatly emphasizing the onset. A

spectral transition provides a sequence of “onsets” in different frequency bands, just
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as running your finger across the keys of a piano provide a sequence of onsets of

each note. Channel-insensitivity and emphasis of onsets and transitions are listed as

the primary motivation for the relative spectral representation of RASTA

[Hermansky et al., 1992], but are also natural ramifications of an adaptive auditory

model.

2.1.3.3 Evidence From Sensorineural Hearing Impairment

There is more secondary evidence of auditory adaptation from the

perception of hearing impaired by sensorineural loss. These losses, usually

characterized by outer hair cell damage, result in increased tone thresholds in quiet,

reduced usable dynamic range, and broader tuning curves [Zwicker 78]. If the outer

hair cells play an essential role in auditory adaptation, their loss implies reduced

adaptation, consistent with increased tone thresholds in quiet: the auditory system

can no longer amplify lower level signals; and reduced dynamic range: the auditory

system can not reduce the amplification with increasing input level to compress a

wide dynamic range. In fact, to compensate for these hearing losses, hearing aids

with different types of automatic gain control, off-loading part of the auditory

adaptation are prescribed [Dillon and Walker, 1982]. Similarly, if adaptive

amplification plays a key role in sharpening the tuning curves, otherwise available

from a passive cochlea, the loss of adaptation implies broader- than normal- tuning

curves.

Finally it seems reasonable that adaptation, common to the rest of our senses
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(if not our thoughts), is perhaps a primary lesson of evolution, which naturally

extends to our auditory system.

2.2 A Dynamic Auditory Model

We model a dynamic auditory system with a simple filter-bank followed by

carefully-parameterized individual automatic gain control on the output of each

filter. Figure 2.7 shows a schematic overview of the proposed model.

Figure 2.7   Overview of the dynamic model.

The filter bank models the frequency selectivity from cochlear mechanics,

the automatic gain control models adaptation. The parallel filter bank is
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unambiguous once frequency responses are specified, however the non-linear

automatic gain control (AGC) requires more careful explanation.

Typical AGC slowly adapts to maintain the output near a target level when

the input changes level. A time constant determines how quickly the model adapts,

and the output target level sets the final level. More sophisticated AGC, typical of

those used in compression hearing aids, adjust its amplification only above an input

threshold, called the compression threshold. Once the input is above threshold, the

target output may slowly increase with increasing input. The reciprocal of the slope

of this increase defines the compression ratio. Plotting target output level as a

function of input level, on a log/log scale, defines the static I/O curve for the AGC.

Figure 2.8 is an example of a typical I/O curve for a hearing aid.

Figure 2.8   A typical AGC static I/O curve.
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Notice inputs below 30 dB are linearly amplified by 20 dB, however inputs

above 30 dB are amplified increasingly less. Notice also, above the compression

threshold, the 60 dB input dynamic range (30 to 90 dB) is compressed into a 20 dB

dynamic range (50 to 70 dB). On log/log IO curves, a slope of one implies linearity,

slope less than one implies compression, and a slope greater than one implies

expansion. Linear amplification translates to a vertical shift. The model developed

in this thesis uses independent AGC on the output of each filter, each with I/O

curves and time constants derived from forward masking experiments.

Lyon described a filter bank followed by automatic gain control cochlear

model first in 1982; Lyon and Mead [1988] and Kates [1991] continue to evolve this

model along with models of higher-level processing. Other cochlear models

[Duifhuis, 1973, Seneff, 1990] incorporate explicit, often probabilistic, adaptive

neural models after the filtering. Instead of modeling the physiology in detail, we

focus on the two primary processes suggested by perceptual data: frequency

selectivity and adaptation. The model described here differs from Kates’ and Lyon’s

in the structure and implementation of the filter bank, but perhaps more

significantly, we derive perceptually-based I/O curves and time constants for the

automatic gain control, quantitatively tying the adaptation of the model to measured

perceptual phenomenon. Finally, we evaluate the model by incorporating it as the

front-end for a simple speech recognition system.
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2.3 Ramifications of the Dynamic Model

The model incorporates a simple adaptation mechanism with frequency

selectivity. As such, it reproduces several of the physiological and perceptual

phenomena listed above as evidence for frequency-dependent adaptation.

2.3.1 Wide Dynamic Range

Figure 2.9 shows a possible I/O curve for a single automatic gain control

block in the model.

Figure 2.9   Prototypical I/O curve for a single AGC block.
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Input

“Internal”
Level

dB SPL-10 10 30 50 70

-60

-40

-20

90

20

40

0

Linear

Threshold

Compression



26

above some upper limit. AGC with the I/O curve of Figure 2.9 will compress the

wide input dynamic range from 10-90 dB SPL into a smaller 0-30 dB internal

dynamic range.

2.3.2 Dynamic Relative Loudness and Dynamic Thresholds

I/O curves for AGC provide the static output for a given static input. Time

is not included on an I/O curve. For dynamic inputs, the I/O curve provides the

corresponding target output level, implying a target amplification. Time constants

control how quickly the AGC adjusts to the target values. Over short time scales

relative to the time constants of the model, the amplification does not adjust, and the

system is nearly linear. On I/O curves, short time scale changes are viewed as

instantaneous motion along a diagonal line, followed by relatively slow adjustment

to target values. Figure 2.10 shows the prototype I/O curve with output trajectories

corresponding to an input transitioning from 80 to 30 dB SPL at three different rates
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relative to the model time constant.

Figure 2.10   Output trajectories with inputs transitioning from 80 to 30 dB SPL at
three different rates.

When the input transitions instantaneously from 80 to 30 dB, the trajectory

falls linearly, and the internal level correspondingly falls by 50 dB. Eventually the

adaptive amplification of the AGC increases, and the trajectory rises to meet the

static target output for the new lower input. When the input transition is much

slower than the adaptation time constant, the trajectory follows the I/O curve more

closely. In between, with transition times on the order of the adaptation time

constant, there is a continuum of possible trajectories.
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both above static thresholds, to lead to momentary dips below threshold. Whenever

the trajectory dips below threshold, the model predicts the sound is inaudible.

Therefore, with carefully chosen I/O curves and time constants, this structure

predicts dynamic thresholds, or forward masking. The amount of forward masking

will be a function of the level of the masker, the delay between masker and probe,

and the length of the masker (until the masker length is long relative to the time

constant). Further, the continuum of super-threshold trajectories predicts dynamic

relative loudness. That is, the model predicts the perceived, internal loudness to be

a function of the preceding stimuli.

2.3.3 Level-Dependent Filter Shapes

AGC is non-linear: different level inputs result in varying amplification.

Therefore, the system of a linear filter followed by AGC has a level-dependent

effective frequency response. Figure 2.3 shows that the frequency response of the

basilar membrane at a fixed position is a function of the level of the input. More

specifically the sharpest frequency response occurs with inputs near threshold. A

simple example will show how the proposed model at least qualitatively reproduces

this phenomenon.

Assume one filter in our model has a 20 dB drop 200 Hz from its center

frequency, and that we use the prototypical I/O curve for the AGC. A static 15 dB

sinusoid at the center frequency on the input, passes the linear filter with unity gain,

and is then multiplied by the AGC such that the internal level is just above
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threshold. A sinusoid of the same level, shifted by 200 Hz, passes the linear filter

with a 20 dB drop. The I/O curve places the internal level roughly 30 dB below the

level of the sinusoid at the center frequency. The non-linearity of the AGC expands

the 20 dB linear difference into a 40 dB internal difference. If we consider the same

two sinusoids at an increased amplitude of 70 dB, we see the 20 dB difference from

the linear filter is compressed into a 5 dB difference internally. Therefore, the shape

of the I/O curve defines the level-sensitivity of the effective frequency response.

Figure 2.11 shows these two examples. With the prototypical I/O curve, the sharpest

filter response occurs around threshold, and filter shapes are increasingly broad with

increasing level.

Figure 2.11   Examples of how AGC leads to level-dependent filter shapes. After
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linear filtering in our model, a 20 dB change in frequency response translates to a 5
or 40 dB internal level change, depending on the level of the input.

2.3.4 Emphasis of Onsets

Previously we considered how the model responds when the input

transitions from high to low levels. Even if the low level is above a static threshold,

depending on the rate of transition, the model may predict momentary inaudibility.

A similar analysis of transitions from 30 to 80 dB SPL, with trajectories for

different transition times appears in Figure 2.12. The model is nearly linear when

the transition is much less than the model time constant. Corresponding trajectories

move diagonally instantaneously, and then settle vertically to the corresponding

point on the I/O curve. As the transition time increases, the trajectory stays closer

to the I/O curve. As before, there is a continuum of possible trajectories depending
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on the rate of transition.

Figure 2.12   Input transition from 30 to 80 dB SPL with three different transition
times.

The start of a sound, or the onset, may include low to high-level transitions

on several bands simultaneously. Clearly, the adaptive model strongly emphasizes

such onsets.

2.3.5 Emphasis of Spectral Transitions

A sine-wave sweep is a simple example of a spectral transition. More
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spectral transitions may be more the rule than the exception. The adaptive model

uses independent AGC on the outputs of the parallel filter bank. As a signal

transitions in frequency from low to high, the signal is an effective onset for each

filter as it moves into the filter’s pass band. Therefore, a spectral transition creates

a sequence of “onsets” at different frequencies, and the model emphasizes these

onsets as described above. Notice a single tone will generate only one emphasized

onset, while a transition will generate a sequence of emphasized onsets. Figure 2.13

schematically describes the model emphasizing a spectral transitions.

Figure 2.13   Spectral transitions create a sequence of onsets from each filter/AGC
pair.
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2.3.6 Reduced Sensitivity to Channel Shapes

The model compresses a large input dynamic range into a smaller internal

range, it predicts dynamic thresholds, dynamic relative loudness, emphasis of

onsets, and emphasis of spectral transitions. Each of these are natural ramifications

of a system adapting to its input and emphasizing changes. Further, with this model,

we expect less sensitivity to the frequency characteristics of the channel, than with

more classic static filter bank models. The proposed model adapts to the relatively

static channel frequency shape, and emphasizes signal changes.

2.3.7 Static Perception

In addition to predicting several aspects of dynamic auditory perception, the

proposed structure models several static auditory phenomena. Specifically, the

filters group signals of similar frequency into a single band. If one of the signals

with spectral components in this band is louder, the energy in that band reflects the

louder signal. This is the primary mechanism of simultaneous masking, where loud

signals mask quiet signals of similar frequency. Perhaps more subtly, the shape of

the filters determine how simultaneous masking varies as a function of the

difference between the masker and probe frequencies.

We have already seen physiological and psychoacoustical evidence for filter

shapes with gradual transition toward lower frequencies, and more abrupt cut-off

toward higher frequencies. These filter shapes predict above-band masking; lower

frequency signals of sufficient energy mask higher frequency signals. A single filter
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shape, imposed over a low frequency narrow-band noise and a higher frequency

tone appear in Figure 2.14.

Figure 2.14   Filter shapes predict above-band masking.

Even though the noise and tone are of different frequencies, the energy at
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constant loudness contours of the model. More specifically, I/O curves for middle

frequency bands have lower thresholds, and flatter compressive regions than those

at lower frequencies. The position and shape of the static I/O curves determine the

model’s sensitivity to static as well as dynamic inputs.

2.4 Need for Model Parameters

The model uses filter shape approximations from the physiological and

psychoacoustical evidence described previously. To fully specify the model, we

derive I/O curves and time constants of adaptation for each frequency band from

psychoacoustic forward masking experiments. The time constants and I/O curves

completely specify the model’s dynamic thresholds. Matching the dynamic

thresholds to the forward masking data provides a fully parameterized first-order

adaptive auditory model.
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Chapter 3

Perceptual Experiments

3.1 Why Forward Masking?

The human auditory system is active and adapting. This thesis describes the

development and evaluation of a dynamic auditory model which includes active

adaptation and linear frequency selectivity. Our present task is to choose the

parameters for the adaptation.

In Chapter 2, we described several physiological and psychophysical

phenomena as evidence of auditory adaptation. Carefully quantifying any of these

effects implies parameters for our model. However, many of the phenomena are

ramifications consistent with active adaptation, while few provide direct estimates

of model parameters. Perceptual emphasis of onsets and transitions, immunity to

slowly-varying channel frequency characteristics, and compression of a wide
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dynamic range, are all natural ramifications of an adaptive model but do not

illuminate specific model parameters. On the other hand, level-dependent frequency

responses, and dynamic relative thresholds provide a more direct description of the

underlying auditory adaptation.

Previously, we described the difficulties of measuring individual filter

responses psychoacoustically. In fact, forward masking experiments provide filter

shapes more consistent with those from physiological experiments, than do filter

shapes obtained from simultaneous masking tests [Houtgast, 1977]. Further, static

measurements of level-dependent frequency responses only provide a measurement

of the magnitude of adaptation, and do not provide a measure of the adaptation rate.

However, dynamic relative thresholds revealed in forward masking

experiments provide a glimpse of both the rate and magnitude of auditory

adaptation. Also, the rates and magnitudes of the adaptation revealed in forward

masking are significant for speech perception. Therefore, for the proposed first-

order model, we select the parameters of active adaptation after each auditory filter,

from the dynamic thresholds measured in forward masking experiments. Measured

as a function of masker level and frequency, forward masking data provide both the

I/O curves and time constants for our model.

3.2 Review of Existing Forward Masking Data

Moore [1989] summarizes five basic points from forward masking data: 1)

the amount of forward masking increases as the duration between the probe and
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masker decreases; 2) forward masking does not increase by an amount equal to the

increase in masker level (as simultaneous masking does); 3) forward masking

increases with the duration of the masker, at least through masker durations of 50

ms; 4) the amount of forward masking decreases when the masker and probe are of

differing frequencies; and 5) the rate of recovery from forward masking is faster for

higher-level maskers, than for lower-level maskers-- that is, the rate of the decay of

the amount of forward masking is greater for higher-level maskers which create

more forward masking.

Moore’s summary points 1-4 are fairly obvious and readily modeled,

however the last point that the rate of recovery varies with masker-level may make

any “simple-minded” modeling effort seem hopeless. Nonetheless, Chapter 4

includes a description of how our relatively simple model of auditory adaptation

predicts Moore’s five summary points of forward masking.

3.2.1 Previous Forward Masking Data

Duifhuis [1973] describes forward masking as the result of two processes:

one that occurs over very short times (<20 ms) and another that occurs over longer

times (~75 ms). Further, he explains short time masking in terms of time domain

interactions on the basilar membrane between the probe signal, and the ‘ringing’ of

narrow bandwidth auditory filters. He suggests that the longer term masking is due

to adaptation through neural saturations and latencies at several levels of the

auditory system. Viewing forward masking data as a function of the log of the delay
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between masker and probe, Duifhuis fits a time constant of 75 ms to the rate of

decay of the amount of masking. (Note that a single time constant is contrary to

Moore’s observation that the rate of decay varies with the amount of masking,

strongly supported by Plomb’s data [1964].)

Despite the vast empirical data on forward masking, we had difficulty

finding a reasonably complete data set describing forward masking of short probe

tones by long narrow band maskers. These data are necessary to quantify each

adaptation block in our model individually. Perhaps the most complete data set of

forward masking of tones following tones is from Jesteadt et al. [1982]. Although

this data includes a range of frequencies and masker levels, the longest delay

measured between masker and probe is only 40 ms. At this delay there is still

significant forward masking, making it difficult to characterize complete auditory

adaptation. The majority of published forward masking data involves the masking

of impulses or clicks. Obviously, impulses maximize the time-domain granularity

of the measurements, at the expense of fundamentally no frequency-domain

resolution. For our model, we need a map of adaptation at each frequency, to

maskers at that frequency, varying across the majority of the auditory dynamic

range, and as a function the range of delays significant for auditory (and speech)

perception.

Therefore, to derive the adaptation parameters for our model, we devise a

simple, but complete, set of forward masking experiments to quantify auditory
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adaptation as a function of time, input level, and frequency.

3.3 Forward Masking Experiments

Our forward masking experiments use long tone maskers followed by short

tone-like probes of similar frequencies. Tonal maskers and probes of the same

frequency provide measurements of the adaptation in the auditory system at one

center frequency at a time. We derive the parameters for the adaptation blocks after

each filter in our model from the data of these experiments. Because we use tonal

maskers and probes at the same frequency, translating the data into model

parameters is not complicated by the frequency selectivity of audition, nor by

possible differences in the neural processing of tones and noise. In some sense, we

attempt to measure auditory adaptation in response to the stimulation of a single

point along the basilar membrane.

The masker tone is long enough to ensure that the auditory system has

completely adapted before the masker is shut off, and the probe is short enough to

measure the response of the auditory system at a relatively specific point in time

after the masker. The experimental paradigm is 2AFC. A decaying 60 ms probe tone

follows one of two 300 ms maskers, separated by 500 ms. The subject chooses

which masker the probe followed. We require a range of levels, frequencies and

delays to completely quantify the magnitude and rate of auditory adaptation across

reasonable hearing ranges. The magnitude and rate of auditory adaptation imply the

I/O curves and time constants of our model.
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3.3.1 Stimuli

We select masker frequencies from 250 through 4000 Hz at octave intervals,

three masker levels, and four exponentially spaced delay times between masker and

probe from 15 to 120 msec. The static threshold of the probe, corresponding to an

infinite delay time from the masker is also measured. Both the sinusoidal masker,

and the sinusoidal probe are gated on and off with one half period of a raised-cosine

function. On and off times, defined as the length of the half-period of the raised-

cosine, are 5 msec for both signals.

We require measurements of auditory adaptation as a function of time and

frequency. Our goal is to measure the auditory response to a specific frequency tone

at a specific delay after the masker. Unfortunately, time and frequency granularity

can only be traded for one another. Shorter probe durations improve time

granularity, but as closer approximations of impulses (or clicks) they tend toward

equal energy at all frequencies. With longer probe durations we are no longer

certain of when the subject started hearing the probe. To improve this trade-off for

these specific measurements, after the raised cosine onset, the probe decays

exponentially with a 20 ms time constant (20 ms after onset, the amplitude of the

probe has decayed to 1/e of its original value). Therefore, much of the energy in the

probe occurs just after its onset: the energy is not spread evenly throughout the

duration of the probe as it would be for a pure tone gated on and off. To ensure that

subjects respond to the onset of the probe, and not its tail, the masker without a
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probe in the 2AFC experimental paradigm (described below) also decays

exponentially with the same time constant. The subject must detect the onset of the

probe, and not only its decay. To further reduce the spectral splatter of the onsets

and offsets, the entire stimuli is filtered through a linear phase, 201 tap, FIR filter

with bandwidth equal to one critical band, centered at the (masker and) probe

frequency.

Duihfuis [1973] found that phase shifts between masker and probe can be

significant at short enough masker-to-probe delays; any phase difference implies

different time-domain interactions between the probe and the ringing of the basilar

membrane. Phase shifts can also be perceived as momentary pitch shifts. Therefore,

the phase of the probe is identical to that of the masker. Figure 3.1 describes the

stimuli in the experiment in more detail.
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Figure 3.1   Forward masking stimuli: A) Large time scale view of a single 2AFC
trial; B) Fourier transform of the probe signal (128 ms rectangular window); C)
Smaller time scale view of the probe following the masker by 15 ms.

Notice the exponential decay of the masker without a following probe, and

the narrow spectral shape of the probe. In this example, the delay from the masker

to the probe is 15 ms (measured in figure 3.1.c), the probe is 8 dB quieter than the

masker, and both probe and masker oscillate at 1kHz.

3.3.2 Subjects

Five subjects, BS (the author), JG, JH, PB, and SC, participated in the

experiments. All are graduate students at UCLA, all are native speakers of

American English. JG is female, and the other subjects are male. Their ages range

KHz2 4 6

0

-33

-67

-100

-133

(B)(A)

(C)
Time

A
m

pl
itu

de
A

m
pl

itu
de

Time

R
el

at
iv

e 
M

ag
ni

tu
de

 (
D

B
)500 ms

300 ms

15 ms
60 ms

τ

τ
τ = 5 ms

τ



44

from 23 to 28 years. Static hearing thresholds for each were at, or below, 20 dB HL

at frequencies from 250 to 8000 Hz, with the exception of JH’s left ear which has a

25 dB HL threshold at 8 kHz. All subjects, except the author, were paid.

3.3.3 Methods

As mentioned earlier, the experiment paradigm is 2AFC. The subject hears

two masking tones, with a probe signal following one. The subject responds by

choosing which masker the probe followed. For a given masker level and frequency,

and masker-to-probe delay, the probe level is varied to determine a threshold.

We implement an adaptive “transformed up-down” procedure [Levitt, 1971,

1992] to adjust the level of the probe. An adaptive up-down procedure decreases the

level of the probe when the subject responds correctly, and increases the level when

the response is incorrect. Obviously, this concentrates stimuli near threshold,

improving the convergence to threshold, and decreasing total test time. A

transformed adaptive procedure requires more than one trial to decide whether the

subject responded correctly to a given input. In these experiments we require

correct responses to three consecutive trials before the group-response is considered

correct. An incorrect response on any of the three trials defines an incorrect group-

response (and terminates that group). Computer software terminates the test if

adapting stimuli exceed 90 dB SPL.

A psychometric function is the subjects’ percentage correct choice as a

function of probe level. When the probe is inaudible, the subject is forced to guess,
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and will be correct 50% of the time. When the probe is clearly above threshold, the

subject will be correct nearly 100% of the time. Increasing the level after every

incorrect response, and decreasing the level after every correct response converges

stimuli to the 50% point. This is of little use in a 2AFC paradigm. However,

requiring three correct responses in the transformed procedure converges stimuli to

the 79% point on the psychometric function. The subject has to hear a louder level

before he or she will respond correctly three times in a row. We define the probe

level at the 79% point on the psychometric function for our 2AFC test as the probe

threshold.

A reversal defines the point when the adaptive test changes from increasing

stimuli to decreasing stimuli (or vice versa). The step size defines the change of

level as the stimuli is increased or decreased. In these experiments we use an initial

step size of 4 dB. After the first reversal the step size reduces to 2 dB, and after the

third reversal, the step size reduces to 1 dB. The experiment continues until nine

reversals occur. The stimuli levels at the last six reversals are averaged to determine

the final threshold value.

There are six sessions for each subject, including a first session for static

hearing threshold tests, and training with example forward-masking experiments.

Each session, including the first, required 45 minutes to an hour. Subjects respond

to the trials through a computer terminal. Software controls the experiment by

adapting levels, regenerating stimuli, and summarizing results.
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3.3.4 Equipment and Calibration

Computer software generates the test tokens in digital form as the

experiment runs. The sampling rate is 16 kHz, and the samples are represented as

16-bit numbers (linearly quantized). An Ariel ProPort 656 converts the digital

samples into an analog waveform. The pre-amp of a Sony 59ES DAT recorder,

drives TDH-49P headphones. The subject hears tokens through the headphones in

a double-walled sound isolation chamber. The stimuli is presented binaurally with

identical waveforms to each ear. The Sony pre-amp is necessary to place the low

end of the 16-bit digital dynamic range just below static threshold. Without it, the

quietest tones are so coarsely quantized that harmonic distortion is perceptible.

We calibrate the system by playing digitally synthesized sine-waves through

the headphones attached to a Larson Davis 800B Sound Level Meter with a 6cc

coupler. Calibration occurs in two stages. The first ties an internal digital dB scale

to measured dB SPL, the second is linear equalization to correct for the frequency

response of the total system.

First, the computer generates a 1KHz reference tone at 80 dB on an internal

digital scale. The gain of the pre-amp is adjusted until the Sound Level Meter

measures 80 dB SPL. Second, sine-waves at third octave intervals from 125 to 7500

Hz are generated at 80 dB on the internal digital scale. A final 401-tap linear-phase

FIR equalization filter corrects for any differences from 80 dB SPL across these

frequencies as measured by the Sound Level Meter. Software redesigns the final
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FIR filter by windowing the inverse DFT of the desired equalization. Convolution

of the data with the FIR filter is performed using an FFT-based overlap and add

technique for near real-time performance. Calibration at both stages is iterative. The

difference from the 80 dB SPL measured during the first calibration step is

corrected within + 0.2 dB SPL, the equalization is corrected within + 0.5 dB SPL, so

that reported dB SPL are within + 0.7 dB SPL.

All software described above: test token generation, experiment adaptation

and control, and calibration, is written in C and compiled on HP and Sun

workstations. The FFT routine used is from “Numerical Recipes in C” [1992].

3.3.5 Experiment Results

There are several ways to view forward masking results. In our data, the

threshold of the probe is a function of three variables: the level of the masker, the

delay between masker and probe, and the frequency of the masker and probe.

Further, instead of viewing the absolute threshold, often the shift in threshold from

that of a probe with no masker, defined as the amount of forward masking, is

viewed. Figure 3.2 shows the average amount of masking as a function of the level

of the masker at 1 KHz. The four contours correspond to the four delay times

between masker and probe. Vertical lines at data points indicate standard deviation.
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Figure 3.2   Amount of masking at 1KHz as a function of masker level, averaged
across five subjects. Vertical lines indicate standard deviation.

As expected, the amount of masking increases with increasing masker level and

decreasing masker delay.

As discussed previously, forward masking can also be viewed as the

dynamic range below masker. This defines a reference relative to the masker level

instead of the static threshold. At sufficiently short masker-to-probe delays, the

dynamic range below masker specifies the distance of the I/O curve from threshold

in our model. Figure 3.3 shows the data of figure 3.2 with a reference relative to the

masker level.
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Figure 3.3   The dynamic range below masker at 1 kHz, averaged across 5 subjects.

A 45 degree diagonal on this graph indicates no forward masking;

thresholds are only a function of their absolute level. A flat line would indicate

purely relative thresholds; that is, thresholds are simply a fixed level below the

masker level.

Finally, we view the amount of masking on a log time scale of the delay
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independent variable. Constant masker levels form the contours on the graph.

Figure 3.4 shows the 1 kHz average data in this form.
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Figure 3.4   Average results for the amount of masking at 1 kHz as a function of the
log of the delay between masker and probe.

Consistent with Plomb [1964], Jesteadt et al., [1982], and Moore and

Glasberg [1983], we measure an increase in the rate of decay of masking with

increased masker levels. The slope of the lines with larger amounts of masking is

steeper on this log-log graph, especially between 15 and 60 msec.

The following figures depict our experimental results in detail. Figure 3.5

shows the average amount of masking as a function of the level of the masker,

across all frequencies measured. Figures 3.6 - 3.10 show the probe thresholds for

each subject as a function of the level of the masker, across all frequencies. In these

graphs, the static threshold is indicated by a dotted line.
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Figure 3.5   The amount of masking as a function of the level of the masker,
averaged across 5 subjects.
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Figure 3.6   Subject BS: Probe threshold as a function of masker level.
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Figure 3.7   Subject JG: Probe threshold as a function of masker level.
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Figure 3.8   Subject JH: Probe threshold as a function of masker level.
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Figure 3.9   Subject PB: Probe threshold as a function of masker level.
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Figure 3.10   Subject SC: Probe threshold as a function of masker level.
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3.4 Discussion of Forward Masking Results

Generally, the forward masking results here are very similar to those

reported in other studies [Moore and Glasberg 1983], [Jesteadt et al., 1982], [Plomb

1964], etc. The amount of masking increases as a fraction of the level of the increase

in the masker, and as the delay between masker and probe increases, larger amounts

of masking decrease more quickly than smaller amounts of masking. Figure 3.2

shows the fractional increase in the amount of masking, and Figure 3.4 shows the

change of the amount of masking with masker to probe delay.

More specifically, data points in common with those from Jesteadt et al.

[1982] are very closely matched. At 1 kHz, with an 80 dB SPL masker, and an

effective probe delay of 15 ms, Jesteadt reports an average amount of masking of

39 dB. Interpolating an 80 dB SPL masker from the 90 and 65 dB SPL maskers in

Figure 3.2, the data above reports an average amount of masking just under 40 dB.

Further, with a 40 dB SPL masker, and a 30 ms probe delay, both data sets report an

amount of masking just under 10 dB.

Jesteadt et al. [1982] proposes the following equation to predict the amount

of forward masking as a function of masker level, and masker to probe delay:

Am = a (b - log ∆t) (M - c)

where Am is the amount of masking, ∆t is the masker to probe delay, M is the level

of the masker above threshold, and a, b, and c, are parameters chosen to fit the data.

This equation predicts straight lines of increasing slope when forward masking data
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is viewed with logarithmic masker-to-probe delay as the independent variable.

Figure 3.4 shows our average forward masking data in this format. Notice, if we

only consider shorter masker to probe delays (to 30 or 60 ms), straight lines of

increasing slope fit the data well. Jesteadt et al. [1982] does not consider masker to

probe delays beyond 40 ms.

Figure 3.5 shows the average forward masking results at the 5 frequencies

measured. Notice the amount of masking is greatest at center frequencies with the

greatest dynamic range. If adaptation enables a large usable dynamic range, and

adaptation necessitates short-term adjustment (forward-masking), it is consistent

that middle frequencies with the greatest dynamic range also show the greatest

amount of forward-masking. Also notice the variations from one octave to the next

are relatively small. To choose adaptation parameters at each center frequency in

the model proposed in this thesis, we interpolate between the adaptation parameters

implied by the forward masking data above. If there were more abrupt

discontinuities across frequency, we would require forward masking measurements

at more frequencies.

Figure 3.5 also shows a rather abrupt increase in the amount of masking for

15 ms delays and 90 dB SPL masker levels at 1 and 2 kHz. Such an increase is

consistent with the slope of an I/O curve in our model flattening, or increasing its

compression, at high levels before becoming linear. Or perhaps, these points mark

the beginning of a second, faster, adaptation process.
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Finally, it is important to note the relatively large variance across subjects in

the forward masking data. Moore and Glasberg [1983] noticed higher variance in

tone after tone experiments when compared to tone after noise. He suggests subjects

may have difficulty separating the masker and tone when they are both sinusoidal.

The decaying sinusoids used in the experiments above may have added to that

confusion.

In Chapter 4, we translate these experimental results into model parameters.
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Chapter 4

From Experimental Results to Model

Parameters

4.1 The Model and Forward Masking

As described in Chapter 2, normal human hearing has a usable dynamic

range at middle frequencies of over 100 dB. However, over short time periods the

dynamic range is much smaller. Forward masking experiments detailed in Chapter

3 measure short term dynamic range below the masker level. A mask signal

precedes a probe signal each of a similar frequency. The threshold of the probe

signal is a function of the time between the masker and probe, the level of the

masker, and the duration of the masker, at least until that duration is greater than

100-200 msec [Zwislocki et al., 1959].

The model proposed in this thesis consists of an adaptation block after each
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auditory filter. AGC with carefully chosen I/O curves models adaptation. Figure

2.10 (in Chapter 2) shows a prototypical I/O curve imposed over “output

trajectories” corresponding to various rates of input level change. I/O curves have

no time axis; however, changes of input level with time imply output trajectories.

When the input changes slowly, the output trajectory follows the I/O curve. When

the input changes instantaneously, the model is linear, the output trajectory moves

diagonally, and then eventually drifts back to the target output. When a rapid

decrease of the input level creates a trajectory that momentarily drops below

threshold, the model predicts forward masking. Specifically, the model predicts that

inputs at levels below the point where the output trajectory crosses the threshold,

will be masked, until the trajectory drifts back above threshold. Figure 4.1 shows

the adaptive model predicting forward masking following an 80 dB masking tone.



62

Figure 4.1   Model predicting masking of inputs below 55 dB SPL by a preceding
80 dB SPL masker.

Initially, the model has settled to the static target output corresponding to the

80 dB SPL masker (point A). When the masker shuts off abruptly, the output of the

model drops linearly, and the trajectory moves instantaneously along the diagonal.
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y in Figure 4.1 is identical to the horizontal distance x. Therefore, the vertical

distance from the I/O curve to the internal threshold defines the instantaneous

dynamic range below masker of the model.

Figure 4.1 also includes two trajectories corresponding to probe tones of 20

and 40 dB SPL following the 80 dB masker. The rate of motion of the trajectory

from the diagonal to the target on the I/O curve is proportional to the distance from

the current position to the target. Points C and D are the halfway points from the

diagonal to the target for the trajectories in response to the 20 and 40 dB probe

signals, respectively. Notice it takes longer for the trajectory from the 20 dB SPL

input to rise above threshold than for the trajectory from the 40 dB input. After half

of the adaptation is complete, the 40 dB input is audible, however, the 20 dB input

is still below threshold. As these trajectories rise through the threshold, they define

the model’s prediction of forward masking thresholds, as a function of the delay

between the masker and probe.

Unfortunately I/O curves have no time axis, and we have resorted to

discussing “output trajectories” to describe the model. The following figures show

time as the independent variable. Although these figures do not completely

characterize the model, they illuminate its functionality through examples. Figure

4.2 shows the responses of the model to a tone that abruptly drops from 80 dB SPL

to a series of lower values. Time is linear on the left figure, and logarithmic on the

right. The time origin is the abrupt change of the input. Before the abrupt drop of
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the input, the model has completely adapted, and reached the target on the I/O

curve. At the abrupt transition, the output trajectory in Figure 4.1 drops

instantaneously along the diagonal; in Figure 4.2 the model’s output falls abruptly

by an amount equal to the change in input level. After the transition, the output

trajectory in Figure 4.1 drifts back to the target on the I/O curve; in Figure 4.2 the

output exponentially adapts toward a new target output. When the output falls

below the internal threshold (0 dB on the internal dB scale), the model predicts

forward masking. As an output rises through the threshold, the model predicts a

forward masking threshold. Figure 4.3 shows the response to a series of starting

input levels and one ending input level.

Figure 4.2   The input to the model abruptly drops from 80 dB SPL to a series of
lower levels from 60 to 20 dB SPL. The model adapts to the lower level. While the
model output is below the internal threshold, the model predicts forward masking.
The left is a linear time scale, the right is logarithmic.
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Figure 4.3   Model response to abrupt decreases in input level. A series of starting
input levels from 90 to 40 dB SPL abruptly decrease to 30 dB SPL. The left is a
linear time scale, the right is logarithmic.

4.2 Derivation of Model Parameters

The empirical forward masking data presented in Chapter 3 along with an

understanding of how our proposed model predicts forward masking specify the

model’s I/O curves and time constants across frequencies. This first model uses

piecewise-linear I/O curves, and one time constant for each adaptation block.

Figure 4.4 shows the piecewise linear I/O curve with an output trajectory

corresponding to an input instantaneously transitioning from 80 to 30 dB SPL.
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Figure 4.4   Piecewise linear I/O curve with an output trajectory corresponding to
an instantaneously decreasing input.

When the output trajectory is below threshold, the model predicts masking,

as the output trajectory crosses threshold, at a distance St from the static output

target, the model predicts the forward masking threshold. The model incrementally

adjusts its amplification based on the difference between the current output and the

target output for the current input. We implement the adaptation as a first order

difference equation. Therefore, the distance between the output trajectory and the

target on the I/O curve decays exponentially, at a rate determined by the amount of

incremental adaptation. Figure 4.4 labels the geometry necessary to relate

incremental adaptation and the slope of the I/O curve to the forward masking data.
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Immediately after the abrupt drop of the input (by an amount D in Figure 4.4), the

output is a distance S0 from target. Sn decays with discrete time n as:

Sn = (1 - α)n S0,

where α is the amount of incremental adaptation at each discrete point in time, and

S0 is the initial distance to target. When Sn decays to St as defined in Figure 4.4, the

trajectory crosses the internal threshold. The time of this decay is the model’s

prediction of delay necessary such that a 30 dB SPL probe will just be audible after

an 80 dB SPL masker. In Figure 4.4, P, and M are the distance above threshold of

the probe and masker signals. Substituting St for Sn, noting that St = mP and S0 =

(1 - m)(M - P), we find the following relation:

M, P, and n are specified by the forward masking data. The two model parameters,

m and α, are unknown. Therefore, two (different) forward masking data points are

sufficient to define the model parameters. Defining β = (1 − α), we solve the

equation above for the slope m,

and the incremental adaptation parameter β.

mP 1 α–( ) n M P–( ) 1 m–( )= (1)

m
M P–( ) βn

P M P–( ) βn+
--------------------------------------= (2)

β mP
M P–( ) 1 m–( )

------------------------------------------ 
  1 n/

= (3)
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Two forward masking points theoretically specify the model parameters m

and β. However, an analytic solution of equation (1) from two arbitrary {P, M, n}

points is non-trivial. If n is not equivalent for the two points, the resulting equations

from equation (1) are of two, different, high powers of n. If n is equivalent for the

two points, we can use equation (3) with two values of {P, M} to find an algebraic

solution for m, and then β. Unfortunately, this leads to the trivial solution of m=1,

for any two pairs of {P, M}. Instead, we find the solution iteratively. Equations (2)

and (3) provide successive estimations of m and β, given current values of β, m, and

the data points {P, M, n}1, and {P, M, n}2. Starting with initial values of m=0.4, and

β=0.998, the solution for m and β converges within 6 decimal places after roughly

20 iterations. Table 4.1 lists average solutions for m and α across frequencies, using

the forward masking data from Chapter 3. α is referenced to a 16 kHz sampling rate.

4.3 Model Performance

The time constant of Table 4.1 is defined as the amount of time for the output

to settle within 2 dB of the target on the I/O curve, after an abrupt 25 dB change of

Table 4.1  Model Parameters

Frequency Hz Slope m Adaptation α “Time Constant”

250 0.20 0.0026 55 ms

500 0.26 0.0023 61 ms

1000 0.26 0.0029 48 ms

2000 0.31 0.0021 64 ms

4000 0.34 0.0019 69 ms
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the input [Dillon and Walker, 1982]. This time constant is not the rate of decay of

the amount of masking. As mentioned above, we propose a general model of

adaptation that predicts forward masking. The model predicts a changing rate of

decay of masking by modeling a fixed rate of adaptation. Figure 4.5 shows the

model prediction of the amount of masking as a function of masker to probe delay,

with several different masker levels, and model parameters m=0.30, and α=0.0028,

referenced to a 16 kHz sampling rate. The left figure is a linear time scale, the right

is logarithmic.

Figure 4.5   Model prediction of the amount of masking as a function delay and
masker level (m=0.30, and α=0.0028).
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amount of masking with increased masking. From 20 to 80 ms after the masker, the

magnitude of the slope of the lines on this log/log scale increases with increasing

masker level. Regardless of the initial amount of masking, after 100-200 ms, the

amount of masking is negligible. However, as the delay between masker and probe

approaches zero, the model has little time to adapt. Therefore, for short delays, the

model predicts the difference between the I/O curve and the internal threshold, or

the instantaneous dynamic range, as the amount of masking. Unfortunately, this

“saturation” of the amount of masking to the instantaneous dynamic range below

masker, is not consistent with forward masking data.

Figures 4.6 and 4.7 on the following pages impose the model’s prediction of

forward masking over the average forward masking data. Figure 4.6 shows masker

level as the independent variable with constant masker to probe delay contours,

Figure 4.7 shows delay as the independent variable with constant masker level

contours. Across frequencies, the standard deviation of the model prediction error

ranges from 2.5 to 3.3 dB.
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Figure 4.6   Model prediction of forward masking compared to averaged perceptual
data.
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Figure 4.7   Model prediction of forward masking compared to averaged perceptual
data.
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4.4 Discussion

As shown in Figure 4.6 and 4.7, the quantified model fits the experimental

data within a standard deviation of 3.3 dB. The model’s deviation from the

perceptual data, reflects the compromise of a single adaptation stage and a constant

slope linear I/O curve. Specifically, Duihfuis [1973] recognized forward masking as

the result of at least two processes, one of adaptation with a time constant near 75

ms, and a second with a time constant near 2 ms. This second process is responsible

for the relatively sharp increase of the amount of masking when the delay between

masker and probe is less than 20 ms. Further, Duihfuis [1973] shows a relation

between the short-time process, and time-domain interactions between the probe

and the ringing of the mechanical filtering of the basilar membrane.

Therefore, if we assume a two-stage process, and choose the model

parameters based on forward masking data with masker to probe delays from 30 to

120 ms, the model’s prediction is much closer to this data. Potentially then, multi-

stage adaptation could increase the precision of the model’s match to the data.

Figure 4.8 compares the model prediction to the perceptual data, using only the

longer-delay data to choose model parameters.
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Figure 4.8   Model prediction, using only masker to probe delays from 30 to 120 ms.
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4.5 The Model and Five Points of Forward Masking

Chapter 3 includes a description of five points summarizing forward

masking data [Moore, 1989]. Forward masking: 1) increases as the masker-to-probe

delay decreases, 2) increases as a fraction of the masker level, 3) increases as the

duration of the masker increases, if that duration is sufficiently short, 4) decreases

when the masker and probe are of differing frequencies, and 5) decays more quickly

for higher-level maskers than lower-level maskers. In the following, we discuss

these five points with respect to the model.

1) Masker-to-Probe Delay: When short-term linearity causes output

trajectories to fall below threshold, the model predicts forward masking. As the

masker-to-probe delay decreases, the model has less time to drift back above

threshold, implying increased masking with decreasing masker-to-probe delay.

2) Masker Level: When the model predicts forward masking, the amount of

masking is the distance from the masking threshold to the static threshold (the point

where the I/O curve crosses the internal threshold). Higher masker levels shift the

predicted masked threshold higher, increasing the amount of masking with masker

level. However, the increased amount of masking with incremental masker level is

controlled by the slope of the I/O curve. When the I/O curve is locally flat, a masker

increment translates to an equal increment in the amount of masking, when the I/O

curve is exactly diagonal (slope of 1), a masker increment translates to no increment

in the amount of masking, in between, a masker increment translates to a fractional
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increment in the amount of masking, consistent with Moore’s second point.

3) Masker Duration: So far, we have only considered cases where the

masker is long enough so that the model completely adjusts to its level. That is, the

output, before the drop in level at the offset of the masker, has reached the target on

the I/O curve. If the duration of the masker is sufficiently short relative to the time

constant of the model, the model will not have completely adjusted to its level, by

the time of the masker offset. The I/O curve specifies decreasing amplification with

increasing input level. Therefore, as the model adapts to a masker level from a lower

level, it slowly decreases the amount of amplification. Until the model has

completely adapted to the masker, it amplifies the masker above its target output. If

the masker shuts off before the model finishes adapting, the linear diagonal drop

starts from the point above the target on the I/O curve. The diagonal extension of

this line crosses the internal threshold at a lower point than it would have, had the

trajectory started from the target on the I/O cure. Therefore, the model predicts less

masking for shorter maskers, at least until the duration of the masker exceeds the

time constant of the model.

4) Frequency Difference: The model proposed here uses independent

adaptation on the output of each filter. If the masker and probe differ sufficiently in

frequency, the masker will not affect the model’s response to the probe. Therefore,

the model predicts forward masking is dependent on the difference in frequency

between the masker and probe.
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5) Changing Rate of Decay: Finally, Moore describes how masking decays

at different rates for different masker levels. Specifically, high-level maskers lead to

large amounts of masking which decay at a faster rate than the smaller amount of

masking from lower-level maskers. This phenomenon appears to require different

time constants of adaptation for different level inputs-- hardly a time constant.

However, this requirement is only necessary if we assume a model that explicitly

tracks the amount of masking. Such a model would monitor the input, determine

how much masking should occur for a given situation, and then reduce that amount

of masking at a rate dependent on the input level. This complexity is the result of

modeling the specific phenomena of forward masking as opposed to the more

general process of adaptation.

Instead, our model adapts to changes in input level by slowly adjusting the

amount of amplification to move the output closer to target values specified by the

I/O curve. Forward masking occurs when output trajectories fall below threshold;

this is a natural ramification of our model of adaptation. The discussion of how our

adaptive model predicts varying decay rates is more complex. Figure 4.1 may be

helpful for this discussion.

Initially, the amount of masking is the horizontal distance from the

intersection of the diagonal trajectory with the internal threshold, to the static I/O

curve intersection with the internal threshold. The model does not explicitly keep

track of the amount of masking as a function of time. However, with increasing
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delay, probes of decreasing level lead to output trajectories that cross the internal

threshold. The model predicts a time-varying amount of masking as the horizontal

distance from the (last) probe signal that causes the output trajectory to just cross

the internal threshold, to the static threshold. The adaptation of the model is

exponential, in that at each incremental time step, the amount of adaptation is

proportional to the distance from the current output point to the target on the I/O

curve. Therefore, the greater the distance from the I/O curve, the higher the

incremental adaptation. Because the I/O curve is slowly increasing for most of the

audible range, at higher input levels the I/O curve is further from the internal

threshold. Immediately after masking at higher levels, high-level probe signals lead

to output trajectories that just cross threshold at points relatively far from the target

on the I/O curve. The model has greater incremental adaptation to these high level

probes further from the I/O curve. (Remember, the amount of masking is the

distance from the last probe to cause an output trajectory to just cross threshold, to

the static threshold.) As output trajectories corresponding to higher-level inputs

cross the internal threshold, the model is adapting more quickly than it is when

lower-level inputs cross the internal threshold. Therefore, the amount of masking

decays more quickly from a higher-level masker, even though our model has a

single (fixed) time constant.
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4.6 Summary

We propose a first-order model of auditory adaptation consisting of a linear

filter bank with independent AGC on each filter output. Static frequency selectivity

data determine the filter bank parameters. A simple but complete set of sinusoidal

forward masking experiments provide data necessary to quantify the adaptation for

each AGC block in our model. Despite the compromise of a single adaptation stage,

the model’s predictions provide a reasonable first-order fit to the perceptual data

(Figures 4.6 and 4.7). In addition, ramifications of this non-linear adaptive model

are consistent with a wide range of physiological and psychophysical phenomena.

We evaluate the benefit of the adaptive model, by incorporating it as the front-end

to a speech recognition system.
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Chapter 5

Recognition System

5.1 Overview

Speech recognition systems typically consist of a signal processing section

followed by a pattern comparison and classification section. The signal processing

section divides the speech signal into an observation sequence (usually a sequence

of spectral estimations), and the pattern comparison section compares the

observation sequence to previously observed sequences. Dynamic Programming,

Neural Nets, Hidden Markov Models, and several variations and combinations of

these, have been used as pattern comparison solutions, with HMM-based

recognition systems as today’s most popular choice. To evaluate the adaptive model

presented in this thesis, we compare the performance of a dynamic programming-

based recognition system using either the adaptive model signal processing, or
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other more common spectral extraction techniques. The dynamic programming

solution provides a relatively simple and, perhaps more importantly, deterministic

pattern comparison solution suitable for initial evaluation of the proposed model.

This chapter describes our baseline speech recognition system and provides

a review of the signal processing techniques and considerations for speech

recognition. Chapter 6 describes how we incorporate the adaptive model derived in

Chapter 4 into the speech recognition system described here.

5.2 Common Spectral Estimation Techniques

Rabiner and Schafer [1978] provides detailed reviews and derivations of

common short-time spectral estimation techniques used to analyze speech. These

techniques involve windowing short overlapping segments of the input data stream,

and then analyzing the windowed segments using the Discrete Fourier Transform,

Linear Prediction (or Auto Regression), or more often, the corresponding cepstral

representations.

5.2.1 Windowing

Traditionally, speech is viewed as a sequence of short-term static, or

stationary, sounds. Any close examination of real speech waveforms, however,

shows that the spectral shape of speech changes at least as often as it stays constant.

Nonetheless, to simplify analysis, we usually assume speech is nearly stationary

over a 10-30 ms segment, and analyze these individual segments, or frames. Speech
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is then represented as a sequence of spectral estimations. We define the following

terminology: the input is the direct (un-windowed) data stream; the window is the

shape multiplied by the input to extract a smaller quasi-stationary piece of data

called a frame, or a time slice; the spectral estimation from each frame is a feature

vector; the sequence of feature vectors forms the observation sequence.

Clearly, there is time/frequency resolution trade-off when we choose the

window length. A shorter window provides good temporal resolution; a longer

window provides finer frequency resolution. The shortest sounds in speech (stops)

are as short as 5 ms, while vowels range from 40 to 200 ms (or longer). Typically

speech recognition systems use window lengths between 10 and 30 ms [Rabiner

and Juang, 1993]. The starting point for the next frame is usually 1/4 to 1/2 of the

window length ahead of the current frame starting point, so that adjacent frames

overlap significantly.

Multiplying the input by a window in the time domain is identical to

convolving the spectrum of the window with that of the signal in the frequency

domain. Rectangular windows in time are sinc functions in frequency; they have a

narrow main-lobe, but high side-lobe peaks. After convolution in frequency, a

rectangular window implies the least amount of local “blurring,” from the narrow

main lobe, and the most amount of “splatter” from the high side-lobe peaks. Raised-

cosine (Hamming or Hanning) windows increase the width of the main-lobe and

decrease the height of the peak of the side-lobes. After convolution in frequency,
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these trade more local “blurring” for less “splatter.” Most recognition systems use

overlapping raised-cosine windows to extract time slices from the continuous input

stream. Figure 5-1 shows an example where successive windows overlap by half of

their length:

Figure 5.1   Overlapping Raised-Cosine Windows

5.2.2 DFT, LPC, and Cepstral Representations

Fant [1960] proposes a simple linear model of voiced speech production: a

periodic driving function from the glottis excites a series of resonances from the

vocal tract. For unvoiced speech a random-noise generator, from the turbulence

associated with a narrow constriction in the vocal tract, excites the resonances of

the cavities in front of the constriction.

The driving function of voiced speech approximates an impulse train in

time, and therefore also approximates an impulse train in frequency. The spacing of

the impulse train in time implies the fundamental frequency, or pitch; the evenly

spaced impulses in frequency are the harmonics of the fundamental. A male speaker

with a pitch near 100 Hz, will generate harmonics at integer multiples of the
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fundamental (200 Hz, 300 Hz, 400Hz...). The voiced driving function excites the

vocal tract resonances. In time, this implies convolution of the driving function with

the impulse response of the vocal tract, and in frequency it implies the

corresponding multiplication. Therefore, the harmonics of the fundamental are

weighted by the frequency response of the vocal tract.

If the analysis window length is long enough to resolve the harmonics of the

driving function, the spectral estimation of the DFT represents both the driving

function harmonics, and the vocal tract spectral envelope. The following figure

shows the DFT spectral estimation of a single time-slice from the “ee” in “three”

from a female speaker. In the time domain, notice the weighting of the Hanning

window, in addition to the general periodicity of the input. In the frequency domain,

the harmonics are spaced roughly 5 per 1000 Hz, or near a fundamental frequency

of 200 Hz. The general spectral envelope, reflecting the resonances of the vocal

tract, has peaks (or formants) at roughly 400, 2400, and 4000 Hz. The speech is

sampled at 11025 samples/second, and the Hanning window length is 23.2 ms (256

point).
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Figure 5.2   Time and frequency-domain representations of a windowed time-slice
of “ee” in “three” from a female speaker.

With first-order accuracy, LP (linear predictive) analysis provides an

estimation of the vocal tract transfer function. LP analysis imposes the assumption

of a flat spectrum driving function, and then specifies an all-pole system that

resonates the flat-spectrum driving function to produce the resulting output. Our

linear model of speech uses either impulses or white-noise as a driving function.

Therefore, LP analysis provides a crude form of deconvolution, where the LP

coefficients specify the transfer function of the vocal tract, and the LP error, or

residual, provides an estimate of the driving function. This is a key separation for

speech recognition. In most languages, the resonances of the vocal tract, and not the

variances of the driving function, provide the primary cues for speech recognition.

Cepstral, or homomorphic, analysis is also a form of deconvolution.
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Practically, real cepstral coefficients are computed as the inverse DFT of the log

magnitude of the DFT of the time domain data. The logarithm before the IDFT

changes the convolution operation in time, and multiplication operation in

frequency, into an addition operation in the cepstral domain. Therefore, provided

the representations of the driving function and vocal tract are reasonably well

separated in the cepstral domain, cepstral analysis provides a mechanism to isolate

the driving function from the transfer function.

There is a second valuable interpretation of cepstral analysis. As an

approximation of the KL-Transform, cepstral analysis takes the DCT of the highly

correlated log magnitude spectrum shown in Figure 5.2. The log magnitude (in

frequency) is even about the origin, so only the cosine terms in the IDFT will have

non-zero contributions. Jain [1989] shows that the DCT of a well correlated

Markov-1 sequence approaches the KL-Transform. Therefore, the IDFT of the log

of the DFT provides an orthonormal transformation into a vector space where

transform coefficients are highly decorrelated, and where the variance of transform

coefficients is only significant for the first few coefficients. Euclidian distances are

consistent through orthonormal transformations. Therefore, the energy compaction

of a cepstral representation significantly reduces the computational complexity of

comparing different spectral estimations. It’s much easier to compare the first 10-

20 cepstral coefficients than an entire spectral vector of 100-200 points.

More pragmatically, the definition of the IDFT is within a complex



87

conjugate of the definition the DFT. The log spectral energy in Figure 5.2 shows the

summation of a slowly varying (across frequency) spectral envelope and a ripple-

like, rapidly varying component. The DFT of the log DFT would, therefore, reflect

a low frequency envelope with a few terms near DC, and the high frequency ripple

with a spike at the frequency of the ripple. The IDFT of the log DFT, or the real

cepstrum provides a similar decomposition.

Finally, emphasizing or weighting cepstral coefficients can improve the

performance of speech recognition systems [Rabiner and Juang, 1993]. If cepstral

representations achieve good energy compaction, contributions from high-order

coefficients are insignificant and are therefore discarded. Further, low order cepstral

coefficients reflect the contribution of the corresponding basis functions of the DCT

in the log frequency domain: the first coefficient represents total energy (DC level

in log frequency), the second represents overall spectral tilt (1/2 oscillation over log

frequency), etc. Because the absolute level, spectral tilt, and other lowest-order

cepstral coefficients may not be significant for spectral comparison for recognition,

these are often de-emphasized or discarded. The process of weighting, or choosing

which cepstral coefficients are significant for recognition is called cepstral liftering.

A raised-sin cepstral lifter of the first 10-20 cepstral coefficients gradually de-

emphasizes the lowest and highest coefficients, providing a reasonable

representation for speech recognition [Rabiner and Juang, 1993]. Implications of

cepstral liftering are described in more detail in Chapter 6.
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Many speech recognition systems use cepstral coefficients from LP-based

spectral estimation, instead of those from DFT-based spectral estimation. That is,

they use the cepstral representation of the transfer function estimation provided by

LP analysis. Rabiner and Schafer [1978] describe a computationally efficient

recursion that provides LP-based cepstral coefficients directly from LP coefficients.

Together with Durbin’s recursion for LP analysis, this provides a computationally

tractable technique to transform a time slice into a cepstral representation suitable

for recognition.

To view the spectral estimation implied by cepstral representations, we

transform back from the cepstral domain to the log frequency domain through the

DFT. Figure 5.3 shows the same “ee” in “three” as Figure 5.2, and includes the

spectral estimation from 12th-order LP analysis, as well as the spectral estimation

implied by the truncation of the first 16 LP-cepstral coefficients. The LP spectral

estimation clearly marks the spectral peaks of the vocal transfer function. Further,

the spectral estimation from the truncated LP-cepstrum is a “smoothed” version of

the LP estimation; after cepstral truncation, any rapid changes across frequency are

removed.
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Figure 5.3   Comparison of DFT, LP, and LP-Cepstral spectral estimations.

Figure 5.4 shows the sequence of spectral estimations, for the entire word

“three” from a female speaker. Time is horizontal, frequency is vertical, and

intensity is mapped to darkness. Notice that the LP and LP-cepstral representations

are increasingly “blurred” vertically. As in Figure 5.3, only the DFT analysis retains

voicing information, and the LP-cepstral estimation is a smoothed version of the LP

estimation. Spectral estimations are computed every 11.6 ms, using the same 256-

point raised-cosine window. The grey scale is normalized for each: the highest point

in each spectrogram is scaled to pure black, and pure white thresholds are set to a

consistent level across spectrograms.
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Figure 5.4   Spectrograms from DFT, LP and LP-Cepstral analysis of the word
“three” from a female speaker.

The recognition system uses these sequences of spectral estimations, or

spectrograms, as the input for higher-level pattern comparison and classification.

Dynamic Time Warping accumulates minimum slice-by-slice spectral distances to

find the closest spectrogram match. Chapter 6 describes how perceptually-relevant

representations from our adaptive model improve recognition performance.
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5.3 Comparison with Templates

Our recognition system compares the current sequence of spectral

estimations (the candidate) to those from previous recordings of the vocabulary set

(templates). Pattern comparison with Dynamic Time Warping [Rabiner and Juang,

1993] involves two levels of comparison: a slice-by-slice comparison called the

local distance, and the accumulation and propagation of local distances to form the

accumulated or total distance. The slice-by-slice comparison measures the

similarity between two spectral estimations. The accumulated distance reflects how

closely the sequence of spectral estimations matches those from a template.

Dynamic Time Warping finds the horizontal (or time) “stretching or compressing”

of the template spectrogram that minimizes the accumulated distance to the

candidate.

5.3.1 Local Distance Metric

Perhaps the most common local distance metric is the L2 norm, also called

the Euclidian distance. The Euclidian distance between two K-dimensional spectral

estimations S1(k) and S2(k) is defined as:

The Euclidian distance is mathematically convenient, however, it may have little

D S1 k( ) S2 k( )–[ ] 2

k 0=

K 1–

∑=
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perceptual relevance.

Mathematically, one of the nicest properties of a Euclidian distance, is that

it is consistent across transformations between orthonormal vector spaces [Rabiner

and Juang, 1993]. That is, to find the spectral distance implied by two cepstral

vectors it is not necessary to transform back to the spectral domain. We simply find

the equivalent Euclidian distance in the cepstral domain.

Perceptually, a Euclidian distance will certainly grow for two widely

varying spectral shapes, however it is not at all clear that the growth of the Euclidian

distance with diverging spectral vectors is even remotely consistent with the growth

of the perceptual difference. Most notably, at least for vowels, the frequency

position of vocal tract resonances is much more salient than their amplitude,

bandwidth, spectral tilt, overall level, and other spectral differences to which the

Euclidian distance is sensitive [Klatt series: 1979-1982]. Cepstral liftering, by de-

emphasizing insignificant spectral characteristics, before the Euclidian distance,

provides a more perceptually-relevant distance metric. Chapter 6 discusses this in

more detail, however the equation for the raised-sin cepstral lifter [Rabiner and

Juang, 1993] is:

for 0 < n < L + 1 and,

otherwise (where L is 10 ~ 20).

w n( ) 1
L
2
--- nπ

L
------ 

 sin+=

w n( ) 0=
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5.3.2 Accumulated Distances

Not only do speaking rates vary but rates of the individual parts of speech

also vary significantly. Therefore, in addition to choosing a measure of distance

between two static spectral estimations, we must also choose a method to stretch or

compress the template sequences of estimations, so that the local distances are

comparing “meaningful” elements in the sequence of estimations. Dynamic Time

Warping, dynamically warps the template spectrogram (horizontally) to minimize

the total distance from the candidate.

Figure 5.5 motivates path propagation, or accumulated distances, and the

dynamic programming solution to the problem of time alignment. The vertical axis

is the time index into the template sequence of spectral estimations. Similarly, the

horizontal axis represents the time index of the candidate sequence of spectral

estimations. The values listed on the graph are the local distances between the two

associated spectral estimations. Point (2, 3) is the local distance (8 on the graph)

between the second spectral estimation in the candidate sequence, and the third

spectral estimation in the template sequence.
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Figure 5.5   DTW finds the path through the field of local distance that accumulates
the least distance, subject to a path propagation constraint.

Obviously, we must also choose a meaningful path propagation constraint,

otherwise, the path with the minimum distance is simply a direct jump from the

(1,1) point to the (4,4) point. Our recognition system uses the “Itakura” constraint

[Rabiner and Juang, 1993], which allows for template stretching by a maximum of

2, and template compression by a minimum of 1/2. Viewed locally, paths must

propagate to the next candidate index, but the template index can either stay the

same, increase by one, or increase by two. Further, the template index can not stay

the same twice in a row.

On the surface, it may appear that if the path must start at (1,1) and end at

(4,4) the obvious solution is to propagate one path from (1,1) and simply choose the

smallest next point within the propagation constraint. This approach would work

well for the example in Figure 5.5. However, in other fields, propagating a single
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forward path and choosing the minimum distance at each point can restrict the path

from propagating through smaller local distances in the future. For example:

Figure 5.6   Single path, forward propagation misses the minimum path through the
field.

5.3.3 Dynamic Programming Solution

DTW propagates all possible paths within the propagation constraint.

Because the candidate time index must increment by one, it is only necessary to

keep two arrays (of length equal to the number of elements in the template

sequence) of accumulated distances: the “current” and “last” arrays. The minimum

path to any point in the “current” array is the local distance at that point added to

the lowest accumulated distance at the “last” array which can legally propagate to

that point in the current array. Therefore, although the “current” and “last” arrays

move forward in time, the path propagation choice is made looking backward from

the “current” array to the “last” array.

In our recognition system, templates are discrete isolated words, and
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candidates are words within silence or background noise. There is a new path start

point at each index point of the candidate (the x-axis in the path propagation fields).

Similarly, at every index point in the candidate, a minimum path corresponding to

a possible word endpoint propagates out the top of the field. If we keep track of the

start point associated with each propagating path, when we choose the minimum

path that propagates through the top of the field, we have the endpoint, start point,

and total minimum accumulated distance for the associated word. The minimum

total accumulated distance across templates specifies the word recognized.

5.3.4 Best Path Back-Tracking

To ensure the algorithms are working correctly, and to gain insight into how

the system fails, we also keep track of the path propagation selection at each point

in the path propagation field. After finding the minimum path that propagates

through the top, we back-track through the field and assemble the dynamically time-

warped template that best matches the candidate. This step has provided

considerable insight into how these algorithms work and perhaps more importantly,

how they break down.
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Chapter 6

Incorporating the Model with the

Speech Recognition System

6.1 Implementation of the Model

Figure 2.7 (in Chapter 2) shows an overview of the adaptive auditory model,

implemented as a parallel filter bank, followed by independent automatic gain

control (AGC) on each filter output.

6.1.1 Filter Responses

The behavior of the filter bank before the independent AGC is completely

specified by the individual frequency responses. The responses chosen for this

model are almost directly from Goldhor [1985]. In general, these responses reflect

three basic premises derived from psychoacoustic masking data [Zwicker, 1974,

1978, and Houtgast 1977]:
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1) Critical bands impose a limited frequency resolution.

2) High-frequency transitions (or filter skirts) are more abrupt than low-

frequency transitions, on either a logarithmic or bark frequency scale.

3) Adjacent filters overlap significantly; not only are the skirts non-abrupt,

but there are multiple filters per critical band.

The first two points are discussed in Chapter 2, the third point deserves more

attention here. Typically, critical band-based analysis of speech consists of non-

overlapping equivalent rectangular bands (ERBs) as in Patterson et al. [1994]. Each

band is a critical band wide, and roughly 20 span the frequency range from 0-5kHz.

However, there is no perceptual, nor physiological motivation for a small set of

fixed-center frequency filters. That is, if we simply span the frequency range with

non-overlapping ERBs, the system is incorrectly sensitive to the absolute locations

of speech harmonics and resonances. A resonance at precisely the transition

between two ERBs will pass through both bands, but a resonance slightly higher

will pass primarily through one. When we examine spectral transitions in speech,

this problem gets worse. Therefore, to reduce the model’s sensitivity to absolute

frequencies, we use multiple filters per critical band, each a critical band wide, and

each overlapping adjacent bands significantly. This solution is consistent with a

physiological interpretation of the mechanical filtering of the cochlea described in

Chapter 2. Seneff [1990] and Lyon and Mead [1988] also implement filter structures

with these general characteristics, including multiple center frequencies per critical
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band.

For each filter in our bank, the -3dB points are spaced by 1 critical band.

There are roughly 4 filters, and therefore 4 center frequencies, per critical band (the

next higher center frequency is the current center frequency plus 1/4 of the current

critical bandwidth). Low-frequency skirts drop as 10 dB/Bark and high-frequency

skirts drop as 25 dB/Bark [Goldhor 1985]. Analytic expressions for the bark scale

and for the critical bandwidth (in Hz) as a function of linear frequency F (in Hz) are

from Zwicker and Terhardt [1980].

All filters are designed by taking the 4096-point IDFT of the desired

frequency response, and then windowing the resulting impulse response with a 255-

point raised-cosine window. The resulting frequency responses, evaluated on 800

points around half the unit circle, and plotted on a log frequency scale are shown in

Figure 6.1. The filters are linear phase FIR.
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Figure 6.1   Frequency responses of the filter bank: 72 filters, 4 filters per critical
band, -3dB bandwidth equal to one critical band, 10 dB/Bark low-frequency skirt,
25 dB/Bark high frequency skirt.

The model convolves each of the filter responses with the input waveform.

After convolution, there are 72 data streams each at a 11025 samples/second rate.

The model implements the convolution at the full data rate, without down-

sampling. (Future versions of this model will exploit the time domain detail of these

signals.) The convolution is implemented using the FFT and an “overlap and add”

technique. The window length for the overlap and add FFTs are 2048 point, and

only 2048-255-1 points from the input data are used in each overlap and add

window to ensure no time domain aliasing.
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Empirically, using an HP715 workstation, direct convolution of 2 seconds

of input data (at 11025 samples/sec) with 72 255-point filter responses required just

over 80 seconds. Using the overlap and add FFT technique, the same convolution

requires 6.3, 6.1, and 7.0 seconds for 1024, 2048, and 4096-point FFT windows

respectively. Therefore a 2048-point window empirically optimizes the trade-off

between a large enough window to make sufficient progress through the data for

each window, and a small enough window that the computation of the large-

window FFTs do not dominate computation time. Unfortunately, the filter bank

implementation alone is still greater than 3x real time.

6.1.2 Implementation of the AGC

Parameters for the AGC for each octave from 250 Hz to 4000 Hz are derived

from the forward masking experiments in Chapter 3 and summarized in Table 4.1

of Chapter 4. Specifically, Table 4.1 describes the AGC I/O curves and adaptation

time constants as a function of frequency. The parameters change gradually with

frequency, therefore filters with center frequencies between two measured

frequencies use a weighted average of the two adjacent parameter sets.

As described in Chapter 4, the AGC is implemented as first order difference,

where the gain incrementally adjusts to place the output closer to the I/O curve

target. That is, if the input is 30 dB, the gain is currently 0 dB, and the I/O curve

target is 60 dB, at that sample the gain in dB would increase by a small α (~0.002)

times the difference between 60 and 30 dB. Statically, the system always



102

approaches the I/O curve target.

The AGC is implemented at the full data rate, on each sub-band. This

provides smoothly varying adaptation, and more precise time domain detail.

However, it requires a computational burden similar to the convolution. (Including

time for the DTW after the signal processing, the total system runs at slightly

greater than 10x real time.)

After implementing the AGC at the full data rate on each band, the model

averages a sliding window for each filter/AGC output to generate an energy per

frequency per time representation of the input signal, or a “perceptual

spectrogram.” The window length is 40 ms, the window increment is 11.6 ms, and

the energy average is weighted by a raised-cosine. By reducing the time-domain

detail to an energy per time value, the model down-samples the output of each filter/

AGC pair by a factor of 128. The effective down-sampling provides a suitable

feature vector rate for speech recognition.

6.2 Defining a Local Distance Metric

To this point, the model provides a perceptually-parameterized dynamic (or

input-dependent) spectral estimation of the speech signal as a function of time. We

must also define a perceptually-relevant method to compare the resulting spectral

estimations. Although the Euclidean distance is mathematically convenient, the

frequency difference of local spectral peaks is far more perceptually relevant [Klatt

series 1979-1982]. Therefore, from the perceptually-parameterized spectral



103

estimation, we derive a perceptually-relevant distance metric using cepstral

manipulations.

6.2.1 Cepstral Liftering

Chapter 5 describes why typical speech recognition systems use cepstral

representations (LP-based, or DFT/Mel-based) as the feature vector which forms

the observation sequence. The cepstral representation is the DCT of the well-

correlated log spectrum, and therefore approximates its KL-Transform. As an

approximation of the KL-Transform, the cepstral representation has significant

“energy compaction”-- only the lowest cepstral coefficients have significant

variance, the coefficients themselves are largely uncorrelated, and the Euclidean

distance between two cepstral vectors is consistent with the Euclidean distance

between the corresponding spectral vectors. Therefore, cepstral representations

provide efficient representations of speech, and reduce the computational burden of

comparing spectral estimations.

Perhaps, more importantly, cepstral representations also provide the

opportunity for simple but perceptually-relevant manipulations. Truncating a

cepstral representation removes any “high-frequency” ripple from the

corresponding log spectrum. With DFT-derived cepstral representations, this

removes any remnants of voicing, or of the pitch. With LP-derived cepstral

representations, cepstral truncation softens, or rounds, the spectral peaks whose

absolute magnitude (and sharpness) may contribute significantly to the Euclidean
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distance, but may be more of a numerical artifact of LP analysis [Rabiner and

Juang, 1993] and less of a perceptually-relevant distinction.

In addition to cepstral-truncation, recognition systems often weight the

cepstral representation. The lowest cepstral coefficient corresponds to the total level

of the spectral vector (DC offset of the log frequency vector), and the next few

coefficients represent the spectral tilt and other slow changes across the log

frequency vector. Because low order cepstral coefficients are assumed to represent

characteristics of the channel (total level and average spectral tilt), and of the

speaker (spectral tilt of the individual driving function), they are gradually de-

emphasized with decreasing order. Similarly above some middle-order cepstral

coefficient, coefficients begin to represent insignificant artifacts of LP-analysis, or

of the voicing information present in DFT-based representations. Therefore, higher-

order coefficients are also gradually de-emphasized with increasing order. The net

effect of the de-emphasis is a type of filtering of the log spectrum in the DCT (IFFT)

transform domain called cepstral liftering. As described in Chapter 5, a half-period

raised-sin function that starts and ends rather abruptly at zero, and peaks smoothly

over the mid-order (~5th to 10th) cepstral coefficients is often used.

Viewed in the log spectral domain, cepstral liftering is a type of “low-

frequency” band pass filter with a sharp zero at DC. On a spectrogram, raised-sin

cepstral liftering implies vertical “low-frequency” band pass filtering.
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6.2.2 What remains after raised-sin cepstral liftering?

After de-emphasizing low and high-order cepstral coefficients, it seems

reasonable to ask what remains. After cepstral liftering, to what spectrum do the

resulting cepstral vectors correspond? Figure 6.2 shows our perceptual model’s

spectral estimation for a segment of the “ee” in “three” from a male speaker, in

addition to the spectral estimation implied by cepstral truncation, and by raised-sin

cepstral liftering (including 16 cepstral coefficients). Cepstral coefficients are the

DCT of the perceptual spectral estimation (or the IFFT of the even spectral

estimation), and the spectrum implied after cepstral manipulation is the FFT of the

manipulated cepstral vector.

Figure 6.2   A “perceptual” spectral estimation of “ee” in “three,” and the implied
spectral estimations after cepstral truncation, and after raised-sin cepstral liftering.
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The spectral estimation implied by cepstral truncation represents a

smoothed version of the original spectral estimation. Raised-sin cepstral liftering,

on the other hand, shifts the “DC level” across Bark frequency to zero, and

dramatically emphasizes spectral peaks and valleys. Therefore, raised-sin cepstral

liftering provides a technique to “pull-out” the local spectral peaks, significant for

perceptual discrimination. Unfortunately, this technique alone also emphasizes

local valleys, which have relatively less perceptual significance. Our solution to this

problem is to clip the raised-sin-liftered spectral estimation at zero, when it drops

below zero. Obviously, after zero-clipping in the spectral domain, transforming

back to the cepstral domain provides an equivalent, but more efficient (better energy

compaction) vector for spectral comparison.

6.2.3 Our Local Distance Metric Implementation

The dynamic filter bank in our system provides a perceptually-derived

spectral estimation. This provides a first-order model of the front-end signal

processing of the human auditory system, with limited frequency resolution, and a

natural emphasis of onsets and transitions. However, when discriminating speech

sounds, humans are sensitive to the frequency location of local spectral peaks.

Therefore after this front-end model, we include processing to emulate the

sensitivity to the frequency location of spectral peaks. Presumably, higher-levels of

the auditory system provide this functionality.

An overview of the algorithm we use to define the local distance metric is
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described in Figure 6.3. Raised-sin cepstral liftering followed by spectral zero-

clipping provides the location of local spectral peaks. Our local distance metric is

then the Euclidean distance between original spectral vectors, each weighted by the

local peak position estimations from the cepstral processing.

Figure 6.3   Processing to derive the local distance metric. Raised-sin cepstral
liftering followed by spectral zero-clipping isolates local peaks, and provides a
suitable weighting function for estimating perceptual spectral distances.

Finally, the Euclidean distance of the weighted spectral estimations is
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adjusted slightly to further emphasize the frequency position of the spectral peaks,

and not their absolute levels. If the spectral estimation for both vectors at a

particular frequency is greater than a high internal threshold, the contribution of this

frequency to the local distance is decreased proportional to the amount above the

threshold. Therefore, onsets which typically cause high-magnitude responses, are

measured more by the frequency position of the onset, and less by the absolute

magnitude of the onset response (which, of course, changes with the level of the

preceding ambient noise).

There are obvious variations to our proposed distance metric technique. As

a final step, the spectral estimation could be transformed back to the cepstral

domain to reduce the dimension through improved energy compaction. In such an

implementation, this processing alone could also be applied to any cepstrally-based

speech recognition system. Given a cepstral vector (which implies a spectral

estimation) this technique returns a new cepstral vector which reflects the

perceptually-significant local spectral peaks. This is a novel algorithm to improve

the perceptual significance of cepstral representations of speech. Future

experimentation should evaluate the potential of this technique to other speech

processing (recognition/coding) systems.

6.3 Examples of the Model’s Representations

The following figures show examples of the model’s representation of

speech. Each figure includes the time domain waveform, the DFT-based
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spectrogram, the “perceptual spectrogram” from our adapting perceptual model’s

spectral estimations, and the “concentrated perceptual spectrogram” obtained after

the pre-processing for the local distance metric. All gray-scale spectrograms are

normalized so that the peak level is set to the darkest value, and a consistent

minimum threshold is set to the lightest value. The spectrograms that include

additive background noise use Gaussian noise shaped to match the long-term

average speech spectrum, as described in Section 6.4.
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Figure 6.4   The perceptual model’s representations of the word “one.” The
“perceptual spectrogram” is the output of the adapting filter bank, and the
“perceptual concentration” shows the spectral estimation after the local distance
pre-processing.
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Figure 6.5   The model’s representations of the word “nine.” Emphasis of onsets
highlights perceptually-relevant distinctions from the previous word “one.”
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Figure 6.6   The perceptual model’s representations of “three.” The dynamic model
emphasizes onsets and transitions, and the local distance pre-processing
emphasizes local spectral peaks.
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Figure 6.7   The model’s representation of “three” with 15 dB Peak SNR additive
average speech spectrum noise. Emphasizing onsets, transitions, and then
indentifying local spectral peaks provides a more robust speech representation.
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6.4 Performance Analysis

Figure 6.8 compares the degradation in background noise of four speech

recognition systems. The first three use the DTW recognizer described in Chapter

5; first with truncated LP-cepstral coefficients, and a local distance which does not

include the lowest (DC-level) cepstral coefficient; second with LP-cepstral

coefficients, and a local distance weighted by a raised-sin cepstral lifter; and third

with the dynamic model and the perceptually-motivated local distance pre-

processing. The fourth is a human listener.

Figure 6.8   Recognition performance in noise with the perceptual model.
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The vocabulary for these test were the ten digits, each spoken 10 times, for

a total of 100 tokens. An eleventh set provided the templates. All tokens are from

the same male speaker. Recordings were made in a double-walled sound booth

through a 16-bit A/D at a sampling rate of 11025 samples/second. Before the noise

is added, the recordings have a peak SNR, defined as the maximum variance over a

15 ms window in the entire 2 second recording divided by the minimum variance

over a 15 ms window, of greater than 50 dB.

The templates for all tests are clean data (these systems are not ‘trained’ in

noise). We add progressively higher amounts of background noise to the same set

of 100 test tokens to measure the curves in Figure 6.8. The background noise is

Gaussian noise with the spectral shape of long term average speech, as defined in

Byrne and Dillon [1986]. Figure 6.9 shows the long-term average spectrum of the

additive noise used.
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Figure 6.9   The average spectrum of the additive noise. Frequency response from
Long-Term Average Speech Spectrum in Byrne and Dillon [1986].
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total energy averaged across non-stationary speech. Third, by including extremely

low-energy pieces of the speech signal in the energy estimation, average SNR

reduces the estimate of the signal energy, decreases the SNR measurement, and

therefore artificially inflates system robustness results. Pragmatically, as speech

falls below the noise level, the quiet segments drop first, and eventually, the listener

is left with just the peaks. Nonetheless, to allow for comparisons with results that

quote average SNR values, Table 6.1 lists the difference between average and peak

energy for ten digit utterances.

Average SNR values are typically about 6 dB lower than Peak SNR, so

system performance at “5 dB Peak SNR” is roughly equivalent to system

Table 6.1  Difference Between Peak and Average Energy

Utterance
Peak/

Average

one 5.4 dB

two 6.0 dB

three 6.3 dB

four 6.4 dB

five 8.4 dB

six 9.9 dB

seven 7.9 dB

eight 7.1 dB

nine 5.2 dB

zero 5.2 dB
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performance at “-1 dB Average SNR.”

Figure 6.10 shows the time-waveform, DFT-based spectrogram, and model

representations for an utterance of “three” at 5 dB peak SNR. At this amount of

noise, the perceptually-based representation still leads to recognition performance

above 90%.

6.5 A Brief Summary

The filter bank in our model imposes frequency selectivity and a frequency

scale consistent with perceptual experiments. After the filter bank, carefully-

parameterized adaptation matches the perceptual forward-masking results

presented in Chapter 3. In addition, we define an original processing technique

(similar to raised-sin cepstral-liftering), to emphasize the perceptually-relevant

local peaks in the dynamic spectral representation. The total model significantly

improves the robustness of a simple speech recognition system to additive noise.
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Figure 6.10   The model’s representations of the utterance “three” at a peak SNR of
5 dB. At this noise level, the perceptual representation leads to over 90% accuracy,
while the LPC-cepstral representation leads to just over 50%.
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Chapter 7

Discussion and Future Direction

7.1 Summary

This thesis derives a first-order model of dynamic auditory perception from

original pyschoacoustic forward-masking experiments. The model consists of a

filter bank followed by logarithmic AGC, and includes a novel cepstral processing

technique to isolate local spectral peaks. Further, the model is shown to improve the

robustness of a simple speech recognition system to additive noise, by 5 to 10 dB.

Chapter 2 summarizes physiological and perceptual evidence supporting a

dynamic model of auditory perception, and also provides a qualitative overview of

our first-order dynamic auditory model. Chapter 3 details the perceptual forward

masking experiments and results which imply parameters for the dynamic model.

Chapter 4 translates the forward-masking results into model parameters. Chapter 5
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provides an overview of the DTW-based speech recognition system used to

evaluate the model, and discusses common spectral representations used for speech

recognition. Finally, Chapter 6 explains the implementation of the dynamic

auditory model with the recognition system. It includes the specifications of the

filter bank, and describes a novel cepstral processing scheme (similar to raised-sin

cepstral liftering) which isolates local spectral peaks for the spectral distance

measure. Chapter 6 also summarizes recognition accuracy across a wide range of

noise levels, comparing the proposed dynamic model to more common approaches.

7.2 Other Applications of the Model

As a well-quantified model of dynamic auditory perception, this work may

also have applications to hearing-aid design, speech enhancement, and speech

coding. The model quantitatively predicts the perceptual relevance of the acoustic

cues of (non-stationary) speech. Other applications may also benefit by

emphasizing the quantified, perceptually-relevant, acoustic cues.

7.2.1 Hearing Aid Design and Sound Enhancement

Sensorineural hearing loss is characterized by increased thresholds, reduced

dynamic range, and decreased frequency selectivity [Moore, 1989]. The model’s

carefully-parameterized adaptation could compensate increased thresholds and

reduced-dynamic range. Also, the cepstral processing described in Chapter 6,

which isolates local spectral peaks, may provide a reasonable technique to
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compensate reduced frequency selectivity.

7.2.2 Speech/Audio Coding

This model would apply well to two aspects of speech, or more generally

audio, coding. First, as a quantified-prediction of the perceptual-salience of

dynamic acoustic cues, this model suggests which parts of speech should be most

accurately encoded, or perhaps more importantly, which parts could be de-

emphasized or discarded. This approach would augment current methods which

typically view speech as a sequence of (un-related) static segments and exploit

predominant static masking effects [Shen, 1994]. Second, regardless of the

particular coding scheme used, this model provides a quantified perceptual model

to evaluate the ‘dynamic spectral distortion’ introduced by the coding algorithm. If

spectral changes in the original speech are extremely perceptually-salient, then the

coding algorithm should be careful not to alter existing spectral changes, and also

not to introduce excessive dynamic spectral artifacts [Knagenhejlm and Kleijn,

1995]. This model provides a technique to quantify the tolerability of these

distortions. Current frame-based speech coding techniques are likely to have this

problem, and the author knows of no well-quantified algorithm to measure dynamic

spectral distortions.

7.3 Model Improvements

This thesis presents a first-order auditory model incorporating adaptation
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with more classically-analyzed energy per critical band. There are several, perhaps

glaring, phenomena suggesting model improvements.

7.3.1 Separation of Adaptation

There is no reason to expect that auditory adaptation can be precisely

modeled with a single adaptive block per frequency band. Physiologically, we

expect many levels of adaptation throughout the auditory system. Outer hair cells

may provide near instantaneous feedback to waves travelling along the basilar

membrane [Ashmore, 1987], they may also respond to neural cues from the brain,

and the brain may adapt its perceptive neural response and feedback cues. These

suggest at least three levels of adaptation each with its characteristic time constant

and I/O curve. Such a separation of adaptation provides the opportunity to fine-tune

the model to match perceptual results more precisely.

7.3.2 Inner-Hair Cell Modeling and Higher-Level Processing

Explicit inner-hair cell models including phase-synchronization, realistic

mechanical transduction to neural spikes, latencies, refractory-periods, and lateral-

inhibition effects may prove essential for improved auditory modeling leading to

robust speech recognition. Perception of sound is more than an identification of the

amount of energy in each critical band as a function of time. (Pure tones “sound”

different than narrow band noise, but a critical band model-- and the corresponding

cepstral vector-- can not make this distinction.)
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Delgutte and Kiang [1984] report detailed measurements of inner-hair cell

responses to speech-like stimuli. Instead of a simple random firing that increases in

rate with the amount of stimulation at a particular frequency (consistent with a

Short-Time Fourier Analysis model of perception), inner-hair cells synchronize

their firing to dominant time-domain periodicities of the input, even when those

periodicities are more than an octave from the specific hair cell’s center, or best,

frequency. The resulting cross-band redundant synchronization provides important

insight into the mechanisms which are most probably responsible for the noise-

robustness of the human auditory system.

Seneff [1990] and Ghitza [1991] derive auditory models used for speech

recognition which try to exploit the time-domain detail of inner-hair cell responses.

Unfortunately, without a quantified model of the next level of auditory processing

in the brain, it is not at all clear how to process the huge amount of resulting data

[Patterson et al., 1994] perceptually, physiologically, or even optimally. Instead,

models must revert to over-simplifying ad hoc solutions with only modest success.

This problem defines an opportunity and an interesting challenge for current

auditory modeling. A solution should prove invaluable for robust speech

recognition. (In the model presented here, a solution would replace the cepstral pre-

processing to isolate “perceptually-relevant” local spectral peaks.)

7.4 The Speech Recognition System

This thesis evaluates the proposed model with a DTW-based speech
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recognition system. Most current systems [Lee et al., 1991, Rabiner and Juang,

1993] use stochastic Hidden Markov Models. This approach provides a rich

mathematical framework to “train” a system based on large amount of data, and

then to find the most probable sequence of underlying states given the current

speech or observation sequence. As a next step, we should evaluate our proposed

model with an HMM-based recognition system.

Unfortunately, the basic HMM framework imposes the assumption that

speech is a sequence of stationary, uncorrelated, segments. Our perceptual model,

on the other hand, responds to speech more as a sequence of onsets and spectral

transitions. Therefore, to take full advantage of a dynamic perceptual model,

modifications to the basic HMM structure may be necessary [Morgan et al., 1995].

7.5 An Underlying Theme

This work reflects the judgement that automatic speech recognition, and

hopefully our understanding of speech perception, will improve by incorporating

well-quantified, non-linear mechanisms reflecting the next most obvious

physiological and perceptual phenomena (after critical bandwidth analysis), and the

choice to pursue doing it.



126

Bibliography

Ashmore, J. (1987). “A fast motile response in guinea-pig outer hair cells: the

cellular basis of the cochlear amplifier,” J. Physiol. 388, 323-347.

von Bekesy, G. (1953). “Description of Some Mechanical Properties of the Organ

of Corti,” J. Acoust. Soc. Am. 25, 770-785.

von Bekesy, G. (1960). Experiments in Hearing. McGraw-Hill, New York.

Byrne, D., Dillon, H. (1986). “The National Acoustic Laboratories’ (NAL) New

Procedure for Selecting the Gain and Frequency Response of a Hearing

Aid,” Ear and Hearing 7, 257-265.

Delgutte, B. and Kiang, N. Y. S. (1984). “Speech coding in the auditory nerve: I.

Vowel-like sounds,” J. Acoust. Soc. of Am. 75, 866-878.

Dillon, H. and Walker, G. (1982). Compression in Hearing Aids: An Analysis, a

Review, and Some Recommendations. NAL Report No. 90. Australian

Government Publishing Service, Canberra.

Duifhuis, H. (1973). “Consequences of peripheral frequency selectivity for

nonsimultaneous masking,” J. Acoust. Soc. Am. 54, 1471-1488.

Evans, E. F., and Harrison, R. V. (1976). “Correlation between outer hair cell



127

damage and deterioration of cochlear nerve tuning properties in the guinea

pig,” J. Physiol. 256, 43-44P.

Fant, G., (1960). Acoustic Theory of Speech Production. Mouton, The Hague.

Fletcher, H. (1940). “Auditory Patterns,” Rev. Mod. Physics 12, 47-65.

Furui, S. (1986). “On the role of spectral transition for speech perception,” J.

Acoust. Soc. Am. 80, 1016-1025.

Ghitza, O. (1991) “Auditory Nerve Representations as a Basis for Speech

Processing,” Advances in Speech Processing (Eds. S. Furui, M. Sondhi),

Marcel Dekker, NY, 453-485.

Goldhor, R. S. (1985). “Representation of Consonants in the Peripheral Auditory

System: A Modeling Study of the Correspondence between Response

Properties and Phonetic Features,” RLE Technical Report No. 505, MIT,

Cambridge MA.

Hermansky, H., Morgan, N., Aruna, B., and Kohn, P. (1992). “RASTA-PLP speech

analysis technique,” Proceedings, 1992 IEEE ICASSP, San Fransisco, 121-

124.

Houtgast, T. (1977). “Auditory-filter characteristics derived from direct-masking

data and pulsation-threshold data with a rippled-noise masker,” J. Acoust.

Soc. Am. 62, 409-415.

Jesteadt, W., Bacon, S., and Lehman, J. (1982). “Forward Masking as a function of

frequency, masker level, and signal delay,” J. Acoust. Soc. Am. 71, 950-962.

Johnstone, B., Patuzzi, R., and Yates, G. K. (1986). “Basilar membrane



128

measurements and the travelling wave,” Hearing Res. 22, 147-153.

Kates, J. (1991). “An Adaptive Digital Cochlear Model,” Proceedings, 1991 IEEE

ICASSP, Toronto, 3621-3624.

Kemp, D. (1978). “Stimulated acoustic emissions from within the human auditory

system,” J. Acost. Soc. Am. 64, 1386-1391.

Klatt, D. (1979). “Perceptual comparisons among a set of vowels similar to [ae]:

Some differences between psychophysical distance and phonetic distance,”

J. Acoust. Soc. Am. 66, Suppl. 1, S86.

Klatt, D. and McManus, T. (1980). “Perceived phonetic distance among a set of

synthetic whispered vowels and fricative consonants,” J. Acoust. Soc. Am.

68, Suppl. 1, S49.

Klatt, D. (1981). “Prediction of perceived phonetic distance from short-term

spectra--a first step,” J. Acoust. Soc. Am. 70, Suppl. 1, S59.

Klatt, D. (1982). “Prediction of perceived phonetic distance from critical-band

spectra: a first step,” Proceedings, 1982 IEEE ICASSP, Paris, 1278-1281.

Klatt, D. (1986). “The Problem of Variability In Speech Recognition and In Models

of Speech Perception,” Invariance and Variability in Speech Processes,

(Eds. Perkell, J., Klatt, D.) Lawrence Erlbaum Associates, New Jersey, 300-

319.

Knagenhjelm, H. P., Kleijn, W. B. (1995). “Spectral Dynamics is More Important

than Spectral Distortion,” Proceedings, 1995 IEEE ICASSP, Detroit, 732-

735.



129

Lee, K. F., Hon, H. W., and Huang, X. (1991). “Speech recognition using Hidden

Markov Models: a CMU perspective,” Speech Communication, 9, 497-508.

Levitt, H. (1971). “Transformed Up-Down Methods in Psychoacoustics,” J.

Acoust. Soc. Am. 49, 467-477.

Levitt, H. (1992). “Adaptive Procedures for Hearing Aid Prescription and Other

Audiologic Applications,” J. Am. Acad. Audiol. 3, 119-131.

Liberman, M. C. (1978). “Auditory-nerve responses from cats raised in a low-noise

chamber,” J. Acoust. Soc. Am. 63, 442-455.

Lyon, R. F. (1982). “A Computational Model of Filtering, Detection, and

Compression in the Cochlea,” Proceedings, 1982 IEEE ICASSP, Paris,

1282-1285.

Lyon, R. F., and Mead, C. (1988). “An Analog Electronic Cochlea,” IEEE Trans. on

Acoust., Speech, and Sig. Proc. 36, 1119-1133.

Moore, B. C. J. (1978). “Psychophysical tuning curves measured in simultaneous

and forward masking,” J. Acoust. Soc. Am. 63, 524-532.

Moore, B. C. J., and Glasberg, B. R. (1983). “Growth of forward masking for

sinusoidal and noise maskers as a function of signal delay; implications for

suppression in noise,” J. Acoust. Soc. Am. 73, 1249-1259.

Moore, B. C. J., Glasberg, B. R., and Roberts, B. (1984). “Refining the

measurement of psychophysical tuning curves,” J. Acoust. Soc. Am. 76,

1057-1066.

Moore, B. C. J. (1989). An Introduction to the Psychology of Hearing. Third



130

edition, Academic Press, London.

Morgan, N., Bourlard, H., Greenberg, S., Hermansky, H., and Wu, S. L.(1995).

“Stochastic Perceptual Models of Speech” Proceedings, 1995 IEEE

ICASSP, Detroit, 397-400.

Neely, S. and Kim, D. (1986). “A model for active elements in cochlear

biomechanics,” J. Acoust. Soc. Am. 79, 1472-1480.

Patterson, R., Anderson, T., Allerhand, M. (1994). “The Auditory Image Model as

a Preprocessor for Spoken Language,” Proceedings Acoust. Soc. of Japan

ICSLP, 1395-1398.

Pickles, J. (1988). An Introduction to the Physiology of Hearing. Second edition,

Academic Press, London.

Plomb, R. (1964). “Rate of Decay of Auditory Sensation,” J. Acoust. Soc. Am. 36,

277-282.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical

Recipes in C. Second Edition, Cambridge University Press, Cambridge.

Rabiner, L., and Juang, B. H. (1993). Fundamentals of Speech Recognition.

Prentice-Hall, New Jersey.

Shen, A. (1994). “Perceptually-Based Subband Coding of Speech Signals,”

Master’s Thesis, Department of Electrical Engineering, UCLA.

Sellick, P., Patuzzi, R., Johnstone, B. (1982). “Measurement of basilar membrane

motion in the guinea pig using the Moessbauer technique,” J. Acoust. Soc.

Am. 72, 131-141.



131

Seneff, S. (1990). “A joint synchrony/mean-rate model of auditory processing,”

Readings in Speech Recognition, (Eds. A. Waibel, K. Lee), Morgan

Kaufman Publishers, San Mateo, CA, 101-111.

Viergever, M, and Diependaal, R. (1986). “Quantitative validation of cochlear

models using the Liouville-Green approximation,” Hearing Res. 21, 1-15.

Wilson, J. P. (1980). “Evidence for a cochlear origin for acoustic re-emissions,

threshold fine structure and tonal tinnitus,” Hearing Res. 2, 233-252.

Zwicker, E., Flottorp, G., and Stevens, S. (1957). “Critical Band Width in Loudness

Summation,” J. Acoust. Soc. Am. 29, 548-557.

Zwicker, E. (1974). “On a psychoacoustical equivalent of tuning curves,” Facts and

Models in Hearing (Eds. Zwicker, E., Terhardt, E.), Springer, Berlin, 132-

141.

Zwicker, E. and Schorn, K. (1978). “Psychoacoustical tuning curves in audiology,”

Audiology 17, 120-140.

Zwicker, E., Terhardt, E. (1980). “Analytical expressions for critical-band rate and

critical bandwidth as a function of frequency,” J. Acoust. Soc. Am. 68,

1523-1525.

Zwislocki, J., Pirodda, E., and Rubin, H. (1959). “On Some Poststimulatory Effects

at the Threshold of Audibility,” J. Acoust. Soc. Am. 31, 9-14.


