
Bark-shift based nonlinear speaker normalization
using the second subglottal resonance∗

Shizhen Wang, Yi-Hui Lee, Abeer Alwan

Department of Electrical Engineering, University of California, Los Angeles, CA 90095
szwang@ee.ucla.edu, yihuilee@ucla.edu, alwan@ee.ucla.edu

Abstract

In this paper, we propose a Bark-scale shift based piecewise
nonlinear warping function for speaker normalization, anda
joint frequency discontinuity and energy attenuation detection
algorithm to estimate the second subglottal resonance (Sg2).
We then apply Sg2 for rapid speaker normalization. Experimen-
tal results on children’s speech recognition show that the pro-
posed nonlinear warping function is more effective for speaker
normalization than linear frequency warping. Compared to
maximum likelihood based grid search methods, Sg2 normal-
ization is more efficient and achieves comparable or better per-
formance, especially for limited normalization data.
Index Terms: speaker normalization, speech recognition, non-
linear normalization, VTLN, speaker adaptation

1. Introduction
Speaker normalization is widely used to reduce spectra varia-
tions caused by speaker variabilities through frequency warp-
ing. One of the most popular normalization approaches is lin-
ear frequency warping based vocal tract length normalization
(VTLN) [1–5], which assumes that differences in the speak-
ers’ vocal tract lengths result in linearly scaled spectra of each
other. Motivated by studies on speech analysis, many nonlinear
speaker normalization methods have been proposed. A simple
exponential warping function was described in [6] which pro-
vided more adjustment at high frequencies than at low frequen-
cies. The work was further extended in [7] to preserve band-
width after warping. Normalization methods in [8] used the bi-
linear transform and the more general all-pass transform. How-
ever, a comparison in [9] observed no significant performance
differences between bilinear and piecewise linear warpingfunc-
tions.

Based on psycho-acoustical observations in [10], authors in
[11,12] proposed to use offsets in the Bark scale for speakernor-
malization, while [9] applied speaker-specific Bark- and Mel-
scale based normalization approaches. These Bark-scale based
methods directly modified the Hz-Bark conversion formula with
a warping factor. On another scale referred to as the ‘speech
scale’, which is essentially equivalent to the Mel scale except
for a constant coefficient with a value of one, [13,14] proposed
a shift-based nonlinear frequency warping function. All ofthese
nonlinear normalization methods have been reported to perform
better than linear warping.

To estimate an optimal warping factor, a maximum-
likelihood (ML) based grid search is usually applied. An-
other promising warping factor estimation method is proposed
in [15], which uses speaker-specific but content-independent
subglottal resonances to calculate a warping factor. Compared
to conventional linear VTLN, comparable or better performance
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has been reported using the second subglottal resonance. In
such a method, however, a reliable detection of subglottal reso-
nances is critical to the normalization performance.

In this paper, we propose two novel ideas: 1) a bark-shift
based piecewise nonlinear warping function for speaker nor-
malization, and 2) a joint F2 frequency discontinuity and en-
ergy attenuation estimation method for Sg2 detection. The Sg2
normalization is compared with ML-based methods for linear,
Mel-shift and Bark-shift based warping functions.

2. Speaker normalization through
nonlinear frequency warping

Given a warping functionW (f), the spectrumS(f) is trans-
formed into

S
′(f) = S(W (f)) (1)

wheref is the frequency scale in Hz. For computational effi-
ciency,W (f) usually involves only one parameter, the warping
factor α. A simple yet effective warping function is a linear
scaling function:

W (f) = Wα(f) = α · f (2)

In conventional VTLN, the optimal warping factor is usually
estimated using a grid search to maximize the likelihood of
warped observations given an acoustic modelλ:

α = arg max
α∈G

R
∑

r=1

log p(Or(Wα(f))|λ, sr) (3)

wheresr is the transcription of the rth speech fileOr, andG is
the search grid.

Though widely used, the linear scaling model in Eq. 2 is
known to be a crude approximation of the way vocal tract vari-
ations affect spectrum. The warping factor between speakers
is also observed to be frequency dependent [13]. Motivated
by speech analysis, [13, 14] proposed a shift-based nonlinear
frequency warping, i.e., to shift upward or downward the Mel
scale, which results in nonlinear warping in Hz. As opposed to
a linearWα(f), the warping function is defined as:

Wα(z) = z + α (4)

wherez is in Mel scale1:

z = Mel(f) = 1127 log(1 +
f

700
) (5)

The Mel-shift function corresponds to a non-linear relationship
in Hz:

f
′ = e

α
1127 · f + 700(e

α
1127 − 1) (6)

1In [13], the coefficient 1127 is changed to 1. Throughout thispaper,
the standard Mel scale in Eq. 5 is used.



Similar to the linear warping method, the optimal warping fac-
tor α for shift-based methods can be estimated using the ML
criterion.

In this paper, we propose a Bark-scale shift based warping
function defined as in Eq. 4, but wherez is now in Bark scale:

z = Bark(f) = 6 log(
f
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Inserting Eq. 7 into Eq. 4, we can derive the frequency (Hz)
domain relationship corresponding to a Bark shift:
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In general the relationship in Eq. 9 is nonlinear and com-

plicated. However, we can approximate Eq. 8 as:
{

f ′ = e
α
6 · f, for f ≫ 600 Hz

f ′ = e
α
6 · f + 600(e

α
6 − 1), for f ≪ 600 Hz

(10)

For high frequencyf ≫ 600 Hz, the Bark shift corresponds
to a linear scaling in Hz as Eq. 2; while for low frequency
f ≪ 600 Hz, the Bark shift results in an affine relationship in
Hz as the Mel shift (Eq. 6). In general, the Bark shift warping
function stretches or compresses lower frequencies more than
higher frequencies.

To preserve the frequency bandwidth after warping, a piece-
wise nonlinear warping function, shown in Fig. 1, is applied
such that the lower boundary frequencyfmin (or zmin) and the
upper boundary frequencyfmax (or zmax) are always mapped
to themselves, i.e.,

Wα(z) =











zl+α−zmin

zl−zmin
· (z − zmin) + zmin, if z ≤ zl

z + α, if zl < z < zu

zmax−zu−α

zmax−zu
· (z − zu) + zu + α, if z ≥ zu

(11)
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Figure 1:Piecewise bark shift warping function, where α > 0
shifts the Bark scale upward, α < 0 shifts downward, and α =
0 means no warping.

The proposed Bark-shift based piecewise nonlinear warp-
ing function differs from previous Bark-scale based approaches
[9, 11, 12] in two aspects. First, the previous methods ap-
ply modifications to the Hz-Bark conversion formula directly,
which make it difficult to implement in an uniform filter bank

analysis framework. In contrast, the proposed method can be
easily implemented by modifying filter bank analysis for com-
putational efficiency. Second and the most important, the piece-
wise function in Eq. 11 compensates for bandwidth mismatch,
while the warping functions in [9, 11, 12] change frequency
bandwidth, which result in information loss at the boundaries.

3. Sg2 detection based on joint frequency
and energy measurement

The coupling of the subglottal system to the vocal tract intro-
duces additional pole-zero pairs in the vocal tract transfer func-
tion, corresponding to the subglottal resonances. Speech anal-
ysis studies have shown that discontinuities and attenuations of
formant prominence typically occur near resonances of the sub-
glottal system [16]. Take Sg2 for example, which has been more
thoroughly studied than other subglottal resonances. Whenthe
second formant (F2) approaches Sg2, an attenuation of 5-12dB
in F2 energy prominence (E2) isalways observed, while an F2
frequency discontinuity in the range of 50-300Hzoften occurs.

Based solely on F2 frequency discontinuities, an auto-
matic Sg2 estimation algorithm (Sg2DF) was developed in [15].
Sg2DF uses a formula (Eq. 14) as a starting point, searches
within ±100 Hz around the starting point for a F2 discontinuity
in the F2 track, and estimates Sg2 as:

ˆSg2 = β × F2high + (1 − β) × F2low (12)

whereF2high andF2low are the F2 values on the high and low
frequency side of the discontinuity, respectively;β is a weight
in the range (0, 1) that controls the closeness of the detected Sg2
value toF2high. The optimal value ofβ is estimated using the
minimum mean square error criterion on training data:

β̂ = arg min
β

E{( ˆSg2 − Sg2)2} (13)

If no such discontinuity is detected, Sg2DF is approximatedas
in [17]:

˜Sg2 = 0.636 × F3 − 103 (14)

Though simple and efficient, Sg2DF may produce unre-
liable estimates in cases where F2 discontinuities are not de-
tectable. Since E2 attenuationalways occurs when F2 crosses
Sg2, a joint F2 and E2 measurement (Sg2DJ) is proposed here
to improve the reliability of Sg2 estimation. The detectional-
gorithm works as follows:

1. Track F2 and E2 frame by frame using LPC analysis
and dynamic programming. The F2 tracking algorithm
is similar to that used in Snack [19], with parameters
specifically tuned to provide reliable F2 tracking results
on children’s speech. Manual verification and/or cor-
rection is applied through visually checking the tracking
contours against spectrogram.

2. Search within±100 Hz around ˜Sg2 (Eq. 14) for F2 dis-
continuities (F2d) and E2 attenuation (E2a).

3. Check if F2d and E2a correspond to the same location.
Apply decision rules for Sg2 estimation.

The decision rules are biased toward E2 attenuations, sinceE2
attenuations are more correlated with Sg2. If the time infor-
mation of F2 discontinuity matches that of E2 attenuation, as
shown in Fig. 2, Eq. 12 is used for Sg2 estimation. Otherwise,
if F2 discontinuities are not detectable or F2 discontinuities and
E2 attenuations disagree, as shown in Fig. 3, the estimation
will only rely on E2 attenuation, and uses the average F2 value
around E2a as Sg2. If in some extreme cases E2 attenuation is
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Figure 2:Example of the joint estimation method where F2 dis-
continuity and E2 attenuation correspond to the same location
(frame 38). Eq. 12 is used to estimate Sg2.
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Figure 3: Example when there is a discrepancy between loca-
tions of F2 discontinuity (not detectable) and E2 attenuation (at
frame 51). The average F2 value within the dotted box is then
used as the Sg2 estimate.

not detectable, which rarely occur in our experiments, thenEq.
14 would be used for Sg2 estimation.

The algorithm was tested on children’s data with estimated
ground truth Sg2 values using an accelerometer [15,17]. Com-
pared to F2 discontinuity-based detection algorithm Sg2DF, im-
proved accuracy was achieved for around 25% of the test data.
Most of the improvements occur in cases where F2 disconti-
nuities and E2 attenuations disagree. These F2 discontinuities
may be caused by factors other than subglottal resonances, e.g.,
probably from inter dental space.

4. Speaker normalization using Sg2
The automatically estimated Sg2 has been applied for linearfre-
quency warping, and shown to be promising [15]. Here, we ex-
tend that work to nonlinear speaker normalization. Given the
Sg2 value for a test speaker,Sg2tst, and a reference Sg2 value
Sg2ref , which is the average Sg2 value over training speakers,
the warping factorα is calculated as:











α =
Sg2ref

Sg2tst
, for linear scaling

α = Mel(Sg2ref ) − Mel(Sg2tst), for Mel shift
α = Bark(Sg2ref ) − Bark(Sg2tst), for Bark shift

(15)
The ML-based speaker normalization method (Eq. 3) in-

volves an exhaustive grid search to find an optimal warping fac-
tor in the ML sense, which is time consuming and requires a cer-
tain amount of data to be effective. In contrast, the main compu-
tational cost for Sg2-based normalization methods comes from

F2 and E2 tracking based on LPC analysis, which can be done
efficiently. Since Sg2 has been shown to be content indepen-
dent and remains constant for a given speaker [15, 16], Sg2
estimation doesn’t require large amounts of data, and theoreti-
cally a few words, or even one word if carefully chosen2, would
be sufficient. Therefore, compared to ML-based normalization
methods, Sg2-based normalization methods are computation-
ally more efficient and require less data, which is desirablefor
rapid speaker normalization with limited enrollment data.

5. Experimental results
For computational efficiency, all normalization methods are im-
plemented by modifying the Mel or Bark filter bank analysis,
instead of warping the power spectrum. MFCC features are
used for Mel shift, and PLPCC features are used for Bark shift.
PLP features can also be computed from Mel filter bank front
end. Our preliminary experiments showed that for the baseline
system, Mel-PLP performs slightly better than Bark scale PLP
and standard MFCC. However, the improvement is not signif-
icant, and since we are not interested in comparing features,
standard MFCC and Bark-scale PLP were used in our experi-
ments. Here, we are interested in the comparison of linear vs.
nonlinear warping functions, and ML vs. Sg2 based normal-
ization. For fair comparisons, all experiments (both linear and
nonlinear) use piecewise warping functions with the same cut-
off frequencies.

It is also important to use a consistent framework when
conducting the comparison of ML-based linear vs. nonlinear
normalization, i.e., the search grids should be equivalent. This
means the grid size should be the same and within an appropri-
ate range to ensure that the linear and nonlinear warped spectra
cover roughly the same frequency range. For the linear warping
function, a grid of 21 searching points is used with a step size
of 0.01. According to Eq. 10 and Eq. 6, a step size of 0.01 in
linear scaling roughly corresponds to a shift of 0.07 (bark)in
Bark scale, or a shift of 10 (Mel) in Mel scale.

The performance of different normalization methods is
evaluated on children’s ASR, where speaker normalization has
been shown to provide significant performance improvement.
Two databases are used: one is the TIDIGITS database on
connected digits, and the other is the TBall database on high
frequency words (HFW) and basic phonic skills test (BPST)
words [18]. For the two databases, speech signals were seg-
mented into 25ms frames, with a 10ms shift. Each frame was
parameterized by a 39-dimensional feature vector consisting of
12 static MFCC (or PLPCC) plus log energy, and their first- and
second-order derivatives. Cepstral mean substraction (CMS)
is applied in all cases. Throughout this paper word error rate
(WER) is used for performance evaluation.

Monophone-based acoustic models were used with 3 states
and 6 Gaussian mixtures in each state. In the TIDIGITS exper-
iments, acoustic models were trained on 55 adult male speakers
and tested on 50 children. The baseline WER is 37.63% using
MFCC features and 37.47% using PLPCC features. For each
child, the normalization data, which consisted of 1, 4, 7, 10or
15 digits, were randomly chosen from the test subset to esti-
mate Sg2 and the ML-based warping factors. The ML search
grid is [0.8, 1.0] for linear scaling, [-1.4, 0.0] for Bark shifting,
and [-200, 0.0] for Mel shifting. In the TBall database, 55 HFW
words and 55 BPST words were collected from 189 children in
grades 1 or 2. Around two-thirds of the data (120) were used
for training, and the remaining third for testing. The baseline

2For most reliable estimation, the Sg2 detector requires F2 transition
crossing Sg2, e.g., as in a diphthong /ai/.



WER is 7.75% using MFCC features and 8.35% using PLPCC
features. Three randomly chosen words (including at least one
diphthong word) were used for normalization. The ML search
grid is [0.9, 1.1] for linear scaling, [-0.7, 0.7] for Bark shifting,
and [-100, 100] for Mel shifting. For comparison, the Bark off-
set method in [12] was also evaluated using PLPCC features.
All experiments were performed in an unsupervised way, and
the recognition output from the baseline models (without nor-
malization) was used as transcription during ML grid searching.

Tables 1 and 2 show results on TIDIGITS with various
amounts of normalization data for MFCC and PLPCC features,
respectively. LS-ML means linear scaling with ML-based warp-
ing factor estimation; LS-Sg2 means linear scaling with Sg2-
based warping factor estimation; MS represents Mel-shift based
nonlinear warping; BS is Bark-shift based nonlinear warping;
BO-ML is the method in [12] using ML grid search.

For ML-based warping methods, comparing LS vs. MS for
MFCC (rows 1 and 2 in Table 1) and LS vs. BS for PLPCC
features (rows 1 and 2 in Table 2), it can be seen that nonlin-
ear frequency warping provides better performance than linear
warping in all conditions, which is in agreement with literature.
Due to the bandwidth compensation, the proposed piecewise
Bark shift method (BS-ML) outperforms BO-ML except for the
case of one normalization digit.

Compared to ML-based methods, Sg2 normalization per-
forms significantly better for up to seven normalization digits
with all three warping functions (LS, MS, and BS). With more
data, ML-based methods tend to produce close or superior per-
formance, though for the case of Bark shift (BS-ML vs. BS-
Sg2, rows 3 and 5 in Table 2), Sg2 outperforms ML in all test-
ing conditions for up to 15 digits. Similar performance trends
are observed on TBall data in Table 3.

Warping 1 4 7 10 15
LS-ML 7.48 6.34 5.42 4.99 4.91
MS-ML 6.33 5.47 4.48 4.11 4.08
LS-Sg2 6.11 5.57 5.05 5.07 5.03
MS-Sg2 5.29 4.81 4.05 4.13 3.99

Table 1:WER on TIDIGITS using MFCC features with varying
normalization data from 1 to 15 digits.

Warping 1 4 7 10 15
LS-ML 7.62 6.90 5.78 5.64 5.25
BS-ML 6.21 5.63 4.56 4.30 4.13
BO-ML 6.00 5.94 5.33 4.96 4.65
LS-Sg2 6.15 5.71 5.51 5.47 5.39
BS-Sg2 5.17 4.76 4.09 4.11 4.05

Table 2:WER on TIDIGITS using PLPCC features with varying
normalization data from 1 to 15 digits.

MFCC PLPCC
Warping WER Warping WER
LS-ML 6.86 LS-ML 6.99
MS-ML 5.91 BS-ML 5.82

- - BO-ML 6.08
LS-Sg2 6.10 LS-Sg2 6.33
MS-Sg2 4.89 BS-Sg2 4.71

Table 3: WER on TBall children’s data using MFCC and
PLPCC features with 3 normalization words.

6. Summary and discussion
In this study, a Bark-scale shift based nonlinear frequencywarp-
ing is proposed for speaker normalization. The technique pre-
serves frequency bandwidth and can be efficiently implemented
through modification of a filter bank analysis. Instead of using
maximum likelihood (ML) based grid search for warping fac-
tor estimation, the second subglottal resonance (Sg2) is applied
to calculate the warping factor. For reliable Sg2 estimation, a
joint frequency discontinuity and energy attenuation detection
algorithm is proposed. Experiments on two children’s speech
recognition tasks show that nonlinear frequency warping out-
performs linear warping, and Sg2 normalization is more effi-
cient than ML-based methods, with comparable or better recog-
nition performance, especially when a limited amount of data is
available. In future work, we’ll evaluate this method on noisy
data sets.
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