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Abstract
In previous work [1], we proposed a speaker adaptation tech-
nique based on the second subglottal resonance (Sg2), which
showed good performance relative to vocal tract length nor-
malization (VTLN). In this paper, we propose a more reliable
algorithm for automatically estimating Sg2 from speech sig-
nals. The algorithm is calibrated on children’s speech data
collected simultaneously with accelerometer recordings from
which Sg2 frequencies can be directly measured. To investi-
gate whether Sg2 frequencies are independent of speech content
and language, we perform a cross-language study with bilin-
gual Spanish-English children. The study verifies that Sg2 is
approximately constant for a given speaker and thus can be
a good candidate for limited data speaker normalization and
cross-language adaptation. We then present a cross-language
speaker normalization method based on Sg2, which is computa-
tionally more efficient than maximum-likelihood based VTLN,
and performs more robustly than VTLN.
Index Terms: speaker normalization, speech recognition,
cross-language, VTLN, speaker adaptation

1. Introduction
Increasing attention has been devoted to applications of auto-
matic speech recognition (ASR) in the area of second language
learning. While the usability of ASR for education is promis-
ing, ASR still suffers from unrobust performance from speaker
to speaker, mainly caused by inter-speaker acoustic variations.

To maintain robust recognition accuracy, speaker adapta-
tion and normalization techniques are usually applied to reduce
inter-speaker variations. Speaker adaptation attempts to statisti-
cally tune acoustic models to a specific speaker using maximum
likelihood (ML) or maximum a posteriori (MAP) criteria [2,3].
Speaker normalization aims at reducing speaker variabilities in
the feature space via linear, piece-wise linear or bilinear fre-
quency warping [4]. Another way to reduce spectral variability
is to align spectral formant positions or formant-like spectral
peaks, especially the third formant (F3), and to define the warp-
ing factors as formant frequency ratios [5, 6].

Speaker normalization typically focuses on variabilities of
the supra-glottal (vocal tract) resonances, which constitute a
major cause of spectral mismatch. Recent studies show that
the subglottal airways also affect spectral properties of speech
sounds. It was shown in [1] that subglottal resonances can be
used for speaker normalization, which achieves comparable or
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better performance than VTLN. In this paper we extend that
work by developing a more reliable algorithm for automati-
cally estimating the second subglottal resonance (Sg2). We
then analyze Sg2 variabilities for bilingual speakers of English
and Spanish, based on which a cross-language normalization
method is proposed with English acoustic models and Spanish
adaptation data. Such a scenario is applicable to ASR systems
for second language learning, where speech data from users’
native language may be the only available adaptation data.

The paper is organized as follows: in Section 2 we present
the automatic estimation algorithm and analyze its reliability.
In Section 3, we investigate cross-language variabilities of the
estimated Sg2 frequencies and explain why it is useful to per-
form frequency warping based on the second subglottal reso-
nance. In Section 4, we describe the cross-language normal-
ization method and present experimental results. Summary and
conclusions are presented in Section 5.

2. Estimation of Sg2
2.1. Subglottal resonances

The coupling of the subglottal system through the open glottis
to the vocal tract introduces pole-zero pairs in the vocal tract
transfer function, corresponding to the subglottal resonances.
The interaction of formants with these pole-zero pairs can cause
the formants to be discontinuous in frequency. For instance,
when F2 crosses Sg2, as in the case of the diphthong [aI] where
F2 goes from low to high frequency, there is a discontinuity in
the F2 track around Sg2 [7]. This discontinuity can be used to
detect Sg2 automatically.

The effect of Sg2 on the speech signal has been more thor-
oughly studied than that of the other subglottal resonances.
Therefore, we focus here on Sg2 estimation and its application.

2.2. Automatic estimation of Sg2 frequency
As noted above, when F2 crosses Sg2, there is a discontinu-
ity in the F2 track. Based on this discontinuity, an automatic
Sg2 detector (Sg2D1) was developed in [1]. The Snack sound
toolkit [12] was used to generate the F2 track (with manual
verifications). The F2 discontinuity was detected based on the
smoothed first order difference of the F2 track, as shown in Fig.
1. If the F2 values on the high and low frequency side of the
discontinuity are F2high and F2low, respectively, then Sg2D1
gives an estimate as:

ˆSg2 = (F2high + F2low)/2 (1)

If no such discontinuity was detected, Sg2D1 used the mean
F2 over the utterance. In many such cases, F2 is consistently
above or below Sg2, and the mean F2 value is either too high
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Figure 1: An example of the detection algorithm applied in [1].

or too low. Thus, the estimated Sg2 values are dependent on
the speech sound analyzed. Furthermore, discontinuities in F2
may arise from other factors, including pole-zero pairs from
the interdental spaces [8]. These discontinuities occur a few
hundred Hz higher than Sg2 discontinuities, but are sometimes
more prominent than Sg2 discontinuities and can therefore be
mistakenly detected as Sg2.

To address both issues, we developed an improved Sg2 es-
timation algorithm (Sg2D2). We first detected F3 and obtained
an estimate of Sg2 using a formula derived in [9]:

˜Sg2 = 0.636× F3− 103 (2)

We then searched for a discontinuity within ±100 Hz of this
estimate using the original algorithm. If no discontinuity in this
range was found, Eq. 2 was used. If a discontinuity was found,
we estimated Sg2 using the following equation:

ˆSg2 = β × F2high + (1− β)× F2low (3)

where β is a weight in the range (0, 1) that controls the closeness
of the detected Sg2 value to F2high. The optimal value of β
was calibrated using the minimum mean square error criterion:

β̂ = arg min
β

E{( ˆSg2− Sg2)2} (4)

2.3. Calibration of the Sg2 estimation algorithm

To verify and calibrate our Sg2 estimation algorithm, acoustic
data were collected from six female children (ages 2-17 years).
The children were native speakers of American English and all
of them except speaker G1 were recorded repeating the phrase
‘hVd, say hVd again’ three times for each of the vowels [i],
[I], [E], [æ], [a], [2], [o], [U], and [u]. The subjects also recited
the alphabet, counted to 10, and recited a few short sentences.
The recording list was presented in random order and verbally
prompted by the experimenter. Speaker G1, the youngest of the
children, was recorded answering questions of the sort ‘What is
this?’, in which the experimenter pointed to his hand or head,
for instance, counting to 10, and reciting the alphabet. All
utterances were recorded in a sound-isolated chamber using
a SHURE BG4.1 uni-directional condenser microphone, and
an accelerometer. Both the speech and accelerometer signals
were digitized at 16kHz. Microphone signals of each speaker
were used to measure average F3 and the discontinuity in the

F2 track. Accelerometer signals were used to obtain an inde-
pendent direct measure of the average Sg2 for each speaker.
(See [9] for a more complete description.)

The detection algorithms Sg2D1 and Sg2D2 were cali-
brated (to estimate discontinuity thresholds for both Sg2D1 and
Sg2D2, and β̂ for Sg2D2) on data from two of the recorded
children and tested on the remaining four children. The values
measured from the accelerometer data were used as the ground
truth Sg2 frequencies. Compared to Sg2D1, the updated al-
gorithm Sg2D2 estimates Sg2 much better with less variance
across vowels. The performance of these two algorithms was
investigated in more detail for each vowel for two speakers and
the results are shown in Table 1.

Vowel
Speaker 1 (age 6) Speaker 2 (age 13)

ground truth Sg2: 2176Hz ground truth Sg2: 1646Hz
Sg2D1 Sg2D2 Sg2D1 Sg2D2

[i] 2987 2312 2563 1971
[I] 2515 2306 2439 1909
[E] 2799 2291 2378 1867
[æ] 2382 2289 2350 1863
[a] 1599 2020 1796 1700
[2] 1687 2243 1948 1704
[o] 1512 2185 1497 1613
[U] 1578 2228 1964 1717
[u] 1739 2071 1825 1631
[au] 1841 2114 1974 1617
[e] 2894 2115 2629 1998
[aI] 2103 2170 2072 1709
[OI] 2115 2183 2063 1659

Avg.(std) 2135 (531) 2194 (95) 2115 (334) 1766 (137)

Table 1: Comparison of Sg2 estimates for two algorithms,
where Sg2D1 refers to the algorithm in [1], and Sg2D2 is the
new algorithm. For vowels above the double line, there are no
discontinuities in the F2 track and Sg2D2 uses Eq. 2; while for
vowels below the double line, the F2 discontinuity is detectable
and Sg2D2 uses Eq. 3. The row ‘Avg.(std)’ shows the mean
(and standard deviation) for each algorithm.

As stated earlier, if no discontinuity in the F2 track is de-
tected, as for the vowels above the double line, Sg2D1 uses the
mean F2 as Sg2 and thus is highly dependent on vowel contents.
Sg2D2, on the other hand, uses a formula to estimate Sg2 from
F3 which is less content-dependent than F2. In such cases, it
can be seen that the formula in Sg2D2 gives much closer esti-
mates to the ground truth, especially for mid and back vowels.
For the case when there is a discontinuity in the F2 track, as
for the diphthongs below the double line, both algorithms work
well when the F2 discontinuity is from Sg2, as for speaker 1. In
this case, Sg2D1 gave an estimate within about 70Hz of the true
Sg2 value, while the Sg2D2 estimate was within less than 10Hz.
For speaker 2, where the most prominent F2 discontinuity was
probably from the interdental space, Sg2D1 gave an estimate
hundreds of Hz above the Sg2 value, while Sg2D2 roughly lo-
cated the correct Sg2 value using Eq. 2. Thus, Sg2D2 is less
prone to mistakenly detecting discontinuities not caused by Sg2.
In addition to diphthongs, discontinuities in F2 should also be
detectable in certain consonant-vowel transitions [9].

3. Variability of subglottal resonance Sg2
3.1. Cross-language variabilities

Since the subglottal system does not have moving articulators
during speech production, subglottal resonances should be in-



dependent of speech sounds and remain roughly constant for a
given speaker, regardless of the speech content or language. In
this section we verify the within-speaker cross-language invari-
ance of Sg2 frequencies.

We recorded a database (ChildSE) of 20 bilingual Spanish-
English children (10 boys and 10 girls) in the 1st or 2nd grade
(around 6 and 7 years old, respectively) from a bilingual ele-
mentary school in Los Angeles. The recorded speech consisted
of words containing front, mid, back, and diphthong vowel.
There were four English words (beat, bet, boot, and bite) and
five Spanish words (calle ‘street’, casa ‘house’, quitar ‘to take
out’, taquito ‘taco’ and cuchillo ‘knife’), all of which were fa-
miliar to the children. Prior to the recording, children were in-
structed to practice as many times as they wanted. Both text and
audio samples for each target word were available for prompt,
and children decided what prompt they needed during record-
ing and what language they wanted to record first. There were
three repetitions for each word, and children spoke all the words
in one language in a row with 3 seconds pause between words,
and then repeated them. After they finished the recordings in
one language, there was about a one-minute pause before they
began the recordings in the other language. Recordings were
made with 16 kHz sampling rate and 16-bit resolution. Like
the English word bite [baIt], the Spanish words calle [kaje] and
cuchillo [kutSijo] had obvious F2 discontinuities. We used these
words with diphthongs to estimate Sg2 frequencies. Therefore,
for each speaker, there were 3 English tokens and 6 Spanish
tokens for the Sg2 estimation.

For each of the 20 children, Sg2 values were estimated from
the English tokens and the Spanish tokens using Eq. 3. We first
calculated the within-speaker coefficients of variation (COV)
for each language separately. The COV, which is a measure
of dispersion of a probability distribution, was computed as the
ratio of the standard deviation to the mean Sg2 value for each
speaker and each language.

Average within-speaker COV is 0.009 and 0.008, for En-
glish and Spanish, respectively. Such small variations are negli-
gible compared to formant variations, which are usually around
0.10 [10], one order of magnitude larger. Thus, the Sg2 fre-
quency for a specific speaker can be considered independent
of speech content. The cross-language COV was then calcu-
lated. Fig. 2 shows the COV for each speaker. The cross-
language Sg2 COVs are around 0.008 with the maximum being
less than 0.009, and there is no significant difference between
genders. The cross-language COVs are similar to the within-
speaker COV against contents as discussed above. This indi-
cates that the Sg2 frequency for a given speaker is also inde-
pendent of language.

3.2. Implications of Sg2 invariability

Sg2 invariability across speech content and language has some
important implications for speaker normalization. Since Sg2
is content-independent, the performance of speaker normaliza-
tion using Sg2 will also (theoretically) be independent of the
amount of adaptation data available, and robust performance
can be expected for various amounts of adaptation data. This
makes the Sg2 normalization method greatly suitable for lim-
ited data adaptation, which is often the case in ASR applica-
tions. On the other hand, the language-independent property
of Sg2 makes cross-language adaptation possible based on Sg2
normalization. Theoretically, with Sg2 normalization, acoustic
models trained in one language can be adapted with data in any
other language. This may be useful in ASR applications for
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Figure 2: Cross-language within-speaker COV of Sg2 for 10
boys and 10 girls between 6-7 years old.

second-language learning.

4. Experimental results
Similar to formant normalization, the warping ratio for Sg2 nor-
malization is defined as:

α = Sg2r/Sg2t (5)

where Sg2r is the reference Sg2 and Sg2t is the Sg2 of the
test speaker. The reference Sg2 is defined as the mean value of
all the training speakers’ Sg2’s. In this section, we evaluate the
content dependency of Sg2 normalization and also its use for
cross-language normalization.

4.1. Comparison of vowel content dependency

As discussed in 2.3, Sg2 is not always detectable from acoustic
signals, and thus the Sg2 detectability in adaptation data is im-
portant to the normalization performance. It is shown in [1] that
the normalization performance using Sg2D1 algorithm is highly
content dependent. To investigate the content dependency of
the proposed algorithm Sg2D2, we evaluated its normalization
performance on TIDIGITS database with the same experimen-
tal settings as in [1]: acoustic models were trained on 55 adult
male speakers and tested on 50 children. The baseline word
accuracy is 55.76%. For each child, the adaptation data are lim-
ited to only one digit but with varying vowels from front vowel
(e.g., [I] in six), mid vowel (e.g., [2] in one), back vowel (e.g.,
[u] in two) to diphthong (e.g., [aI] in five).

The performance comparison is shown in Table 2. The
choice of adaptation data can potentially have an effect on the
normalization performance. Compared to Sg2D1, the proposed
algorithm Sg2D2 is less susceptible to various vowel contents
with better performance and smaller variations across content.
For the adaptation digit containing a diphthong which has a de-
tectable Sg2 effect, the two algorithms’ performances are com-
parable. In other cases, however, Sg2D2 performs much better
than Sg2D1, especially for the adaptation digit containing only
front vowels where Sg2D2 significantly outperforms Sg2D1.
This can be attributed to Sg2D2’s more reliable and robust de-
tection of Sg2, as discussed in Section 2.3. For the diphthong,
Sg2D2 used Eq. 3, while in other cases Eq. 2 was used.

4.2. Cross-language speaker normalization



Vowel in the adaptation digit
front vowel
(e.g., six)

mid vowel
(e.g., one)

back vowel
(e.g., two)

diphthong
(e.g., five)

VTLN 91.88 91.25 90.92 92.13
Sg2D1 84.57 91.19 91.85 93.61
Sg2D2 91.35 93.27 93.06 94.05

Table 2: Speaker normalization performance (word recognition
accuracy) on TIDIGITS with one adaptation digit.

In our cross-language speaker normalization experiments, train-
ing and test data were in English, while the adaptation data were
in Spanish. The warping factors were estimated from the adap-
tation data using Sg2D2 and applied to the test data to warp the
spectrum. English adaptation data were collected for compari-
son.

The performance was evaluated on the Technology Based
Assessment of Language and Literacy (TBall) project database
[11], and the English high frequency words for 1st and 2nd
grade students were used in the test. Monophone acoustic mod-
els were trained on speech data from native English speakers.
The test data were from the same 20 speakers as in the ChildSE.
The ChildSE utterances (only one repetition) were used as adap-
tation data, and thus for each speaker there were four English
words and five Spanish words for adaptation.

We randomly chose a boy and a girl from the ChildSE
database to examine the warping factors for VTLN and Sg2
with English and Spanish adaptation data. VTLN was imple-
mented unsupervised as in [4]. The speech data were processed
through an initial recognition pass with warping factor α = 1
(no warping) to get the possible transcriptions. In the case of
Spanish adaptation data, each Spanish sound was transcribed
into a most likely English phoneme. Force alignment was then
performed with the initial transcription for each warping factor
in the range [0.8 1.2] with a step size of 0.01. The warping fac-
tor with the highest likelihood was chosen as the VTLN warping
factor. The subglottal resonance was estimated using Sg2D2 for
each word, and the average was used as the speaker’s Sg2 fre-
quency. The Sg2 warping factor was calculated using Eq. 5.

Table 3 shows the warping factors for VTLN and Sg2. It
can be seen that, for a given speaker, the VTLN warping fac-
tors estimated using English adaptation data are very different
from those estimated using Spanish adaptation data, which may
be because of the different acoustic characteristics of speech
sounds in these two languages. The Sg2 warping factors, how-
ever, remain roughly constant in both languages. This is due
to the fact that Sg2 is independent of language. Since the es-
timated warping factors are used to warp the spectrum during
testing, different warping factors may result in different perfor-
mance, which means that speaker normalization using Sg2 may
be more robust than VTLN across languages.

Method Speaker 1 Speaker 2
English Spanish English Spanish

VTLN 0.96 0.83 0.87 1.05
Sg2 0.97 0.96 0.88 0.89

Table 3: VTLN and Sg2 warping factors using English and
Spanish adaptation data with English acoustic models.

The normalization performance comparison is shown in Ta-
ble 4 for VTLN and Sg2 using English and Spanish adapta-
tion data. When adaptation data are in English, which is the
same language as for the acoustic models, Sg2 normalization
and VTLN give comparably good results. For Spanish adapta-
tion data, however, the performance of VTLN degrades dramat-

Method Language of adaptation data
English Spanish

VTLN 86.85 75.01
Sg2 86.59 85.97

Table 4: Performance comparison (word recognition accuracy)
of VTLN and Sg2 normalization using English (four words) and
Spanish (five words) adaptation data. The acoustic models were
trained and tested using English data.

ically, while Sg2 normalization does not. Sg2 normalization,
therefore, produces more robust results than VTLN when per-
forming cross-language adaptation.

5. Summary and discussion
A reliable algorithm was developed for estimating the second
subglottal resonance (Sg2) from acoustic signals. The algorithm
provided Sg2 estimates which were close to actual Sg2 val-
ues as determined from direct measurements using accelerom-
eter data. Cross-language variability of Sg2 was then inves-
tigated with children’s data for English and Spanish. Analy-
sis showed that the second subglottal resonance is independent
of speech content and language. Based on such observations,
a cross-language speaker normalization method using Sg2 was
proposed. Experimental results showed that Sg2 normalization
is more robust across languages than VTLN, and no significant
performance variations were observed for Sg2 when the adap-
tation data were changed from English to Spanish. The fact that
Sg2 is independent of language should make it possible to adapt
acoustic models with available data from any language.
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