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Abstract of the Dissertation

Noise Robust Signal Processing for Human

Pitch Tracking and Bird Song Classification and

Detection

by

Wei Chu

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2012

Professor Abeer Alwan, Chair

This dissertation investigates the extraction of discriminative information

from noisy signals for human fundamental frequency (F0) tracking, and for bird

song classification and detection.

For F0 tracking, the investigation is carried out in the direction of reducing

F0 estimation and voicing decision errors.

To reduce F0 estimation errors, a novel Statistical Algorithm for F0 Estima-

tion, SAFE, is proposed to improve the accuracy of F0 estimation under both

clean and noisy conditions. Prominent Signal-to-Noise Ratio (SNR) peaks in

speech spectra constitute a robust information source from which F0 can be

inferred. A probabilistic framework is proposed to model the effect of noise on

voiced speech spectra. Prominent SNR peaks in the low frequency band (0 - 1000

Hz) are important to F0 estimation, and prominent SNR peaks in the middle and

high frequency bands (1000 - 3000 Hz) are also useful supplemental information

to F0 estimation under noisy conditions, especially in the babble noise condition.

To reduce voicing decision errors, we introduce a model-based unvoiced/voiced

xx



(U/V) classification frontend which can be used by any F0 tracking algorithm.

We propose an F0 Frame Error (FFE) metric which combines Gross Pitch Error

(GPE) and Voicing Decision Error (VDE) to objectively evaluate the performance

of F0 tracking methods. A GPE-VDE curve is then developed to show the tradeoff

between GPE and VDE.

For bird call classification, the investigation is carried out in the direction of

signal denoising and discriminative feature extraction.

To enhance noisy signals, we propose a Correlation-Maximization denoising

filter which utilizes periodicity information to remove additive noise in Antbird

calls. We also develop a statistically-based noise-robust bird-call classification

system which uses the denoising filter as a frontend. Enhanced bird calls which

are the output of the denoising filter are used for feature extraction.

To obtain discriminative features, we extend the expectation-maximization

(EM) algorithm to estimate not only optimal acoustic model parameters, but

also optimal center frequencies and bandwidths of the filter bank used in cepstral

feature extraction for bird call classification. The search is done using the gradient

ascent method. Filter bank and model parameters are optimized iteratively.

For bird song detection, temporal, spectral, and structural characteristics of

Robin songs and syllables are studied. Syllables in Robin songs are clustered by

comparing a distance measure defined as the average of aligned Linear Predictive

Coding (LPC)-based frame level differences. The syllable patterns inferred from

the clustering results are used to improve acoustic modelling of a hidden Markov

model (HMM)-based song detector.
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CHAPTER 1

Introduction and Background

This dissertation studies aspects of pitch estimation and tracking in clean and in

noisy signals, and of bird song classification and detection in noisy signals.

1.1 F0 Estimation and Tracking

The source-filter model of speech production [1] assumes that speech signals can

be modeled as an excitation signal filtered by a linear vocal-tract transfer func-

tion. The fundamental frequency (F0) is defined as the inverse of the period of

the excitation signal during the voicing state [2] [3]. Accurate F0 tracking in quiet

and in noise is important for several speech applications, such as speech coding,

analysis and recognition. In this dissertation, F0 estimation refers to estimating

F0 values over voiced frames. F0 tracking refers to classifying voiced regions and

estimating F0 values over those voiced regions.

1.1.1 F0 Estimation Methods

Some F0 estimation algorithms are based on the source-filter theory of speech

production and estimate F0 for voiced speech segments. They assume that F0

is constant and the vocal tract transfer function is time invariant within a short

period of time, e.g, a frame of 10-20 milliseconds. These algorithms usually have

1



two stages. The first stage consists of obtaining F0 candidates and the likelihood

of voicing on a frame-by-frame basis. The second stage consists of using dynamic

programming to decide the optimal F0 and voicing state for each frame.

The first stage can be classified into two categories: single-band and multi-

band. In the single-band method, F0 candidates are extracted from one frequency

band [2]. There are several methods to generate F0 candidates. SIFT [4] applies

inverse filtering to voiced speech to obtain the excitation signal from which it

estimates F0 by using autocorrelation. Cepstral-based methods (e.g., [5]) sepa-

rate the excitation from the vocal tract information in the cepstral domain by

using a homomorphic transformation; the interval to the first dominant peak in

the cepstrum is related to the fundamental period. RAPT [6] and YAPPT [7]

generate F0 candidates by extracting local maxima of the normalized cross corre-

lation function which is calculated over voiced speech. Praat [8] calculates cross

correlation or autocorrelation functions on the speech signal and regards local

maxima as F0 hypotheses. TEMPO [9] obtains F0 candidates by evaluating the

‘fundamentalness’ of speech which achieves a maximum value when the AM and

FM modulation magnitudes are minimized. YIN [10] uses the autocorrelation-

based squared difference function and the cumulative mean normalized difference

function calculated over voiced speech, with little post-processing, to acquire F0

candidates. Yegnanarayana et al. [11] obtain F0 candidates from exploiting the

impulse-like characteristics of excitation in glottal vibrations. Finally, Le Roux

et al. [12] simultaneously perform frame-wise F0 candidate generation and time-

direction smoothing.

In the following, the details of the autocorrelation function in Praat [8], the

cross-correlation function in RAPT [6], and the average magnitude difference

function in YIN [10] are described.
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1.1.1.1 Autocorrelation and Cross-Correlation Functions

Suppose there is a preprocessed acoustic signal s[n]. Given a frame shift of L

and a frame length of N , the nth sample in frame m is denoted by sm[n], i.e.,

s[mL + n]. Pm is the ground truth pitch period, in samples, of the frame m.

For the frame m, the autocorrelation function (ACF) is defined as

RACF

m [k] =

N−k−1∑

n=0

sm[n]sm[n + k], k = 0, · · · , N − 1, (1.1)

where k denotes the lag.

For a voiced frame, the ACF will have maxima at multiples of pitch periods.

The pitch period in samples of the frame m is estimated as:

P̂ ACF

m = arg max
k

RACF

m [k], k = kmin, · · · , kmax − 1, (1.2)

where kmin and kmax are the minimum and maximum pitch periods in samples,

respectively.

As the lag k increases, the number of the samples involved in calculating the

ACF, i.e., N−k−1, decreases. To keep the number of samples in each calculation

stable, the Cross Correlation Function (CCF) of the frame m is defined as:

RCCF

m [k] =

N−1∑

n=0

sm[n]sm[n + k], k = 0, · · · , N − 1, (1.3)

The ACF can be normalized. The Normalized Autocorrelation Function

(NACF) is defined as:

RNACF

m [k] =
RACF

m [k]√∑N−k−1
n=0 s2

m[n]
∑N−k−1

n=0 s2
m[n + k]

, k = 0, · · · , N − 1, (1.4)

The pitch period estimation of a voiced frame using the CCF or NACF is

similar to the ACF.
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1.1.1.2 Average Magnitude Difference Function

For the frame m, the average magnitude difference function (AMDF) is defined

as follows:

RAMDF

m [k] =

N−1∑

n=0

[sm[n + k]− sm[n]]2, k = 0, · · · , N − 1. (1.5)

The AMDF will have minima at multiples of the pitch period. The pitch

period, in samples, of the frame m is estimated as:

P̂ AMDF

m = arg min
k

RAMDF

m [k], k = kmin, · · · , kmax − 1. (1.6)

The AMDF is less sensitive to amplitude changes compared to CCF [9].

1.1.1.3 Multiband Techniques

In the multi-band method, a decision module is usually used to reconcile F0 can-

didates generated from different bands. Gold and Rabiner [13] use measurements

of peaks and valleys of voiced speech as input to six separate functions whose

values are then processed by an F0 estimator to obtain F0 candidates. Lahat

et al. [14] calculate autocorrelation functions of the spectral magnitudes in dif-

ferent bands and then obtain F0 candidates by evaluating the local maxima of

the functions. Sha et al. [15] detect F0 candidates by minimizing the values of

sinusoid-based error functions calculated on 4 frequency bands: 25-100, 50-200,

100-400, and 200-800 Hz. These multi-band methods focus mainly on the low

frequency bands.

The multi-band approach has also been used to apply Licklider’s pitch per-

ception theory [16] to F0 estimation. The irregular excitation signal may cause

voiced speech to be aperiodic in some frequency bands [17]. It is hypothesized
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that the higher levels of auditory processing isolate groups of contiguous harmon-

ics to infer the fundamental frequency from a selection of these groups. In this

view, it is hypothesized that auditory nerves and the auditory brainstem are ca-

pable of using an autocorrelation mechanism to infer F0 over different frequency

channels. de Cheveigne shows that integrating the values of AMDFs across dif-

ferent channels in the time domain can improve F0 estimation accuracy [18]. Wu

et al. [19] used correlograms to select reliable frequency bands, modeled F0 dy-

namics using a statistical approach, and then searched for the optimal F0 contour

in an HMM framework.

1.1.1.4 Noise Robust F0 Estimation

The above-mentioned F0 candidate generation methods can also be applied to

noisy conditions. Krusback et al. [20] use an autocorrelation function with con-

fidence measures. Shimamura et al. [21] proposed a weighted autocorrelation

function. Abe et al. [22] use the instantaneous frequency spectrum to enhance

harmonics and suppress aperiodic components, which improves F0 estimation ac-

curacy. Liu et al. [23] use joint time-frequency analysis to obtain robust adaptive

representation of the speech spectrum from which important harmonic struc-

tures can be extracted. Nakatani et al. [24] use dominance spectra based on

instantaneous frequencies to evaluate the magnitudes of the harmonics relative

to background noise, and estimate F0 using only the reliable harmonics. Desh-

mukh et al. [25] use an aperiodicity, periodicity, and pitch detector to generate

F0 candidates by calculating the AMDFs over different frequency channels in the

spectral domain.
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1.1.2 Unvoiced/Voiced Decision Methods

Most F0-tracking algorithms, such as RAPT [6], TEMPO [9], Praat [8] make

U/V decisions based on the values of energy-based or harmonic-based features

exceeding certain thresholds or not. Under different noisy conditions, one has to

adjust these thresholds carefully in order to avoid performance degradation.

For example, the calculations of voicing likelihoods in RAPT [6] and Praat [8]

are described in the following.

Let sm[n] denote the nth sample in the mth frame of an acoustic signal. The

frame length is N .

In RAPT, the normalized cross correlation function of the frame m denoted

by φm[k] is calculated as:

φm[k] =

∑N−1
n=0 sm[n]sm[n + k]√

ǫ +
∑N−1

n=0 s2
m[n]

∑N−1
n=0 s2

m[n + k]
, k = 0, · · · , N − 1, (1.7)

where ǫ is an additive constant.

The voicing likelihood of the frame m denoted by dRAPTm is calculated as:

dRAPTm = max
k

φm[k] + b, k = kmin, · · · , kmax − 1, (1.8)

where b denotes the bias term in the voicing decision, kmin and kmax are the

minimum and maximum pitch periods in samples, respectively.

In Praat, the autocorrelation-based function of a frame is calculated as:

RPraat

m [k] =
RNACF

m [k]

rw[k]
, k = kmin, · · · , kmax − 1, (1.9)

rw[k] is a window defined as:

rw[k] = (1−
k

N
)(

2

3
+

1

3
cos

2πk

N
) +

1

2π
sin

2πk

N
, (1.10)
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Let M denote the number of frames in the utterance, if

max
k

RPraat

m [k] < 0.4, (1.11)

and

max
k

RPraat

m [k] < 0.05 max
m,k

RPraat

m [k], , m = 0, · · · , M − 1, (1.12)

then, the frame m is likely to be an unvoiced frame.

1.1.3 Postprocessing

Postprocessing is usually performed using dynamic processing. The objective of

dynamic programming is to search for an F0 contour that minimizes an objective

function. In RAPT [6], the objective function is defined as a summation of the

frame-level local cost and transition cost functions given an F0 contour. The

local cost function for a certain frequency at one frame is inversely related to the

F0 likelihood value. The inter-frame F0 transition cost function is defined under

4 conditions: voiced-to-voiced (V→V), unvoiced-to-unvoiced (U→U), voiced-to-

unvoiced (V→U), and unvoiced-to-voiced (U→V). In the V→V condition, the

cost function is defined as an increasing function of inter-frame proportional fre-

quency change, but allows for octave jumps at some specifiable cost. In the U→U

condition, the cost function is defined as 0. In the V→U or U→V conditions, the

cost function is defined as a combination of a spectral stationarity function and

the inverse function of the Itakura distortion [26].

1.1.4 Error Metrics

Consider F0 tracking on an utterance of N frames shown in Fig. 1.1 where the

F0 values of unvoiced frames are set to 0 Hz.
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Figure 1.1: F0 Tracking Contour over Time for an utterance of N frames.

In F0 tracking, two types of error metrics are commonly used [2]. The first is

Voicing Decision Error (VDE) [27]:

V DE =
NV →U + NU→V

N
× 100% (1.13)

where N is the number of the frames in the utterance. The second is F0 value

estimation error which is called the Gross Pitch Error (GPE):

GPE =
NGE

NV V
× 100% (1.14)

where NV V is the number of frames which both the F0 tracker and the ground

truth consider to be voiced, NGE is the number of frames for which

|
F0i,estimated

F0i,reference
− 1| > δ%, i = 1, · · · , NV V , (1.15)

where i is the frame index, and δ is a threshold which is typically 20.

In the example shown in Fig. 1.1,

V DE =
N2 + N6

N
× 100%, (1.16)

GPE =
N4

N3 + N4 + N5

× 100%.

Two other error metrics: Mean of the Fine Pitch Errors (MFPE) and Standard

Deviation of the Fine Pitch Errors (SDFPE) [2], are used to measure the bias
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and precision of the F0 estimation when no gross error occurs. The number of

frames in which fine errors are made, denoted by NFE , is equal to NV V − NGE .

FE means ‘fine error’. MFPE denoted by µFPE is defined as:

µFPE =
1

NFE

∑

i∈SF E

(f0i,estimated − f0i,reference), (1.17)

where SFE denotes the set of all the frames in which no gross error occurs.

SDFPE denoted by σFPE is defined as:

σFPE =

√
1

NFE

∑

i∈SF E

f0
2
i,estimated − µ2

FPE, (1.18)

In the example shown in Fig. 1.1, NFE = N3 + N5.

1.2 Bird Song Classification and Detection

Bird songs are important in the communication between birds of specific species.

A bird can listen to other birds and classify them as conspecific or heterospecific,

neighbor or stranger, mate or non-mate, kin or non-kin [28]. It can also sing to

other birds for mate attraction, danger alert, or territory defense [29]. Behavioral

and ecological studies could benefit from automatically detecting and identifying

species from acoustic recordings.

A denoising filter is usually needed to suppress the background noise and

enhance the target bird call before extracting features from acoustic signals [30].

Different signal processing approaches are employed in analyzing the bird

songs, such as Wigner-Ville distribution analysis [31], parametric representa-

tion [32], frequency component analysis [33], and so on. Researchers have also

applied machine learning methods to bird song classification and recognition, such

as back propagation and multivariate statistics [34], artificial neural networks [35],
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evolving neural networks [36], dynamic time warping and hidden Markov mod-

els [37] [38], sinusoidal modeling of syllables [39], syllable pair histograms [40],

and so on.

Methods for human speaker identification and speech recognition have also

been applied to bird species identification and bird song recognition [41]. A

typical bird call classification system usually includes feature extraction, acoustic

model training and adaptation, and instance classification modules [42].

In feature extraction, audio signals are compressed to a sequence of fea-

ture vectors. When the distribution of the features is quantitatively modeled,

the expectation-maximization (EM) algorithm can be used to estimate acoustic

model parameters by iteratively maximizing the expectation of the likelihood

from these features [43].

To improve the discriminability of the features, the original feature space can

be mapped to new subspaces by certain projections. Different criteria are em-

ployed to search for optimal projections. Linear discriminant analysis (LDA) [44]

computes the projection by maximizing the Fisher ratio value; heteroscedastic

LDA (HLDA) [45] and multiple LDA (MLDA) [46] learn the projection by max-

imizing the likelihood from the transformed features; while fMPE [47] estimates

the projection by minimizing phone error rate.

Changing parameters in feature extraction can also increase the discriminabil-

ity of the features. The Mel-scaled filter bank is often used for feature extraction

in automatic speech recognition (ASR) [48], although Graciarena et al. [49] man-

ually changed the frequency range, the number of filters, and the frequency scale

type of the filter bank for bird species identification.
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1.3 Dissertation Outline

In Chapter 2, a statistical algorithm for F0 estimation under noisy conditions,

SAFE, is proposed. In Chapter 3, a noise robust model-based unvoiced/voiced

classifier is proposed to allow the SAFE algorithm to estimate F0 values on clas-

sified voiced regions. A new error metric for evaluating F0 tracking performance,

F0 Frame Error, is also proposed to compare the performance of various F0 track-

ing algorithms in a unified framework. In Chapter 4, a Correlation-Maximization

filter is proposed for acoustic signal denoising before extracting features for bird

call classification. In Chapter 5, a filter bank Expectation-Maximization algo-

rithm is proposed to improve the discriminability of the features extracted for

bird call classification. In Chapter 6, a syllable pattern-based bird song detector

is proposed for improving bird song detection in an audio stream. Finally, in

Chapter 7, a summary of the dissertation is presented and ideas for future work

are discussed.
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Part I

Noise Robust F0 Estimation and

Tracking
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CHAPTER 2

SAFE: A Statistical Algorithm for F0

Estimation

In this chapter, voicing information is made available to F0 tracking algorithms.

Therefore, it is possible to focus on reducing F0 estimation errors, i.e. GPEs,

under noisy conditions.

According to the experimental results in this study, some of the publicly

available methods, e.g. RAPT [6], TEMPO [9], Praat [8], can work well under

relatively noise-free conditions. However, when the low-frequency band is contam-

inated by noise, an increase in F0 estimation errors is observed. Since it is possible

that F0 harmonics in the middle or high frequency bands are not corrupted, it

may be beneficial for an F0 estimation method to utilize these harmonics in de-

termining F0. Current multi-band methods [14] [15] mainly retain F0 candidates

obtained from the most reliable band, which is a ‘hard-decision’, while the Lick-

lider’s pitch perception model uses an empirically-based ’soft-decision’ to merge

the information from different bands [18]. Wu et al. [19] uses a ‘soft-decision’

approach to combine the information across bands. We propose a Statistical Al-

gorithm for F0 Estimation (SAFE) which also utilizes a ‘soft-decision’ method.

A data-driven approach is used to learn how the noise affects the amplitude and

location of the peaks in the Signal-to-Noise Ratio (SNR) spectra of clean voiced

speech. The likelihoods of F0 candidates are obtained by evaluating the peaks in
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the SNR spectrum using the corresponding models learned from different bands.

It is worth noting that Ying et al. [50] use a probabilistic method to estimate

F0 distribution in order to avoid local optima in F0 estimation. Wang et al. [51]

modeled the between-frame F0 transitions in a statistical approach to improve

both F0 estimation and unvoiced/voiced decision.

In the following sections, the statistical effects of noise on clean voiced speech

spectra are studied. This relationship between the noise and information source

for F0 estimation is modeled in a probabilistic framework. In testing, the poste-

rior probabilities of the F0 candidates are then calculated. In the experimental

section, the performance of the proposed method under different noise types and

SNRs is compared with prevailing F0 estimation methods.

A flowchart of SAFE is shown in Fig. 2.1. This chapter focuses on estimating

fundamental frequency (F0) values over voiced frames that may be corrupted by

quasi-stationary noise. Suppose that the range of F0 in human speech is from

f0min to f0max, and the frequency resolution of F0 estimation is ∆. Then SF0 is

used to denote the set of all possible F0 values {f0min, f0min + ∆, · · · , f0max}.

Given the power spectrum Y of a single observed noisy voiced frame under

a stationary noise condition N, the probability of f0 being the fundamental fre-

quency of that frame can be expressed as P (f0|Y,N). The most likely estimate,

denoted by f̂0, should be:

f̂0 = arg max
f0∈SF0

P (f0|Y,N). (2.1)

Let Yf and Nf denote the power spectrum of the noisy voiced frame and

noise at frequency f , respectively. Then the a posteriori SNR at frequency f

denoted by γf is:

γf = 10 log10

Yf

Nf
. (2.2)
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Figure 2.1: A flowchart of SAFE.
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As quasi-stationary noise is assumed in this study, the noise spectrum for each

utterance is estimated by averaging the initial 10 and final 10 frames of noisy

speech. The frame shift is 10 ms, and the frame length is 40 ms.

The SNR γf is a measure of the spectral magnitude at frequency f being con-

taminated by noise. According to the source-filter theory of speech production,

a voiced speech spectrum has a harmonic structure. Local SNR peaks (corre-

spond to mainly harmonics) contain more information than valleys regarding

F0. It is assumed that the information contained in the set of local SNR peaks

{C1, · · · ,CM} is sufficient to estimate F0, where M is the number of local SNR

peaks. Thus, the posterior probability of f0 is:

P (f0|Y,N) = P (f0|C1, · · · ,CM ,N). (2.3)

In a ROVER system for automatic speech recognition [52], the posterior prob-

abilities of a word from different sub-systems are combined with different weights.

Inspired by ROVER, local SNR peaks can be assumed to be independent in infer-

ring F0 given the noise shape and level. The overall posterior probability can be

approximated as a weighted combination of posterior probabilities P (f0|Ci,N):

P (f0|Y,N) ≈
M∑

i=1

wiP (f0|Ci,N), (2.4)

where wi is the confidence measure of the i-th local SNR peak. If each local

SNR peak is assumed to have an equal confidence score, then wi is set to 1/M .

(i = 1, 2, · · · , M).

If the distribution of f0 given the noise, i.e., P (f0|N), is assumed to be uniform

when prior information is not available, then P (f0|Ci,N) can be obtained from

the Bayesian rule:

P (f0|Ci,N) =
p(Ci|f0,N)∑

f0∈SF0
p(Ci|f0,N)

. (2.5)
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Let f denote the frequency of the local SNR peak Ci. Because f is not usually

equal to a multiple of f0, f can be decomposed into a multiple m and a residual

δ as follows:

m =
[ f

f0

]
, δ =

f

f0

−m, (2.6)

where [ f
f0

] denotes the nearest integer of f
f0

. Hence, the residual ranges from -0.5

to 0.5. If the fraction of f
f0

is exactly 0.5, either rounding upwards or downwards

does not change F0 estimation error rates in SAFE.

Given f0 and noise N, the local SNR peak Ci has the following attributes:

multiple m, residual δ, a posteriori SNR γf , and frequency band index Bf in

which the frequency f is. In other words, the peak Ci resides in band Bf . The

reason why f is not adequate on its own is because there are not enough training

samples for each frequency bin. Then we have:

p(Ci|f0,N) = p(m, δ, γf , Bf |f0,N) (2.7)

= P (m|f0,N)p(δ|m, γf , Bf , f0,N)

p(γf |m, Bf , f0,N)P (Bf |m, f0,N).

We assume that the deviation of a local SNR peak from a multiple of f0,

caused by noise, will not exceed half f0. Therefore, m is independent of the noise

N, i.e., P (m|f0,N) = P (m|f0). After the decomposition shown in Eq. 2.6, the

residual δ can be assumed to be independent of m and f0 given γf , Bf , and N,

i.e., p(δ|m, γf , Bf , f0,N) = p(δ|γf , Bf ,N). The local SNR γf is independent of m

and f0 given the band index Bf and noise condition N, i.e., p(γf |m, Bf , f0,N) =

p(γf |Bf ,N). Furthermore, P (m|f0) is assumed to be uniformly distributed. Since

Bf can be assumed to be determined by m and f0 regardless of noise, the Dirac
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function P (Bf |m, f0,N) is assumed to be equal to 1. Then we can have:

p(Ci|f0,N) (2.8)

= D1 · p(δ|γf , Bf ,N)p(γf |Bf ,N).

where D1 is a constant.

2.1 Prominent SNR Peaks

Before studying the distribution of the residual and local SNR peaks, it is im-

portant to select useful local SNR peaks for F0 estimation. Short and long-term

smoothed SNRs denoted by γS

f and γL

f are obtained by smoothing γf with a

Hamming window of length f0min and f0max in Hz, respectively. The Hamming

window is used because of its relatively small side lobes. Since the short-term

smoothing can reduce the number of false alarm local SNR peaks and retain F0

information, γf in Eq. 2.8 is replaced by γS

f . To depict the relationship between

the two smoothed SNRs, an SNR difference at the i-th local peak in γS

f denoted

by ζi can be expressed as follows:

ζi = γS

fi
− γL

fi
, i = 1, · · · , MS, (2.9)

where MS is the number of the local peaks in γS

f . ζi is further normalized with

respect to all the peaks in the frame as follows:

ζ̄i =
ζi − µζ

σζ
, i = 1, · · · , MS, (2.10)

where µζ and σζ are the mean and standard deviation of the sequence ζi. The

ith local SNR peak (Ci) is regarded as a prominent SNR peak for F0 estimation

only if ζ̄i is above a certain threshold. In this study, the threshold is empirically

set to 0.33.

18



0 500 1000 1500 2000 2500 3000
−10

0

10

20

30

40

50

 −1.0

 1.6

 −1.2

 1.6

 1.4

 0.9
 1.0

 −1.7

 1.2  0.7

 −0.9

 0.5

 −1.1
 −1.3

 0.3

 −0.5

 0.5

 −0.5

 0.0
 −0.4

 −0.2 −0.4
 −1.1

 0.5

frequency (Hz)

S
N

R
 (

dB
)

White noise, SNR = 20 dB

0 500 1000 1500 2000 2500 3000
−20

−10

0

10

20

30

40

 −0.6

 1.7

 −1.2 −1.2

 1.9

 −1.5

 1.6

 −1.1

 1.0
 1.1

 −1.2

 1.4  0.9

 −0.8

 0.6

 −0.6 −0.4
 0.1

 −0.7
 −1.0

 0.6

 −0.2 0.0
 −0.2 −0.2 −0.2 −0.2

 0.8

frequency (Hz)

S
N

R
 (

dB
)

White noise, SNR = 10 dB

0 500 1000 1500 2000 2500 3000
−20

−10

0

10

20

30

40

 −0.5

 2.1

 −1.4

 2.4

 −1.5

 1.9

 −1.2

 0.5

 −0.3

 0.7

 −1.4

 1.5
 0.7

 −0.9

 0.2

 −0.5 0.0
 −0.1

 −1.0

 0.4 0.2  −0.2
 −0.3 −0.4 −0.0

 −0.5 −0.4

 0.4
 −0.4

frequency (Hz)

S
N

R
 (

dB
)

White noise, SNR = 0 dB

 

 

Log of the short−term smoothed SNR
Log of the long−term smoothed SNR
Multiples of F0 (217.4 Hz)

Figure 2.2: The SNR spectrum of a voiced frame of a female speaker corrupted

by different levels of additive white noise (20, 10 and 0 dB). The number on

top of each peak of the short-term smoothed SNR is the value of the normalized

difference SNR ζ̄i of that peak. Arrows around 300 Hz indicate peaks with a

lower ζ̄i than their adjacent prominent peaks.
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Figure 2.3: The SNR spectrum of a voiced frame of a male speaker corrupted

by different levels of additive white noise (20, 10 and 0 dB). The number on

top of each peak of the short-term smoothed SNR is the value of the normalized

difference SNR ζ̄i of that peak.
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Figs. 2.2 and 2.3 show the SNR spectra of a voiced frame of a female and a

male speaker, respectively, corrupted by different levels of additive white noise

(20, 10 and 0 dB). The number on top of each peak of the short-term smoothed

SNR is the value of the normalized difference SNR ζ̄i of that peak. It can be

seen that not all local SNR peaks reside in the vicinity of multiples of F0. Most

false alarm or deviated peaks have a lower normalized SNR difference compared

to the peaks near the multiples of F0. Take the false alarm local peaks around

300 Hz of the voiced frames in all panels of Fig. 2.2 for example. These peaks,

indicated by arrows, have a lower ζ̄i than their adjacent prominent peaks in the

three noise conditions.

As shown in Figs. 2.2 and 2.3, the lower a peak is compared to the long-term

smoothed SNR, the more likely it is corrupted by the noise and shifted from its

original location, and the less likely it is to be close to multiples of F0. Hence,

prominent SNR peaks which are less corrupted by noise and less deviated from

a multiple of F0 can provide reliable information for inferring F0s. When middle

and high frequency bands are less corrupted by noise, it is possible that prominent

peaks can exist in these bands, e.g., the peaks around 2800 Hz in female voiced

frames and the peaks around 1700 Hz in male voiced frames under 20, 10 and 0 dB

SNR conditions. Retaining these prominent peaks and discarding non-prominent

peaks might improve the performance of F0 estimation.

As mentioned above, the higher a peak is, compared to long-term smoothed

SNR, the more important it is in F0 inference. Therefore, the normalized SNR

difference can be used for deciding the weights in Eq. 2.4 using a logistic regression

function:

wi =

1

1 + αe−βζ̄i

∑MS

j=1

1

1 + αe−βζ̄j

, i = 1, · · · , MS. (2.11)
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where α and β are empirically set to 1.0 and 0.33.

As mentioned above, only prominent peaks are used in Eq. 2.4, i.e., M is

changed to the number of prominent SNR peaks MS.

2.2 Distribution of the Residuals

Recall that the residual δ is dependent on the local SNR value and the band

index. To reduce the model complexity, it can be assumed that the distribution

of the p(δ|γf , Bf ,N) in Eq. 2.8 slightly changes when γf is rounded, i.e.,

p(δ|γf , Bf ,N) ≈ p(δ|Qγf
, Bf ,N), (2.12)

where Qγf
denotes the SNR bin which γf is rounded to. The intervals of the

SNR bins in dB are spaced by 3.33 dB and are as follows: (-∞, 0], (0, 3.33], · · · ,

(66.67, 70], (70, ∞).

The distributions of the residuals given different rounded SNR bins, frequency

band index and noise conditions are shown in Fig. 2.4. Two white noise condi-

tions: 20 and 0 dB SNRs are studied. This analysis is conducted over all the

voiced frames in the KEELE corpus [53] with F0 ground truth values obtained

from the simultaneously recorded laryngograph signal. In this study, three bands:

0-1000 Hz, 1000-2000 Hz, and 2000-3000 Hz, are employed to represent the low,

middle, and high frequency bands, respectively. Note that all the residual distri-

butions in Fig. 2.4 are derived only from the prominent peaks in the low frequency

band. Most distributions are centered on zero, which means that these peaks can

generate unbiased F0 estimates. It can be seen that under a certain noise con-

dition, the higher the rounded SNR is, the smaller the variance of the residuals.

Because having a smaller residual variance means that the frequencies of local

SNR peaks are less likely to be affected by noise, local SNR peaks from higher
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SNR bins are more reliable for F0 estimation. Under 20 dB conditions, no promi-

nent peak has a local SNR higher than 56.67 dB; under 0 dB condition, the local

SNRs of all prominent peaks are below 36.67 dB.

A comparison of the distributions of the residuals of the prominent and non-

prominent peaks is shown in Fig. 2.5 for the white noise condition with 0 dB

SNR. In the low frequency band, prominent peaks can have a local SNR as high

as 36.67 dB, while the local SNRs of non-prominent peaks are below 26.67 dB.

Furthermore, the residuals of the non-prominent peaks with low local SNRs are

mostly distributed away from zero, which means that it is difficult to infer F0

from these non-prominent peaks. Although the residuals of the non-prominent

peaks with high local SNRs are distributed around zero, the distributions have

larger variances compared to the residuals of the prominent peaks with the same

local SNR.

Curve-fitting or Gaussian mixture modeling can be used to model the distri-

butions of the residuals; however, it is important to control the number of param-

eters in the model which enables training with limited data and prevent model

over-fitting. A Doubly truncated Laplacian distribution, denoted by p(δ|µ, b),

is used for modeling p(δ|Qγf
, Bf ,N), i.e. the distribution of residuals given the

rounded SNR bin, band index and noise condition:

p(δ|µ, b) =






A

2b
e
−
|δ − µ|

b −
1

2
≤ δ ≤

1

2

0 otherwise

, (2.13)

where µ and b represent the mean and the variance, respectively. A is set to

(1 − e−1/(2b))−1 to ensure that
∫

δ
p(δ|µ, b) = 1. Hence, only two free parameters

(µ, b) need to be estimated.

Given a sequence of residuals {δ1, · · · , δN} denoted by δ, (suppose all the
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Figure 2.4: The distributions of the residuals given different rounded local SNRs

for a 3.33 dB interval at the low frequency band (0-1000Hz). Different white

noise conditions (20 and 0 dB global SNRs) are shown. The horizontal axes are

the residuals with a bin size of 0.01. The vertical axes are the probabilities of

occurrences. The title on each sub-figure shows the interval of rounded local SNR

Qγf
.
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Figure 2.5: A comparision of the distributions of the residuals of prominent SNR

peaks (PP) and non-prominent SNR peaks (Non PP) given different rounded

local SNRs at the low frequency band (0-1000Hz). The noise condition is white

noise at 0 dB global SNR. The horizontal axes are the residuals with a bin size

of 0.01. The vertical axes are the probabilities of occurrences. The title on each

sub-figure shows the interval of rounded local SNR Qγf
.
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residuals are independent and identically distributed,) we have:

p(δ|µ, b) =

N∏

i=1

p(δi|µ, b). (2.14)

Let α = 1/(2b) and L(δ|µ, α) = log p(δ|µ, b). Then:

L(δ|µ, α) (2.15)

=
N∑

i=1

log p(δi|µ, b)

= N log α−N log(1− e−α)− 2α

N∑

i=1

|δi − µ|.

Under the maximum-likelihood criterion, the estimated mean and variance

denoted by µ̂ and b̂ (or α̂) should maximize the joint probability p(δ|µ, b) which

is equivalent to maximizing L(δ|µ, α).

Since ∂2L/∂µ2 = −2α
∑N

i=1 δ(δi−µ) ≤ 0 when α > 0, L achieves its maximum

when ∂L/∂µ = 0 for any α, i.e.:

−2α

N∑

i=1

sgn(δi − µ̂) = 0. (2.16)

Since ∂2L/∂α2 = 1/(eα−1)−1/α2 < 0 when α > 0, L achieves its maximum

when ∂L/∂α = 0 and µ = µ̂, i.e.:

N

α̂
−

N

eα̂ − 1
− 2

N∑

i=1

|δi − µ̂| = 0. (2.17)

To solve µ̂, let δ̃ = {δ̃1, · · · , δ̃N} denote the sorted sequence of the sequence

δ in an ascending order, we have one feasible solution of µ̂:

µ̂ =





δ̃N+1

2
N is odd

1
2
(δ̃N

2
+ δ̃N

2
+1) N is even

. (2.18)
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Note that when N is even, any value between δ̃N
2

and δ̃N
2

+1 can satisfy Eq. 2.16.

Eq. 2.18 guarantees that the number of residuals that are greater than µ̂ is equal

to the number of residuals that are less than µ̂. Eq. 2.17 can be then simplified

as:

N

α̂
−

N

eα̂ − 1
− 2

N∑

i=1

|δi| = 0. (2.19)

Although there is no close-form solution to Eq. 2.17, Newton’s method can be

used to search for α̂. Note that b̂ = 1/(2α̂). When a bin with a high rounded

SNR does not have training instances, the mean and variance are not estimated.

In testing, if the SNR peaks have higher values than the training set, the mean

is set to 0, and the variance is set to a small value, e.g., 0.01.

There is one similarity between SAFE and Wu et al.’s method [19]: the use

of Laplacian distribution for data modeling. The meaning and range of the

modeled random variables are different. SAFE models the residual derived from

the prominent peak in the SNR spectrum. The residual ranges from -0.5 to 0.5.

Wu et al.’s method models the time lag derived from the peak in the correlogram.

The time lag ranges from −∞ to ∞.

The logarithms of the averaged estimated variances of the residual distribu-

tions for different bands are shown in Fig. 2.6. Averaging is across all noise

levels: clean, 20 dB, 10 dB, 5 dB, 0 dB, -5 dB. The noise type is white noise. It

can be seen that the variance of the lower frequency band at a certain rounded

SNR bin is smaller than the variance of the higher frequency band. When the

variance of the estimated residual distribution is small given a frequency band,

it means that the probability of accurately estimating F0 in that band is high.

As mentioned above, it is still possible to use the prominent peaks lying in the

middle and high frequency bands to improve F0 estimation. Note that the higher

the rounded local SNR, the smaller the variance is.
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Figure 2.6: A comparison of the log of the averaged estimated variances of the

residual distributions under different frequency bands (low, middle, high). The

noise condition is white noise. Estimated variances from different noise levels

(clean, 20 dB, 10 dB, 5 dB, 0 dB, -5 dB) are averaged.
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In Fig. 2.7, the estimated means of the residual distributions for different

bands under clean and noisy conditions are compared. The noise types are white

and babble noise. The means under noisy conditions at different SNRs (20 dB,

10 dB, 5 dB, 0 dB, -5 dB) are averaged. It can be seen that the estimated means

are not exactly equal to zero under both clean and noisy conditions if local SNR

is less than 55 dB. F0 estimation actually benefits from learning a Laplacian

distribution with a non-zero mean which better fits the real distribution of the

data.

2.3 Distribution of the local SNRs

In the previous section, local SNRs of the prominent peaks are rounded. It can

be assumed that this rounding does not significantly change the p(γf |Bf ,N) in

Eq. 2.8, i.e.:

p(γf |Bf ,N) ≈ D2P (Qγf
|Bf ,N), (2.20)

where D2 is a constant. The distribution can be learned by using a histogram-like

approach based on the training set.

The distributions of the rounded local SNRs of the prominent peaks under

different bands and noise conditions are shown in Fig. 2.8. The distribution

under noisy conditions at different SNRs (20 dB, 10 dB, 5 dB, 0 dB, -5 dB) are

averaged. It can be seen that the peaks of noisy speech are more likely to be

distributed in bins with low SNRs compared to clean speech, which can be one

of the reasons why estimating F0 values is difficult under noisy conditions. For

either clean or noisy condition, the rounded local SNRs of the prominent peaks

from the low frequency band are also more likely to be concentrated in high SNR

bins compared to the middle and high frequency bands.
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of residuals under different noise conditions using the KEELE corpus. Estimated
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2.4 Post-Processing

For an utterance, the posterior probabilities, P (f0|Y,N), for each frame are

obtained by calculating Eq. 2.4. Then, a dynamic programming approach, the

same as that used in RAPT, was used to smooth the tracked F0 contour and to

allow octave jumps at a certain cost [6].

The focus of the proposed method is to reduce F0 estimation error under both

clean and noisy conditions. However, voicing boundaries can affect the results

of F0 tracking [54]. Hence, each F0 tracking algorithm is forced to estimate F0

values over all the voiced frames regardless of the SNRs.

The F0 trackers (RAPT, Praat, TEMPO, WWB) also output voiced/unvoiced

decisions. If the ground truth and the F0 tracker agree that a frame is voiced

or unvoiced, the F0 value is not changed. If a ground truth unvoiced frame is

assumed to be voiced, the F0 value is set to be 0. If a ground truth voiced frame

Nc is assumed to be unvoiced, f0Nc
is estimated by using an interpolation-based

method:

f0Nc
= f0Nl

+
Nc −Nl

Nr −Nl
(f0Nr

− f0Nl
), (2.21)

where Nl and Nr denote the left and right closest frame to the current frame

Nc among the frames that both the ground truth and F0 tracker agree to be

voiced. One exception of this interpolation is that if frame Nc is in the first

or last assumed unvoiced segment by the F0 tracker in a ground truth voiced

segment, the f0Nc
is set to be either f0Nr

or f0Nl
depending on whether the right

or left frame is closer.

An example of F0 estimation made with SAFE is shown in Fig. 2.9. The seg-

ment corresponds to the beginning of the utterance of the second female speaker

in the KEELE corpus. The noise condition is babble noise at 0 dB SNR. Each
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Figure 2.9: The spectrogram, F0 posterior probabilities from SAFE, and F0

contours from RAPT and SAFE of a segment of an utterance from the second

female speaker (f2nw0000) in the KEELE corpus under babble noise condition at

0 dB SNR.
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vertical strip in the bottom panel shows the F0 posterior probabilities over the

voiced frame. The darker a point is, the higher the probability that F0 cor-

responds to that frequency. Since RAPT has the lowest GPE among all the

F0 estimators, and SAFE uses the same cost function as RAPT for the dynamic

programming-post processing, only the tracked F0 of RAPT and SAFE are shown

in Fig. 2.9. It can be observed from the spectrogram in the top panel that the

babble noise is mostly concentrated on the low frequency band. The babble noise

can corrupt the harmonic structure of the voiced frame by suppressing, inserting,

or shifting the spectral peaks in the original clean speech. These distortions may

cause estimation errors. For some regions in which the target speech has high

energy at high frequencies, e.g., around 1.6 s, the prominent peaks in the middle

and high frequency bands, which are less affected by noise, may be used to infer

the F0 value.

2.5 Experiments

In this section, we compare GPE, MFPE, and SDFPE using the KEELE [53]

and CSTR [55] corpora. The 5 minute 37 seconds KEELE corpus contains a

simultaneous recording of speech and laryngograph signals for a phonetically-

balanced text which was read by 5 male and 5 female speakers. The 5 minute

32 seconds CSTR corpus is composed of laryngograph and speech signals from

one male and one female speaker. Each speaker read 50 sentences in the CSTR

corpus. Ground truth F0s were obtained by running an autocorrelation method

on the laryngograph signal in addition to some manual correction.

Speech signals are downsampled from 20000 Hz to 16000 Hz for both corpora.

Noise is artificially added to the corpora to test the robustness of the F0 track-

ers under different noise conditions. The program FaNT [56] with the default
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command line option (-u -m snr 8khz) was used to employ white and babble

noise segments from the NOISEX92 [57] corpus to the speech signals to generate

utterances with SNR of 20, 10, 5, 0, and -5 dB. The white noise is acquired by

sampling high-quality analog noise generator. The babble noise is acquired by

recording 100 people speaking in a canteen with a room radius over 2m.

The parameters of SAFE are as follows: FFT size is 16384; frequency resolu-

tion is 1 Hz; frame length and step size are 0.04 and 0.01 seconds, respectively;

f0min and f0max are 50 and 400 Hz, respectively; the lengths of the short-term and

long-term windows for spectrum smoothing are 50 and 400 in Hz, respectively.

A peak is regarded as a prominent peak if the normalized difference SNR ζ̄i is

greater than an empirically determined threshold of 0.33; the ranges of the low,

middle, and high frequency bands are 0-1, 1-2, and 2-3 kHz, respectively; local

SNRs of the peaks are rounded to the nearest value in the following sequence

10r/3, where r = 0, 1, · · · , 21. The weighting factors in Eq. 2.4 are all set to the

reciprocal of the number of the prominent peaks in that frame.

For the KEELE corpus, a 5-fold cross-validation scheme is applied. For each

fold under a certain noise level, the speech of one male and one female speaker

are used for testing, the residual and SNR models are trained from the remaining

speech and its ground truth. Since 54% of the KEELE corpus is voiced speech, if

the frame step size is 0.01 seconds, each fold has about 14000 frames for training.

Since there are 23 rounded local SNR bins, if each voiced frame has 10 prominent

peaks on average, each residual model has about 6000 samples for training. Be-

cause some bins with high SNRs might have fewer training instances, e.g., 5% of

the average - 300 samples, it is still possible to robustly train a doubly-truncated

Laplacian distribution with only two free parameters.

A comparison of the GPEs of RAPT, Praat, TEMPO, YIN, Wu et al.’s
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Table 2.1: The GPEs (%) of the RAPT, Praat, TEMPO, YIN, WWB, and SAFE

using the KEELE corpus. EW: use equal weighting in Eq. 2.4. LFB: only the

low frequency band (0-1000 Hz) is used. µ=0: a zero mean is used in the doubly

truncated Laplacian distribution. Bold numbers represent the lowest GPE in

each column.

SNR (dB) Clean 20 10 5 0 -5

KEELE White Noise

RAPT 2.62 2.69 3.10 4.09 7.69 17.83

Praat 3.22 3.16 4.28 6.11 11.53 30.91

TEMPO 2.98 3.41 4.27 5.57 12.79 22.64

YIN 2.94 2.94 3.20 3.96 6.70 14.48

WWB 4.22 4.27 5.21 5.57 6.42 8.87

SAFE (EW, LFB) 3.13 3.09 3.74 4.39 4.72 6.29

SAFE (EW, µ = 0) 3.00 3.04 3.38 3.71 4.10 5.16

SAFE (EW) 2.98 3.01 3.35 3.66 4.06 5.01

SAFE 2.03 2.18 2.36 2.68 2.92 4.65

KEELE Babble Noise

RAPT 2.87 7.19 15.99 29.76 58.40

Praat 3.18 8.33 17.97 35.26 54.06

TEMPO 4.69 13.99 26.98 43.98 65.15

YIN 3.27 8.89 19.71 36.75 57.35

WWB 6.76 12.48 21.20 32.84 55.40

SAFE (EW, LFB) 3.23 6.01 10.21 20.64 47.21

SAFE (EW, µ = 0) 3.14 4.75 7.68 16.23 39.62

SAFE (EW) 3.10 4.72 7.44 15.88 39.23

SAFE 2.32 3.91 6.66 15.52 39.35
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Table 2.2: The GPEs (%) of the RAPT, Praat, TEMPO, YIN, WWB, and SAFE

using the CSTR corpus. EW: use equal weighting in Eq. 2.4. LFB: only the low

frequency band (0-1000 Hz) is used. µ=0: a zero mean is used in the doubly

truncated Laplacian distribution. Bold numbers represent the lowest GPE in

each column.

SNR (dB) Clean 20 10 5 0 -5

CSTR White Noise

RAPT 2.45 2.46 3.04 3.94 6.73 17.72

Praat 2.27 2.27 2.99 4.35 11.84 27.54

TEMPO 2.27 2.29 2.87 5.07 11.64 31.65

YIN 2.25 2.25 2.36 3.34 5.20 12.33

WWB 2.75 3.00 4.00 4.83 5.35 7.64

SAFE (EW, LFB) 2.49 2.52 2.97 3.49 3.93 4.14

SAFE (EW, µ = 0) 2.40 2.41 2.69 3.10 3.24 3.68

SAFE (EW) 2.45 2.46 2.73 3.25 3.34 3.76

SAFE (µ = 0) 1.42 1.47 1.63 1.63 2.10 2.91

CSTR Babble Noise

RAPT 2.86 8.36 24.41 46.41 64.52

Praat 2.65 10.55 27.15 46.32 64.24

TEMPO 3.56 15.24 33.10 54.43 66.38

YIN 2.36 10.09 27.53 51.15 68.22

WWB 4.82 14.15 30.09 49.05 66.00

SAFE (EW, LFB) 2.69 5.37 9.97 23.59 63.20

SAFE (EW, µ = 0) 2.61 4.14 7.73 19.32 57.17

SAFE (EW) 2.63 4.23 8.23 20.74 59.54

SAFE (µ = 0) 1.51 2.50 5.65 19.27 52.80
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method (WWB), and SAFE on the KEELE corpus is shown in Tables 2.1 and 2.2.

Note that Yegnanarayana et al.’s [11] results are not included, because silence was

added to the KEELE corpus in their experiments. There are two configurations

of Praat: autocorrelation (default) or cross-correlation. The cross-correlation

configuration is used, since it consistently provided better results. The default

settings were used for RAPT, Praat, TEMPO, YIN, and WWB, except that the

voicing thresholds were optimized. The implementation of WWB was provided

by Prof. Dan Ellis and his group at Columbia University. Three configurations

of SAFE were compared: standard (SAFE), only with information from the low

frequency band as the prevailing F0 tracking algorithms (SAFE (LFB)), and with

zero mean residual estimation (SAFE (µ = 0)). It can be seen that all F0 track-

ers have GPEs lower than 3.5% in quiet. All algorithms suffer from performance

degradation when the SNR drops. As expected, it is more difficult to accurately

estimate F0 in the babble noise condition compared to the white noise condition

with the same SNR. The SAFE algorithm has the lowest GPE when the SNR is

at or below 5 dB under white noise, or at or below 10 dB under babble noise.

It can be concluded from Tables 2.1 and 2.2 that discarding information from

middle and high frequency bands can cause an increase in GPE, especially for

babble noise which is usually concentrated at low frequencies. Forcing the means

of the estimated residual distributions to be zero can also result in an increase in

GPE.

To determine the generalizablity of SAFE, the model trained from the KEELE

corpus is used for the CSTR corpus. According to the performances of the F0

algorithms shown in Tables 2.1 and 2.2, it can be seen that F0 estimation for the

CSTR corpus is easier under white noise, but harder under babble noise compared

to the KEELE corpus. Although there is mismatch between the KEELE and

CSTR corpora, SAFE still has the lowest GPE under SNR conditions for both.
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The mismatch can explain why SAFE (µ = 0) has a lower GPE compared to the

standard SAFE. Thus, it may be more appropriate to use SAFE (µ = 0) when

prior information of the testing set is not available.

The MFPEs for the KEELE and CSTR corpora are shown in Tables 2.3

and 2.4. It can be seen that the best configuration of SAFE has less than 1

Hz MFPEs under all noise conditions. Other F0 trackers have less than 3 Hz

MFPEs under most noise conditions. Note that 3 Hz is only 1.2% of the average

of all possible F0s which is 225 Hz. That means all F0 trackers do not make

significantly biased F0 estimation under clean and most noisy conditions. For

the KEELE corpus, the means of the residuals are slightly less than zero most of

the time as shown in Fig. 2.7. Thus, the standard SAFE which considers the bias

is supposed to have slightly lower F0 estimation than the zero mean version of

SAFE. Due to the mismatch between KEELE and CSTR corpora, the negative

bias causes the MFPEs of the standard SAFE to be more deviated from zero

compared to the zero mean version of SAFE on the CSTR corpus.

The SDFPEs on KEELE and CSTR corpus are shown in Tables 2.5 and 2.6. It

can be seen that the SDFPEs of SAFE are slightly higher (1-2 Hz) than other F0

estimators under some conditions. Since the MFPE and SDFPE are calculated

over the frames in which the F0 tracker does not have gross F0 estimation errors

(less than 20% gross error), the number of frames for calculating the SDFPE

over different F0 trackers under the same noise condition is different. It is known

that F0 estimation accuracy is higher over less noisy frames [54]. Given a certain

noise condition, if an estimator only correctly estimates F0 over a few frames that

have high frame-level SNRs, it could have relatively low MFPE and SDFPE, but

a high GPE. Therefore, having higher MFPEs or SDFPEs does not necessarily

mean that SAFE is less accurate in F0 estimation.
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Table 2.3: The MFPE (Hz) of the RAPT, Praat, TEMPO, YIN, WWB, and

SAFE using the KEELE corpus. EW: use equal weighting in Eq. 2.4. LFB:

only the low frequency band (0-1000 Hz) is used. µ=0: a zero mean is used in

the doubly truncated Laplacian distribution.

SNR (dB) Clean 20 10 5 0 -5

KEELE White Noise

RAPT 0.79 0.60 0.60 0.32 -0.18 -1.87

Praat 0.19 0.21 -0.14 0.67 -1.93 -4.08

TEMPO 0.41 0.36 0.27 0.08 -1.26 -2.16

YIN 0.55 0.56 0.54 0.53 0.53 0.43

WWB 2.86 2.87 2.74 2.67 2.35 2.05

SAFE (EW, LFB) -0.40 -0.40 -0.43 -0.47 -0.66 -0.61

SAFE (EW, µ = 0) 0.15 0.34 0.34 0.28 0.04 -0.05

SAFE (EW) -0.36 -0.46 -0.50 -0.57 -0.72 -0.86

SAFE -0.14 -0.16 -0.24 -0.28 -0.43 -0.49

KEELE Babble Noise

RAPT 0.74 0.47 0.23 -0.35 -0.24

Praat 0.24 0.21 0.05 0.16 0.50

TEMPO 0.34 -0.06 -1.19 -0.09 1.22

YIN 0.66 0.83 0.93 1.11 1.03

WWB 2.66 2.34 1.95 1.35 0.89

SAFE (EW, LFB) -0.42 -0.52 -0.51 -0.33 0.10

SAFE (EW, µ = 0) 0.21 0.04 -0.12 -0.19 -0.12

SAFE (EW) -0.49 -0.65 -0.78 -0.71 -0.47

SAFE -0.21 -0.27 -0.47 -0.29 0.12
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Table 2.4: The MFPE (Hz) of the RAPT, Praat, TEMPO, YIN, WWB, and

SAFE using the CSTR corpus. EW: use equal weighting in Eq. 2.4. LFB: only

the low frequency band (0-1000 Hz) is used. µ=0: a zero mean is used in the

doubly truncated Laplacian distribution.

SNR (dB) Clean 20 10 5 0 -5

CSTR White Noise

RAPT -0.06 -0.27 -0.22 -0.31 -0.59 -2.07

Praat -0.77 -0.78 -0.97 -1.34 -2.79 -4.71

TEMPO -0.85 -0.73 -0.76 -0.97 -1.21 -2.66

YIN -0.39 -0.40 -0.44 -0.47 0.60 -0.62

WWB 2.73 2.67 2.49 2.34 2.19 1.93

SAFE (EW, LFB) -1.28 -1.32 -1.39 -1.40 -1.45 -1.53

SAFE (EW, µ = 0) -0.78 -0.53 -0.50 -0.53 -0.62 -0.81

SAFE (EW) -1.39 -1.43 -1.46 -1.49 -1.59 -1.69

SAFE (µ = 0) -0.41 -0.14 -0.15 -0.17 -0.25 -0.40

CSTR Babble Noise

RAPT -0.19 -0.34 -0.18 -0.35 -0.14

Praat -0.79 -0.72 -0.44 -0.30 0.13

TEMPO -0.54 -0.71 -0.77 0.51 0.69

YIN -0.36 -0.14 -0.06 0.04 0.28

WWB 2.05 1.55 1.24 0.77 0.34

SAFE EW, (LFB) -1.40 -1.45 -1.39 -1.13 -0.47

SAFE (EW, µ = 0) -0.65 -0.78 -0.81 -0.92 -0.42

SAFE (EW) -1.46 -1.55 -1.52 -1.40 -0.69

SAFE (µ = 0) -0.33 -0.37 -0.46 -0.42 -0.23
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Table 2.5: The SDFPE (Hz) of the RAPT, Praat, TEMPO, YIN, WWB, and

SAFE using the KEELE corpus. EW: use equal weighting in Eq. 2.4. LFB:

only the low frequency band (0-1000 Hz) is used. µ=0: a zero mean is used in

the doubly truncated Laplacian distribution.

SNR (dB) Clean 20 10 5 0 -5

KEELE White Noise

RAPT 4.41 4.50 4.75 5.54 6.62 9.92

Praat 3.69 3.71 4.89 6.05 8.96 12.74

TEMPO 5.04 5.19 5.84 7.25 9.43 11.52

YIN 4.45 4.47 4.60 4.82 5.21 5.59

WWB 5.65 5.59 5.61 5.75 6.02 6.82

SAFE (EW, LFB) 5.63 5.62 5.63 5.70 5.99 6.48

SAFE (EW, µ = 0) 5.48 5.49 5.51 5.54 5.95 6.43

SAFE (EW) 5.53 5.56 5.62 5.67 6.07 6.50

SAFE 4.05 3.87 4.06 4.28 4.78 5.64

KEELE Babble Noise

RAPT 4.85 5.96 6.83 8.57 9.39

Praat 3.85 4.86 5.79 7.03 8.86

TEMPO 5.92 9.06 12.01 13.29 11.79

YIN 4.71 5.30 5.81 6.76 7.94

WWB 5.62 6.08 6.61 7.17 8.15

SAFE (EW, LFB) 5.60 6.09 6.67 7.65 8.40

SAFE (EW, µ = 0) 5.56 6.04 6.64 7.48 9.35

SAFE (EW) 5.60 6.07 6.70 7.58 9.34

SAFE 4.03 5.05 5.82 7.20 8.93
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Table 2.6: The SDFPE (Hz) of the RAPT, Praat, TEMPO, YIN, WWB, and

SAFE using the CSTR corpus. EW: use equal weighting in Eq. 2.4. LFB: only

the low frequency band (0-1000 Hz) is used. µ=0: a zero mean is used in the

doubly truncated Laplacian distribution.

SNR (dB) Clean 20 10 5 0 -5

CSTR White Noise

RAPT 5.49 5.78 6.02 6.57 7.92 10.67

Praat 6.04 6.09 6.54 7.56 10.22 14.38

TEMPO 6.76 7.28 7.74 8.55 10.41 13.29

YIN 6.28 6.29 6.35 6.46 6.68 6.75

WWB 6.86 6.83 6.79 6.90 7.09 7.61

SAFE (EW, LFB) 8.10 8.00 7.97 7.93 7.92 8.31

SAFE (EW, µ = 0) 7.85 7.81 7.82 7.80 7.89 8.19

SAFE (EW) 7.89 7.85 7.74 7.71 7.87 8.19

SAFE (µ = 0) 5.93 5.80 5.96 6.08 6.39 6.96

CSTR Babble Noise

RAPT 5.84 6.86 7.47 7.84 8.78

Praat 6.06 6.36 6.45 6.85 7.87

TEMPO 7.76 10.86 13.96 14.98 12.50

YIN 6.33 6.25 5.96 5.59 6.25

WWB 6.14 5.84 5.85 5.74 6.46

SAFE (EW, LFB) 8.03 8.12 8.19 8.34 7.09

SAFE (EW, µ = 0) 7.64 7.97 8.19 8.55 7.62

SAFE (EW) 7.59 7.91 8.16 8.49 7.49

SAFE (µ = 0) 5.91 6.41 7.03 7.92 7.27
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2.6 Conclusions

Prominent Signal-to-Noise Ratio (SNR) peaks constitute a simple and an effec-

tive information source for F0 inference under both clean and noisy conditions.

The statistical framework of F0 estimation is promising in modeling the effect of

additive noise on clean speech spectra given F0. In addition to low frequencies,

middle and high frequency bands (1-3 kHz) provide supplemental useful informa-

tion for F0 inference. The proposed SAFE algorithm is more effective in reducing

the GPE compared to prevailing F0 trackers especially at low SNRs, and is robust

in maintaining low Mean and Standard Deviation of the Fine Pitch Errors.
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CHAPTER 3

Unvoiced/Voiced Classification and F0 Tracking

In this chapter, an algorithm to reduce the unvoiced/voiced (U/V) classification

errors in F0 tracking, i.e. VDEs, under noisy conditions is introduced. We will

show in the experimental section that reducing VDEs can eventually result in a

reduction of FFEs.

To improve the accuracy and overcome the instability of U/V detection meth-

ods that rely on thresholds, we introduce a model-based U/V classification fron-

tend whose output can be taken as an U/V mask for any F0 tracker. With the help

of the model-based method, parameters are automatically learned and adjusted

during model training and unsupervised adaptation. Reliable U/V boundary

information results in improved F0 tracking.

There have been several model-based techniques for Voice Activity Detection

(VAD) [58] [59] [60], but they primarily distinguish voiced frames from unvoiced

frames.

The flowchart of the proposed U/V classifier and its relationship to the sub-

sequent F0 tracker are illustrated in Fig. 3.1.

Two methods for U/V classification are introduced: Hidden Markov Model

(HMM), and Gaussian Mixture Model (GMM)-Based U/V Classification. The

two U/V classifiers are discussed in the following.
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Figure 3.1: U/V Classification Frontend for F0 Trackers

3.1 Hidden Markov Models-Based Unvoiced/Voiced Clas-

sification

Two acoustic models were trained, one for unvoiced sounds (U) and the other for

voiced sounds (V). The mapping to U and V sounds is shown in Table 3.1. The

phone symbols shown in the table are used in the TIMIT phone level transcrip-

tion. ’pau’ is a pause, ’epi’ is an epenthetic silence, ’h#’ is the begin/end marker

(non-speech events).

For feature extraction, both Mel-Frequency Cepstral Coefficients (MFCCs)

and the noise robust AFE [61] frontend are used. The U/V models are left-to-

right HMMs with 3 emitting states, and 256 Gaussian components per mixture

model. A word net containing unvoiced and voiced nodes with a bigram language

model attached to the directed arcs between the nodes was constructed. The U/V

decision can be adjusted by tuning the language model. For example, increasing

P (voiced) or P (voiced|unvoiced) would make the decoder prone to making more

voiced hypotheses.

The training set is an American English corpus (TIMIT, approximately 4

hours). The test set (KEELE) is based on speech by British English speakers.
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Table 3.1: Phonemes and Sounds to U and V Dictionary. The phonemes are used

in the TIMIT phone level transcription.

Unvoiced Voiced

Stops p(cl) t(cl) k(cl) b(cl) d(cl) g(cl) dx

Affricates & Fricatives ch s f th sh jh z v zh dh

Nasals & Vowels -

m n ng em en eng

nx iy ih eh ey ae

aa aw ay ah ao oy

ow uh uw ux er

ax ix axr ax-h

Semivowels & Glides hh hv l r el w y

Others epi h pau -

Hence, we need to apply offline unsupervised Maximum Likelihood Linear Re-

gression (MLLR) speaker adaptation to adapt the initial SI models to speaker

dependent (SD) models [62]. In SD model adaptation for speaker s, depending

on the amount of adaptation data, either global or regression tree style adapta-

tion can be used. When a small amount of adaptation data is available, a global

adaptation transform can be obtained. The linear transform can be applied to all

the Gaussians in the model set. As more adaptation data are available, a binary

regression class tree can be used to group Gaussians that are close in feature space

together. The purpose of the Gaussian grouping is to allow the adaptation of dis-

tributions for which there are no observations. Since each grouped Gaussian can

obtain an adaptation transform, which is more specific compared to the global

style adaptation, improved performance is expected. The regression tree used in

U/V classification task is shown in Fig. 3.2, the regression tree is composed of a
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Figure 3.2: The regression tree used in the adaptation of U/V Classification. 0:

the root node in which all the Gaussians are grouped. U/V: the leaf node in

which all the Gaussians of all the emitting states in the U or V HMM are grouped.

base node connected to two leaves which are unvoiced (U) and voiced (V). For

a speaker, the global style adaptation uses all the data to train a global trans-

formation. Regression tree based adaptation needs to use the decoding results

to attach the data to leaf node U/V, and then use the attached data to train a

transformation for the leaf node U/V.

3.2 Gaussian Mixture Models-Based Unvoiced/Voiced Clas-

sification

It should be mentioned that the phonemes and sounds to U and V dictio-

nary shown in Table 3.1 can not guarantee the derived voicing labels of TIMIT

database to be 100% accurate. To alleviate this problem, we also used the KEELE

database which has F0 annotations for training unvoiced/voiced models. For each

frame, MFCCs and their first and second order derivatives with cepstral mean

normalization are extracted. Because the KEELE database (less than 6 minutes)
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is much smaller than the TIMIT database (about 4 hours), less complex mod-

els with fewer parameters, i.e., Gaussian Mixture Models (GMMs), are trained

instead of HMMs to ensure that there are enough samples for parameter esti-

mation. There are 8 Gaussian components per mixture model. In testing, the

voicing probability of each frame is obtained by evaluating the feature vector of

that frame on GMMs. A Hamming window of length 11 frames is then applied

to the voicing probabilities over frames to have a smoother U/V decision results.

The length of the Hamming window is empirically set.

3.3 F0 Frame Error and GPE-VDE Curve

It is desirable for an F0 tracking algorithm to reduce the VDE and GPE at the

same time. The error of an F0 tracking method is usually presented as an error

pair: (GPE, VDE). But some algorithms have low GPE, but high VDE, compared

to other algorithms. We propose an error metric called the F0 Frame Error (FFE)

which takes both GPE and VDE into consideration. We plot the GPE-VDE

curve as a Receiver Operating Characteristics (ROC) curve to show the trade-off

between GPE and VDE. With the help of the FFE and the GPE-VDE curve, we

can compare the performance of F0 trackers in a unified framework.

When the tracked F0 contour is compared to the ground truth, there can only

exist 3 possible types of gross errors in any frame i:

• U→V Error: an unvoiced frame is classified as a voiced frame;

• V→U Error: a voiced frame is classified as an unvoiced frame;

• F0 Value Estimation Error: the estimated F0 value deviate too much from

the ground truth.
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Figure 3.3: A sketch of a GPE-VDE curve

In Fig. 1.1, the F0 tracker made U→V errors over N2 frames, F0 value

estimation errors over N4 frames, and V→U errors over N6 frames. We propose

an F0 Frame Error (FFE) metric which sums the three types of errors mentioned

above:

FFE =
# of error frames

# of total frames
× 100% (3.1)

=
NU→V + NV →U + NF0E

N
× 100%.

FFE is also a combination of GPE and VDE:

FFE =
NF0E

N
× 100% +

NU→V + NV →U

N
× 100%. (3.2)

=
NV V

N
×GPE + V DE

Therefore, FFE takes both GPE and VDE into consideration making the com-

parison of different F0 trackers possible.

We also propose showing a GPE-VDE curve which is effective in showing the

relationship between the two parameters. A sketch of a possible GPE-VDE curve

is shown in Fig. 3.3. When optimizing the parameters of the F0 tracker, we can

obtain a set of (GPE, VDE) pairs. (GPEi, VDEi) is a minimum point if and only
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if there exists no j that satisfies GPEj < GPEi and VDEj < VDEi at the same

time. When plotting all the minimum points, we can obtain a GPE-VDE curve.

The F0 Frame Error (FFE) and GPE-VDE curve can be used to evaluate the

F0 tracking algorithms in a unified framework.

3.4 Experiments

In this section, we compare the VDEs of HMM and GMM-based U/V classifiers

using the KEELE and CSTR corpus.

The noise addition procedure has been described in the experimental section

of Chapter 2. In U/V classification, the training and testing noise types and SNR

levels are matched.

3.4.1 Using HMM-based Unvoiced/Voiced Classifier

Table 3.2 shows the VDEs of the proposed HMM-based U/V classifier with dif-

ferent features before and after adaptation. Unsupervised speaker adaptation is

effective in minimizing the mismatch between training and test data. AFE fea-

tures are always better than MFCC features before and after adaptation. For the

white noise cases, the VDE of the regression class tree based adaptation (RSD)

is lower than that of global adaptation (GSD). In the babble noise case, the GSD

resulted in slightly better performance for AFE features. This could be because

babble noise is more correlated with the underlying speech signal than white noise

is.

The U/V classification result was then used as a mask for F0 trackers. Since

RAPT and Praat do not have the option of directly using an U/V mask, the effect

of the mask is only tested on TEMPO. The U/V decoder using AFE features and
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Table 3.2: VDEs (%) of the U/V Classifier Using the KEELE Corpus (SNR =

0 dB, SI: speaker independent models, GSD/RSD: global style/regression tree

style adapted models, MFCC and AFE are the features used in the classifier)

VDE White Noise Babble Noise

MFCC AFE MFCC AFE

SI 11.57 10.84 30.70 26.27

GSD 10.98 9.81 27.61 22.48

RSD 10.18 9.14 27.23 23.54

SD models is used for both noise conditions. To take advantage of the decoder

that has the lowest VDE, regression tree style adaptation is used under white

noise, but global style adaptation is used under babble noise.

For each F0 tracking package, 500 - 1000 configurations are tested where

different parameters are adjusted (e.g., the correlation window length, voicing

thresholds). The performance of the F0 tracker under each configuration corre-

sponds to certain values for GPE, VDE, and FFE as shown in Table 3.3. ’M+’

denotes the U/V mask by the model-based classifier. In white and babble noise,

the lowest GPE is achieved by Praat, and the lowest VDE by M+TEMPO.

Note that minimizing the FFE results in a significant reduction in GPE. Take

TEMPO in white noise for example, when we shift our objective from minimizing

the VDE to FFE, the VDE slightly increases from 14.52% to 14.69%, but the

GPE significantly decreases from 15.87% to 4.93%. That is also true for RAPT,

Praat, and TEMPO in babble noise. Compared to TEMPO, the FFE of M+

drops by 24.4% in white noise, and 27.6% in babble noise. It could be inferred

that only minimizing the VDE can not guarantee the minimization of the overall

FFE, but reducing the VDE is helpful for lowering FFE. Note that the GPE for
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Table 3.3: GPEs, VDEs and FFEs (%) on KEELE Database corrupted by white

and babble noise at 0 dB SNR, M+: U/V mask provided by model-based clas-

sifier trained on TIMIT database corrupted by white and babble noise at 0 dB

SNR, mV/mF: when VDE/FFE is minimized. Bold numbers denote the lowest

error rate in each column.

White Noise Babble Noise

GPE VDE FFE GPE VDE FFE

RAPT
mV 3.19 20.00 21.04 31.56 28.21 37.58

mF 2.83 20.02 20.94 8.51 30.65 32.79

Praat
mV 2.10 19.72 20.41 31.82 29.32 38.69

mF 2.10 19.72 20.41 5.31 32.67 33.86

TEMPO
mV 15.87 14.52 20.59 58.05 36.51 50.35

mF 4.93 14.69 16.56 8.11 40.16 41.24

M+TEMPO
mV 7.10 9.14 12.52 18.65 22.48 29.86

mF 7.10 9.14 12.52 18.65 22.48 29.86

M+TEMPO is higher than TEMPO when minimizing the FFE.

In the GPE-VDE curves shown in Figs. 3.4 and 3.5, it can be observed that

for every F0 tracker without the U/V mask, GPE decreases when VDE increases.

As shown in Eqs. 1.13 and 1.14, when the VDE increases, it may be due to an

increase in the V→U errors resulting in a reduction in NV V . Although the NV V

decreases, the NF0E decreases more, for it is easier to estimate the F0 value over

the remaining voiced frames with a higher SNR. Since the ratio of NF0E to NV V

decreases, the GPE decreases. Take TEMPO in white noise for example, when

the VDE increases from 14.69% to 21.92%, the V→U error rate increases from to

27.05% to 41.60%, the U→V error rates shift from 1.25% to 0.50%, and the GPE
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Figure 3.4: GPE-VDE curves on KEELE database corrupted by white noise at

0 dB SNR. (M+: using U/V classifier output as a mask)

decreases from 4.93% to 0.76%. But for F0 trackers with U/V masks, the VDE

is more stable, and the GPE does not change much. Because the F0 tracker has

to estimate F0 for every voiced frame indicated by the mask, even if it is a frame

with a low SNR. Take M+TEMPO in white noise for example, when the VDE

increases from 9.14% to 9.89%, the V→U error rate increases from to 8.60% to

10.63%, the U→V error rate decrease from 9.73% to 9.08%, the GPE slightly

decreases from 7.10% to 6.87%.

It is also shown in Figs. 3.4 and 3.5 that integrating our model-based U/V

classifier into an F0-tracking algorithm can improve its voicing decision accuracy.
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Figure 3.5: GPE-VDE Curves on KEELE Database corrupted by babble noise

at 0 dB SNR. (M+: using U/V classifier output as a mask)
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Table 3.4: A comparision of GPEs, VDEs and FFEs of RAPT, Praat, TEMPO,

and SAFE algorithms on KEELE and CSTR corpus. Clean condition. Bold

numbers denote the lowest error rate in the FFE column.

Clean GPE (%) V→UE (%) U→VE (%) VDE (%) FFE (%)

KEELE Database

RAPT 2.04 4.97 5.18 5.07 6.08

Praat 1.89 6.78 3.99 5.44 6.35

TEMPO 1.09 6.67 6.12 6.41 6.94

SAFE 1.97 3.83 4.44 4.60 5.58

CSTR Database

RAPT 2.05 4.10 6.06 5.32 5.96

Praat 1.23 5.20 4.55 5.41 5.85

TEMPO 0.82 5.49 6.17 5.92 6.21

SAFE 1.04 2.88 6.54 5.19 5.68

Take TEMPO and M+TEMPO in white noise for example, after applying the

U/V mask, the minimum VDE decreases from 14.52% to 9.14%.

3.4.2 Using GMM-based Unvoiced/Voiced Classifier

In this section, the F0 tracking results of SAFE algorithm using the mask gen-

erated by the GMM-based U/V classifier are compared with RAPT, Praat, and

TEMPO. The algorithm WWB [19] was not included because its U/V classi-

fier failed under noisy conditions. Note that on KEELE corpus, the U/V masks

are generated in a 5-fold cross-validation scheme as mentioned in the previous

chapter. On CSTR corpus, the U/V masks are generated by using the GMM-

based U/V classifier trained on the KEELE corpus. For generating U/V masks
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Table 3.5: A comparision of GPEs, VDEs and FFEs of RAPT, Praat, TEMPO,

and SAFE algorithms on KEELE and CSTR corpus. White and babble noise

conditions, SNR = 20 dB. Bold numbers denote the lowest error rate in the FFE

column.

SNR = 20 dB GPE (%) V→UE (%) U→VE (%) VDE (%) FFE (%)

KEELE White Noise

RAPT 1.58 8.89 2.90 6.02 6.77

Praat 1.72 7.62 3.39 5.60 6.43

TEMPO 0.99 7.62 6.00 6.85 7.32

SAFE 2.06 5.20 4.23 4.74 5.75

KEELE Babble Noise

RAPT 1.89 7.54 5.19 6.42 7.33

Praat 1.70 7.95 4.50 6.30 7.12

TEMPO 1.19 12.41 6.96 9.80 10.34

SAFE 1.85 7.33 4.59 6.02 7.00

CSTR White Noise

RAPT 1.75 6.14 5.87 5.97 6.54

Praat 1.26 5.27 5.82 5.78 6.23

TEMPO 0.71 6.01 6.07 6.05 6.29

SAFE 1.24 3.83 6.37 5.43 5.87

CSTR Babble Noise

RAPT 2.14 5.72 9.49 8.09 8.84

Praat 1.67 6.63 6.16 6.34 6.93

TEMPO 0.90 9.56 7.16 8.05 8.36

SAFE 1.21 5.91 6.74 6.43 6.86
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Table 3.6: A comparision of GPEs, VDEs and FFEs of RAPT, Praat, TEMPO,

and SAFE algorithms on KEELE and CSTR Corpus. White and babble noise

conditions, SNR = 10 dB. Bold numbers denote the lowest error rate in the FFE

column.

SNR = 10 dB GPE (%) V→UE (%) U→VE (%) VDE (%) FFE (%)

KEELE White Noise

RAPT 1.21 22.02 1.23 12.07 12.56

Praat 1.27 18.08 1.45 10.12 10.66

TEMPO 1.00 11.95 3.30 7.81 8.27

SAFE 1.97 4.97 4.93 4.86 5.83

KEELE Babble Noise

RAPT 4.93 15.80 6.25 11.23 13.39

Praat 4.78 14.70 11.33 13.09 15.21

TEMPO 1.30 39.59 4.29 22.69 23.10

SAFE 2.82 13.99 6.86 10.58 11.84

CSTR White Noise

RAPT 1.07 16.11 1.21 6.76 7.10

Praat 1.25 12.64 1.36 6.56 6.97

TEMPO 0.99 8.23 5.55 6.56 6.90

SAFE 1.46 2.82 7.58 5.80 6.33

CSTR White Noise

RAPT 6.54 12.97 10.07 11.16 13.28

Praat 8.33 11.96 15.21 14.00 16.73

TEMPO 1.71 40.32 4.87 18.08 18.46

SAFE 2.58 11.23 10.57 10.82 11.67
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Table 3.7: A comparision of GPEs, VDEs and FFEs of RAPT, Praat, TEMPO,

and SAFE algorithms on KEELE and CSTR Corpus. White and babble noise

conditions, SNR = 5 dB. Bold numbers denote the lowest error rate in the FFE

column.

SNR = 5 dB GPE (%) V→UE (%) U→VE (%) VDE (%) FFE (%)

KEELE White Noise

RAPT 0.56 39.72 0.61 20.99 21.17

Praat 0.95 33.31 0.56 17.63 17.96

TEMPO 1.05 21.33 1.94 12.05 12.48

SAFE 2.42 6.10 4.67 5.41 6.59

KEELE Babble Noise

RAPT 11.61 27.64 11.56 19.94 24.32

Praat 12.67 27.29 16.18 21.97 26.77

TEMPO 2.81 67.92 2.82 36.75 37.22

SAFE 4.93 20.12 10.90 15.71 17.76

CSTR White Noise

RAPT 0.65 33.97 0.60 13.03 13.19

Praat 0.92 26.67 0.51 10.26 10.51

TEMPO 1.06 15.59 2.43 7.33 7.67

SAFE 1.51 3.29 8.80 6.75 7.29

CSTR White Noise

RAPT 22.66 23.75 10.81 15.63 22.07

Praat 23.90 22.58 15.96 18.43 25.32

TEMPO 5.87 68.44 4.10 28.07 28.76

SAFE 5.04 17.87 16.11 16.77 18.31
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Table 3.8: A comparision of GPEs, VDEs and FFEs of RAPT, Praat, TEMPO,

and SAFE algorithms on KEELE and CSTR Corpus. White and babble noise

conditions, SNR = 0 dB. Bold numbers denote the lowest error rate in the FFE

column.

SNR = 0 dB GPE (%) V→UE (%) U→VE (%) VDE (%) FFE (%)

KEELE White Noise

RAPT 0.42 67.67 0.15 35.34 35.41

Praat 0.73 58.95 0.08 30.76 30.92

TEMPO 1.49 41.20 0.94 21.92 22.38

SAFE 2.15 10.73 5.67 8.31 9.31

KEELE Babble Noise

RAPT 21.64 49.32 8.09 29.58 35.29

Praat 27.38 45.87 14.71 30.95 38.67

TEMPO 8.90 88.87 2.19 47.37 47.88

SAFE 13.31 26.76 21.25 24.12 29.20

CSTR White Noise

RAPT 0.42 63.50 0.18 23.78 23.83

Praat 1.22 56.28 0.05 21.00 21.20

TEMPO 2.05 37.11 1.05 14.48 14.96

SAFE 1.88 4.37 10.30 8.09 8.76

CSTR Babble Noise

RAPT 42.75 44.92 11.87 24.18 32.96

Praat 42.32 41.27 17.91 26.61 35.87

TEMPO 20.92 90.17 3.91 36.05 36.82

SAFE 17.82 23.38 29.46 27.20 32.29
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Table 3.9: A comparision of GPEs, VDEs and FFEs on KEELE and CSTR

Corpus. White and babble noise conditions, SNR = -5 dB. Bold numbers denote

the lowest error rate in the FFE column.

SNR = -5 dB GPE (%) V→UE (%) U→VE (%) VDE (%) FFE (%)

KEELE White Noise

RAPT 0.17 93.18 0.00 48.56 48.57

Praat 1.88 87.79 0.00 45.75 45.87

TEMPO 1.45 70.68 0.21 36.94 37.16

SAFE 3.07 15.82 6.62 11.41 12.76

KEELE Babble Noise

RAPT 45.57 74.13 13.33 45.02 51.16

Praat 44.17 67.90 19.96 44.94 52.33

TEMPO 30.65 95.38 2.52 50.92 51.65

SAFE 40.66 25.64 39.94 32.49 48.25

CSTR White Noise

RAPT 34.67 0.00 93.03 0.01 34.67

Praat 1.72 85.39 0.00 31.82 31.91

TEMPO 6.13 71.62 0.24 26.83 27.48

SAFE 2.42 8.05 11.97 10.51 11.34

CSTR Babble Noise

RAPT 57.31 68.26 12.43 33.24 40.01

Praat 58.14 62.10 19.19 35.18 43.39

TEMPO 48.22 96.36 3.94 38.37 39.03

SAFE 56.57 16.19 39.14 30.59 36.15
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on CSTR corpus, the U/V GMMs are trained on the KEELE corpus. For each

F0 tracking package, default parameters are used. The performance of the F0

trackers on KEELE and CSTR corpora under clean, 20 dB, 10 dB, 5 dB, 0 dB,

and -5 dB noise conditions are shown in Tables 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9.

Note that on the CSTR corpus, the zero mean version of the SAFE algorithm,

i.e., SAFE(µ = 0), is used.

Under clean and noisy conditions, it can be seen that the SAFE algorithm

always has the lowest FFE. Under noisy conditions, the relative performance gains

of the SAFE algorithm in FFE against other algorithms are greater than that

under the clean condition. For example, using the KEELE corpus, in the clean

condition, FFEs of SAFE and RAPT are 5.58% and 6.08%, respectively. The

relative gain is 8.2%; under white noise 0 dB condition, the FFEs of SAFE and

RAPT are 9.31% and 35.31%, respectively. The relative gain is 73.6%. Therefore,

the SAFE algorithm with the GMM-based U/V classifier can obtain more noise

robust F0 tracking results compared with prevailing F0 trackers.

A comparison of the GPEs of the estimation and tracking version of the SAFE

algorithm on the KEELE and CSTR corpora under clean and noisy conditions is

shown in Table 3.10. Note that the GPEs are improved for the most part, using

the F0 tracking version.

3.5 Conclusions

The model-based U/V classifier can output robust U/V masks for F0 trackers

under both white and babble noise conditions which is helpful for reducing the

overall FFE. Minimizing the FFE is more effective than minimizing the VDE

alone. The SAFE algorithm using masks generated from the GMM-based U/V
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Table 3.10: A comparison of the GPEs (%) of the estimation and tracking version

of the SAFE algorithm using the KEELE and CSTR corpora.

GPE (%) Clean 20 10 5 0 -5

KEELE White Noise

Estimation 2.03 2.18 2.36 2.68 2.92 4.65

Tracking 1.97 2.06 1.97 2.42 2.15 3.07

KEELE Babble Noise

Estimation 2.32 3.91 6.66 15.52 39.35

Tracking 1.85 2.82 4.93 13.31 40.66

CSTR White Noise

Estimation 1.42 1.47 1.63 1.63 2.10 2.91

Tracking 1.04 1.24 1.46 1.51 1.88 2.42

CSTR Babble Noise

Estimation 1.51 2.50 5.65 19.27 52.80

Tracking 1.21 2.58 5.04 17.82 56.57
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classifier has lower FFEs compared with prevailing F0 tracking algorithms under

both clean and noisy conditions.
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Part II

Noise Robust Bird Song

Classification and Detection
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CHAPTER 4

A Correlation-Maximization Denoising Filter

In this chapter, we automatically identify the bird species according to the

recorded calls from 5 species of Antbirds (Barred Antshrike (BAS), Dusky Antbird

(DAB), Great Antshrike (GAS), Mexican Antthrush (MAT), Dot-winged Antwren

(DWA)) in a Mexican rainforest. The acoustic data were collected by researchers

from the Ecology and Evolutionary Biology department at UCLA [38] [63].

Because the data were collected through a hand-held directional microphone,

most of the noise in this study is additive noise. Wiener filtering can efficiently

remove quasi-stationary additive noise [30]; however, according to our observa-

tion, it will also enhance the background chirps and other non-stationary noises.

To alleviate this problem, we propose a ’correlation-maximization’ filter which

was inspired by the matched filter [64], originally designed for detection pur-

poses. The periodicity of the chirps in the bird call is employed to develop a

denoising filter which enhances the periodic structure of the target call by maxi-

mizing the value of a correlation-based function. Therefore, the proposed filter is

called a Correlation-Maximization denoising filter. The coefficients of the filter

are obtained through a gradient search approach which maximizes the value of a

correlation-based function.

In the following sections, we analyze the characteristics of the Antbird calls,

briefly review the Wiener filter and matched filter, design a Correlation-Maximization

denoising filter, and develop a statistically-based bird call classification system.
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We also discuss the advantages of the Correlation-Maximization filter over Wiener

filtering in bird call denoising.

4.1 Antbird Call Analysis

Antbird calls were collected at a rainforest in Mexico by using a directional mi-

crophone.

Spectrograms of some Antbird calls are shown in Figures 4.1 - 4.5 . The

following properties of the bird calls are observed:

Each call is composed of chirps. The chirp can be viewed as the smallest unit

in the bird calls. Spectrograms of chirps are similar within a call, which implies

that an Antbird repeats a similar vocalizing pattern in each call.

The number of chirps in the calls varies, even within the same species. In

our database, an Antbird call is about 0.5 - 5 seconds long and contains 10 - 30

chirps.

The spectrum of the chirp has a harmonic structure. This structure is be-

cause the vocalization of the chirp can be viewed as a periodic airflow from the

syrinx passing through the trachea. Much like the vocal folds in humans, the

vibrating tympaniform membrane in the syrinx can control the airflow from the

bronchus, which enables the bird to change tones (fundamental frequencies) of

the chirps [65] [29]. Typically, the frequency range of the tones is between 500

to 6000 Hz. The transfer function of the trachea can be changed by loosening

and tightening the surrounding muscles. Most high frequency components in the

calls are weak because of radiation effects.

The recorded bird calls are corrupted by different kinds of noise. It is natural

to find non-target calls overlapping in time with target calls. Cicadas, frog, and
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other non-stationary animal sounds are common in a rainforest. Water flowing,

wind blowing, and other quasi-stationary background noises are also common for

a rainforest with a diverse landscape. Microphone friction, power buzzing and

other instrumental noises are not avoidable for a hand-held recording device.

The changing location of the microphone also results in a variation in Signal-

to-Noise Ratio (SNR). The highly varied acoustic condition can impose difficulty

in training acoustic models and recognizing songs.

Considering the presence of the noise and varying SNRs, it is a necessity to

perform denoising before extracting features. In the following section, different

denoising methods are discussed.

4.2 Wiener Filtering

A prevailing denoising filter is the Wiener filter which estimates the additive

noise spectrum and adaptively updates the frequency response of the denoising

filter [30].

Suppose that the clean signal x[n] and the noisy signal y[n] are wide sense

stationary, and x[n] and the additive noise v[n] are uncorrelated. After mini-

mizing the mean square error, we have the relationship between the spectrum of

estimated signal x̂[n] and noisy signal y[n] denoted by X̂(f) and Y (f):

E[|X̂(f)|2] = |H(f)|2E[|Y (f)|2] (4.1)

where H(f) denotes the frequency response of the denoising filter h(n), E[·] de-

notes mathematical expectation operation. The estimate of the SNR at frequency

f denoted by SN̂R(f) can be expressed as:

SN̂R(f) =
E[|X̂(f)|2]

E[|V̂ (f)|2]
(4.2)
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Figure 4.1: Spectrograms of 3 Barred Antshrike (BAS) calls
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Figure 4.2: Spectrograms of 3 Dusky Antbird (DAB) calls
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Figure 4.3: Spectrograms of 3 Mexican Antthrush (MAT) calls
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Figure 4.4: Spectrograms of 3 Great Antshrike (GAS) calls
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Figure 4.5: Spectrograms of 3 Dot-winged Antwren (DWA) calls
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where V̂ (f) is the estimated spectrum of the noise signal v[n]. Note that E[|Y (f)|2] =

E[|X̂(f)|2] + E[|V̂ (f)|2] assuming X̂(f) and V̂ (f) are orthogonal. The estimated

clean spectrum can be expressed as:

E[|X̂(f)|2] =
SN̂R(f)

1 + SN̂R(f)
E[|Y (f)|2] (4.3)

Therefore, the non-causal Wiener filter converts the denoising problem into

an SNR estimation problem [66].

According to our observation, the Wiener filter sometimes fails to identify

background chirps as noise and boosts both the target and non-target chirps. It

is necessary to develop a denoising filter which can not only enhance the target

chirps but also suppress non-target chirps.

4.3 Matched Filtering

In matched filtering, a known signal, or template, is correlated with an unknown

signal to detect the presence of the template in the unknown signal [64]. Given

a clean signal x[n] , the impulse response of the matched filter denoted by h[n]

is defined as:

h[n] = kx[m− n] (4.4)

where k and m are arbitrary constants. The matched filter is the optimal linear

filter for maximizing the SNR in the presence of additive noise.

Let v[n] denote the additive noise. The corrupted signal denoted by y[n] can

be expressed as: y[n] = x[n] + v[n]. The output of the matched filter denoted by

75



x̂[n] can be expressed as:

x̂[n] =

∞∑

r=−∞

y[r]h[n− r] (4.5)

= k

∞∑

r=−∞

x[r]x[r + m− n] + k

∞∑

r=−∞

v[r]x[r + m− n]

Suppose x[n] and v[n] are both wide sense stationary and independent of each

other, we have:

y[n] = kRx[m− n] (4.6)

where Rx[m− n] denotes the autocorrelation function of x[n]. When n = m, the

correlation function Rx[m− n] is maximized.

The matched filter is usually used in radar and telecommunication for de-

tection purpose. It is assumed that the clean signal, or the reference signal, is

known. In the bird call denoising task, there is no need to perform the denois-

ing if the reference signal is known; however, it is still possible to borrow the

’Correlation-Maximization’ idea from the Eq. 4.6 to design a denoising filter

which can enhance the target chirps and suppress non-target chirps discrimina-

tively. The details of the proposed filter is discussed in the following section.

4.4 A Correlation-Maximization Denoising Filter

According to our observations, every Antbird call is quasi-periodic in terms of the

interval between chirps, and the intervals slowly decrease with time. An example

is shown in Fig. 4.7.

In the following, we will discuss how to search an optimal correlation denoising

filter which can enhance this periodic structure.
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Figure 4.7: The waveform of a Great Antshrike (GAS) call

4.4.1 Search Chirp Interval Using a Correlation Function

Suppose a bird call x[n] is corrupted by additive noise v[n]. An FIR filter denoted

by h[n] of L taps is used to obtain the estimate of the clean signal denoted by

x̂[n] from the observed noisy signal denoted by y[n]. Then we have:

x̂[n] =

L∑

k=1

h[k]y[n− k] (4.7)

y[n] is decomposed into M frames with a frame step size of ∆ and a frame length

of N , and we assume that y[n] and x[n] are wide sense stationary in each frame.

Since the spectral distributions of different frames in a bird call are similar, a

single h is assumed for each bird call. Therefore at frame m, the cross correlation

function of x̂[n] at lag k denoted by φm
x̂ [0, k] can be expressed as:

φm
x̂ [0, k] =

m∆+N−1−k∑

n=m∆

x̂[n]x̂[n + k] (4.8)

=
L∑

p=1

h[p]
L∑

q=1

h[q]
m∆+N−1−k∑

n=m∆

y[n− p]y[n + k − q].
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Note that the lag k has K possible values, k = k0, k1, ...kK−1. We can define

an L × L cross correlation function matrix Φm
y [0, k] for frame m at lag k. The

element of Φm
y [0, k] in row p and column q is expressed as:

Φm
y [0, k]pq =

m∆+N−1−k∑

n=m∆

y[n− p]y[n + k − q]. (4.9)

Therefore we have

φm
x̂ [0, k] = hTΦm

y [0, k]h (4.10)

where h = [h[0], h[1], · · · , h[L]]T denotes the coefficients of the FIR filter. To

confine the dynamic range of φm
x̂ [0, k], the normalized cross correlation function

φ̄m
x̂ [0, k] is expressed as follows:

φ̄m
x̂ [0, k] =

m∆+N−1−k∑
n=m∆

x̂[n]x̂[n + k]

√
m∆+N−1−k∑

n=m∆

x̂2[n]

√
m∆+N−1−k∑

n=m∆

x̂2[n + k]

(4.11)

=
φm

x̂ [0, k]√
φm

x̂ [0, 0]φm
x̂ [k, k]

=
hTΦm

y [0, k]h
√

hTΦm
y [0, 0]h

√
hTΦm

y [k, k]h
.

Note that φ̄m
x̂ [0, k] ∈ [−1, 1].

It is possible to find the chirp interval in each frame over the denoised signal

x̂[n]. Dynamic programming can be used to minimize the distortion induced by

background noise in the chirp interval search [6]. Because the objective of the

dynamic programming is to search the path which has a minimum accumulative

cost. The local cost of frame m at lag k is defined as −φ̄m
x̂ [0, k]. Since the chirp

interval is gradually decreasing over time, the cost of transitioning from lag ki to

78



kj denoted by d(ki, kj)is defined as follows:

d(ki, kj) = eα|ki−δ−kj | − 1 i, j = 0, · · · , K − 1 (4.12)

where α and δ are pre-set empirically. α is a scaling factor, and δ is an estimate

of how fast the chirp interval changes per second. This exponential function can

impose more penalty than its linear counterpart on the transition cost in order

to prevent chirp intervals from greatly varying between two consecutive frames.

Note that when kj = ki − δ, d(ki, kj) = 0.

A trellis structure of K ×M for dynamic programming is developed, where

M is the number of total frames, K is the number of possible candidates at each

frame. s = [s1, s2, · · · , sM ] is used to denote an arbitrary valid path in the trellis.

4.4.2 Search The Optimal Denoising Filter

We search the filter coefficients in a grid by minimizing a correlation-based cost

function.

It can be assumed that an optimal filter h can enhance the periodic structure

of the target bird call and remove the additive noise so that the minimum ac-

cumulative cost is achieved in the chirp interval search over the denoised signal.

This assumption can be expressed as:

h∗ = arg min
h

F(h, s) (4.13)

where h∗ denotes the optimal denoising filter, the accumulative cost F(h, s) which

is the summation of the accumulative local and transition costs is expressed as:

F(h, s) =

M∑

m=1

−φ̄m
x̂ [0, sm] +

M−1∑

m=1

d(sm, sm+1). (4.14)
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The gradients of F(h, s) w.r.t. h can be expressed as:

∇hF(h, s) (4.15)

= ∇h{−
M∑

m=1

hT Φm
y [0, sm]h

√
hT Φm

y [0, 0]h
√

hT Φm
y [sm, sm]h

}+ 0

= −
M∑

m=1

1√
hTΦm

y [0, 0]h · hTΦm
y [sm, sm]h

·

[Φm
y [0, sm] + Φm

y [0, sm]T

hTΦm
y [0, sm]h

−
1

2

Φm
y [0, 0] + Φm

y [0, 0]T

hTΦm
y [0, 0]h

−
1

2

Φm
y [sm, sm] + Φm

y [sm, sm]T

hT Φm
y [sm, sm]h

]
h

Therefore, the gradient descent method can be used to search the optimal

filter h∗(s) for a path s. The minimum cost is achieved when ∇hF(h, s) = 0.

Note that s is independent of h. The final optimal filter h∗ can be searched using

a brute-force method:
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Algorithm 4.4.1: Brute-Force Filter Search (h)

Set the iteration time = I, the iteration stopping threshold = ǫ.

for all valid s

do






Initialize h0(s) = [1, 0, · · · , 0]T .

for i = 0 to I

do






hi+1(s) = hi(s)− ti∇hF(hi(s), s),

where ti is the step size;

if ||hi+1(s)− hi(s)||/||hi(s)|| < ǫ

then h∗(s) = hi(s),break .

if i equals I

then h∗(s) = hI(s).

s∗ = arg min
s

F(h∗(s), s)

h∗ = h∗(s∗), exit .

Symbol List:

s∗: the optimal path;

h∗: the optimal filter;

hi(s): the searched filter at ith iteration given the path s;

h∗(s): the optimal filter given the path s;

4.4.3 Speed Up The Search: N-best Search

Instead of a grid search, we propose to search through a trellis similar to the

N-best search in ASR.
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There are KM possible paths in a K×M trellis. Suppose the average iteration

time of the gradient search is Ī, this brute-force approach needs KM× Ī iterations

which is computationally unacceptable.

If the gradient search stopped at iteration i, the optimal path among all the

valid paths denoted by s∗i can be expressed as:

s∗i = arg min
s

F(hi(s), s). (4.16)

Since s∗i may not be equal to s∗ (obtained from the previous section), we need

to search through all possible paths; however, we can assume that s∗ is within

a path subset during each iteration. The subset is composed of the top N-best

paths which are the output of the dynamic programming on the trellis. That

means the gradient descent search only needs to be applied to the N-best paths,

not all the paths at each iteration. Then the brute-force search approach can be

improved into an N-best search:
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Algorithm 4.4.2: N-Best Filter Search(h)

Set the iteration time = I, the iteration stopping threshold = ǫ;

Set the N-best path number = J .

for j = 0 to J

do Initialize an N-best (J) filter list hj
0 = [1, 0, · · · , 0]T .

for i = 0 to I

do






for j = 1 to J

do






Use hj
i to build jth trellis by calculating φ̄m

x̂ [k].

Search N-best (J) paths s
(j,k)
i in jth trellis.

for k = 1 to J

do





h

(j,k)
i+1 = hj

i − ti∇hF(hj
i , s

(j,k)
i ),

where ti is the step size.

Sort h
(j,k)
i+1 , j, k = 1, · · · , J , according to the values of

F(h
(j,k)
i+1 , s

(j,k)
i ) in ascending order to obtain h̃l

i+1, l = 1, · · · , J2

for j = 1 to J

do hj
i+1 = h̃j

i+1.

if max
j=1...J

||hj
i+1 − hj

i ||

||hj
i ||

< ǫ

then h∗ = h1
i , exit .

if i == I

then h∗ = h1
I , exit .

Symbol List:

h∗: the optimal filter; hj
i : the jth N-best filters at ith iteration;

s
(j,k)
i : the kth best path in the jth trellis at ith iteration;

h
(j,k)
i+1 : the searched filter given h

(j,k)
i and s

(j,k)
i ;

h̃l
i+1: a sorted filter list of h

(j,k)
i+1 .
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Table 4.1: Number of bird calls in the training and test sets. BAS: Barred

Antshrike; DAB: Dusky Antbird; GAS: Great Antshrike; MAT: Mexican

Antthrush; DWA: Dot-winged Antwren.

BAS DAB GAS MAT DWA Total

Training 240 888 350 609 159 2246

Testing 120 444 175 304 77 1120

Although J × Ī trellis building and dynamic programming operations are

newly introduced in this N-best search approach, the total average gradient search

iterations is reduced to J2 × Ī compared to the KM × Ī iterations in the brute-

force search approach when the M is large. Typically, for Antbird calls, K = 49,

1 ≤M ≤ 50, J = 20.

4.5 Experiments

The Antbird call corpus contains 3366 bird calls from 5 species. We split the

corpus into a training and testing set with a ratio of 2:1 as shown in Table 4.5.

The training set is 85 minutes long and the testing set is 42 minutes long. The

calls are 0.5 - 5.0 seconds long.

The original single-channel acoustic signal is collected at a sampling rate of

44.1 kHz. The frequency range of the bird calls is from 500 to 6000 Hz. Thus,

we use a band-pass filter with cutoff frequencies between 360 Hz and 6500 Hz to

remove irrelevant frequency components. The signal is then downsampled to 16

kHz.

In the Correlation-Maximization denoising filter, the number of the filter taps

(L) is 20. Since an analysis frame should contain at least two chirps to extract
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the chirp interval, and the bird chirp length ranges from 60 to 300 ms, the frame

length is 600 ms, i.e. 9600 samples. The frame step size is 100 ms, and the

correlation lag step is 5 ms. The number of lags is (300 - 60)/5 + 1 = 49. The

maximum number of iterations (I) in the gradient search, and the number of

N-best paths (J) are both 20. According to the experimental results, increas-

ing L, I, or J does not boost the classification accuracy but does increase the

computational cost.

A 39-dimension feature composed of the first 13 MFCCs and first and second

derivatives is computed every frame for model training and testing.

In the GMM classifier, each species’ model is set to have 256 Gaussians. In

the HMM-based classifier, each species’ model also has 256 Gaussians per state.

The recognition network is the same as the one used in isolated word recognition,

in which each species corresponds to a word node. Choosing the correct state

number may enable finer modeling of a bird call. Since the number of chirps

in a bird call varies and the state numbers are the same for all 5 species, state

number 6, which is the minimum number of chirps in all the bird calls, is used

for each species model and it also results in the lowest classification error rate

among state numbers 1 to 9.

Classification results are shown in Table 4.2. The HMM-based classifier results

in better performance than the GMM classifier when using the same features.

After applying the Correlation-Maximization denoising filter, classification error

rates of both GMM and HMM-based classifiers are lower than their counterparts

using the Wiener filer. Since the Correlation-Maximization filter uses a long frame

length to estimate the slow-varying noise and to capture interval periodicity, and

the Wiener filter employs a relatively short frame length to track the fast changing

noise, it is possible that cascading the two filters can further reduce error rates.
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Table 4.2: Classification error rate (%) on the test set. W+/CM+: feature

extraction using the output of the Wiener/Correlation-Maximization based de-

noising filter

GMM HMM

MFCC 8.7 5.4

W+MFCC 5.9 4.9

CM+MFCC 5.3 4.6

CM+W+MFCC 4.7 4.1

Table 4.3: The confusion matrix of using CM+W+MFCC feature and HMM

based classifier on the test set; RE: the number of errors divided by the total

number of calls in the row; PE: the number of errors in the row divided by the

total number of calls.

BAS DAB GAS MAT DWA RE(%) PE (%)

BAS 120 0 0 0 0 0.0 0.0

DAB 1 430 7 5 1 3.2 1.2

GAS 6 3 149 17 0 14.9 2.3

MAT 0 0 0 304 0 0.0 0.0

DWA 0 4 2 0 71 7.8 0.5
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As shown in Table 4.3, the confusion matrix is used to analyze the classifica-

tion errors. The calls of BAS, MAT, and DAB are less likely to be misclassified

as other species compared to those of GAS and DWA. The GAS→MAT errors

(1.5%) accounted for more than 35% in the total errors (4.1%).

A GAS bird call is used to illustrate the difference between the Wiener and

Correlation-Maximization filter. From Fig. 4.8 (a), other bird chirps are observed

from 0.6 to 1.6 seconds, and background noise can act as adverse factors to the

classification task. As shown in Fig. 4.8 (b), both target and non-target bird

chirps are enhanced after Wiener filtering. That is because Wiener filter can not

denoise discriminatively. It can be seen from Fig. 4.8 (c) that the Correlation-

Maximization filter can suppress the non-target chirps while enhancing the target

chirps. That is because the Correlation-Maximization filter is supposed to only

enhance the periodic structure of the target bird call. It is also shown in Fig. 4.8

(d) that both non-target bird call and background noise are suppressed when

cascading the Wiener filter and the Correlation-Maximization filter.

The frequency response of the optimal Correlation-Maximization denoising

filter for this bird call is shown in Fig. 4.9. The filter has a pass-band from 800

to 1750 Hz, which can enhance the frequency components of the target bird call,

a stop-band from 2600 to 8000 Hz, and a dip around 2800 Hz can minimize the

interference introduced by background noise and other bird chirps. Other filters

were developed for other bird calls.

We also studied how the classification error rates changes when the training

set size and the number of Gaussians per state in the HMM-based classifier are

changed, which is shown in Fig. 4.10. In this study, the number of states is fixed

to 6 and the features are CM+W+MFCC. For a training set ratio less than 1, the

sub training set is created by randomly selecting calls in each species according to
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Figure 4.8: A Great Antshrike (GAS) call: (a) original spectrogram; (b) spec-

trogram after Wiener filtering; (c) spectrogram after Correlation-Maximization

filtering; (d) spectrogram after Wiener and Correlation-Maximization filtering.
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Figure 4.9: The frequency response of the Correlation-Maximization filter for a

GAS call.
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Figure 4.10: The relationship between the ratio of the training set size to the

original one, the number of Gaussians per state, and the classification error rate.

The feature is fixed as CM+W+MFCC. The number of states in HMM is fixed

to 6.

the ratio. To reduce the uncertainty of the classification error rates, the training

and testing routines are repeated 20 times. The mean of the error rates is used

to represent the error rate under the training set ratio. It can be observed that

the optimal number of Gaussians per state decreases as the size of training set

decreases. The phenomena is probably because of the model overfitting. Thus,

it is important to control the model complexity when the size of the training set

is changed.
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4.6 Conclusions

The Correlation-Maximization denoising filter is effective in enhancing target bird

calls with a quasi-periodic structure in the time domain and suppressing non-

target bird calls and other non-stationary noises, which results in a reduction in

classification error rate.

Compared to the Wiener filter, the Correlation-Maximization filter avoids

estimating the SNR by using the periodicity of the target bird call, and it does not

assume that the noise is stationary. Combining both filters can further improve

the classification accuracy compared to the system only using the Correlation-

Maximization filter.
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CHAPTER 5

fbEM: a Filter Bank EM Algorithm

In this chapter, the optimal center frequencies and bandwidths of the filter bank

used for Mel-frequency cepstral coefficients (MFCCs) extraction are searched in

an efficient statistically-based approach. Since the auxiliary function in the EM

algorithm is extended for optimizing not only model parameters, but also pa-

rameters of the filter bank used in feature extraction, the proposed algorithm is

called the filter bank EM (fbEM) algorithm. Note that statistically-based non-

uniform DFT analysis/synthesis filter banks have been explored before to reduce

spectral-domain distortion in speech coding [67].

The organization of the chapter is as follows. First, joint filter bank and

model parameters optimization using the fbEM algorithm is presented. Then,

experimental results on an Antbird corpus are analyzed.

5.1 Optimizing the Filter Bank in Feature Extraction

The procedure and parameters of cepstral feature extraction are the same as the

MFCC extraction except for the parameters of the filter bank. In the new filter

bank shown in Fig. 5.1, it is assumed that the number of filters is fixed as L,

the shape of each filter is triangular, the gain of each filter is the same, and the

center frequency of each filter is equal to the low and high cut-off frequencies of

its right and left filters, respectively. α = [α0, · · · , αL+1]
T is used to represent the
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Figure 5.1: The frequency response of the filter bank used in feature extraction.

L is the number of filters. The letter on top of each filter denotes the filter

index.The gain of each filter is the same.

parameters of the filter bank, where αl, l = 1 · · ·L, denotes the center frequency

of filter l, α0 and αL+1 denote the low and high cut-off frequencies of the filter

bank, respectively. Audio signals denoted by x is compressed to a sequence of

column feature vectors denoted by Y which can be represented as {y1, · · · ,yT},

where T is the number of the frames. The procedure of feature extraction can be

viewed as a function denoted by fα from x to Y, i.e. Y = fα(x).

If the feature sequence is assumed to be independent and identically dis-

tributed within each class, a Gaussian mixture model (GMM) can be used to

model the distribution of the homogeneous data.

Let α and M denote the current feature extraction and model parameters,

respectively. Let ᾱ and M̄ denote the feature extraction and model parameters

to be estimated, respectively. α̂ and M̂ are used to denote the estimated feature

extraction and model parameters, respectively.

The proposed fbEM algorithm is described in Algorithm 1.

93



Algorithm 1. fbEM: joint filter bank and model parameter opti-

mization using the EM algorithm

Step 1: Initialization: initialize the filter bank parameters α; extract feature

Y, i.e. fα(x) from acoustic signals x; train an initial modelM from Y using the

conventional EM algorithm.

Step 2: Constrained Filter bank optimization without updating the model

M:

α̂ = arg max
ᾱ

Q({α,M}, {ᾱ,M}) (5.1)

s.t. αmin ≤ ᾱ0 < · · · < ᾱL+1 ≤ αmax

α̂ is solved as follows: initialize ᾱ to be α, then update ᾱ:

ᾱ← ᾱ + η
∂Q({α,M}, {ᾱ,M})

∂ᾱ

where η denotes the step size, and Q({α,M}, {ᾱ,M}) is an auxiliary function

defined in Eq. 5.5. Extract Ȳ using the updated ᾱ, i.e. Ȳ = fᾱ(x), repeat until

the increment of Q({α,M}, {ᾱ,M}) falls below a certain threshold. Then let

α̂ = ᾱ, Ŷ = Ȳ.

Step 3: Estimate model parameters without updating the filter bank α̂ and

feature Ŷ, i.e. fα̂(x):

M̂ = arg max
M̄

Q({α̂,M}, {α̂,M̄}) (5.2)

which is the same as the conventional EM algorithm [43].

Step 4: Convergence or keep iterating: if

|Q({α,M}, {α̂,M̂})−Q({α,M}, {α,M})|

|Q({α,M}, {α,M})|
≥ǫ (5.3)
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where ǫ denotes the threshold, then α = α̂,M = M̂, go to Step 2; else stop and

exit.

As shown in Algorithm 1, the auxiliary function Q({α,M}, {ᾱ,M̄}) of the

fbEM algorithm has both feature extraction and model parameters as variables.

In conventional EM algorithm, the auxiliary function only has model parameters

as variables. In fbEM algorithm, sinceQ({α,M}, {α,M})≤Q({α,M}, {α̂,M})

≤ Q({α,M}, {α̂,M̂}), which are illustrated in Steps 2 and 3, the increase of

the auxiliary function is guaranteed.

The details of Algorithm 1 are as follows.

5.1.1 Filter bank α and model M initialization

In Step 1, it is important to choose a good initial guess to the solution for an

iterative method like the EM algorithm. Graciarena et al [49] showed that a

Mel-scaled filter bank results in a higher bird call verification accuracy compared

to the linear-scaled counterpart. In this chapter, the parameters of a Mel-scaled

filter bank are used as the initial guess for α.

Note that the parameters of the initial GMMs are trained from the MFCC

features using the conventional EM algorithm [43].

5.1.2 Compute the auxiliary function Q({α,M}, {ᾱ,M})

Because there is no closed-form solution for α̂ in Eq. 5.1, the gradient ascent

method is employed in Step 2.

Let y
(r)
t denote the features extracted using the filter bank α at frame t. The
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current α is either initialized in Step 1, or obtained from Step 2 of the previous

iteration. The probability of y
(r)
t belonging to mixture m of class r denoted by

γ
(r)
m (t) can be calculated as:

γ(r)
m (t) =

ω
(r)
m N (y

(r)
t ; µ

(r)
m ,Σ(r)

m )
∑M

m′=1 ω
(r)
m′N (y

(r)
t ; µ

(r)
m′ ,Σ

(r)
m′ )

(5.4)

where M denotes the number of Gaussians in each GMM, ω
(r)
m , µ

(r)
m , and Σ(r)

m are

the weight, mean, and covariance matrix of the Gaussian mixture m of class r,

obtained from the initialization or Step 3 of the previous iteration, N (·) means

Gaussian distribution.

Assuming that the discrete cosine transform (DCT) in feature extraction elim-

inates the dependencies among features from different dimensions, the covariance

matrix of each Gaussian is a diagonal matrix. Suppose static (s), derivative (d),

and acceleration (a) cepstral features are extracted, i.e. ȳT
t = [ȳsT

t ȳdT

t ȳaT

t ]T .

In Step 2, the auxiliary function can be expressed as:

Q({α,M}, {ᾱ,M}) (5.5)

=

R∑

r=1

M∑

m=1

T (r)∑

t=1

γ(r)
m (t)N (ȳ

(r)
t ; µ(r)

m ,Σ(r)
m )

= −
1

2

∑

g∈{s,d,a}

R∑

r=1

M∑

m=1

T (r)∑

t=1

[
γ(r)

m (t)(ȳg(r)

t − µg(r)

m )TΣg−1(r)

m (ȳg(r)

t − µg(r)

m )
]
+ C

where R denotes the number of classes, T (r) denotes the number of frames

in class r, ȳ
(r)
t /ȳs(r)

t /ȳd(r)

t /ȳa(r)

t denotes the whole/static/derivative/acceleration

features at frame t extracted using the filter bank ᾱ, C denotes a term that is

invariant to ᾱ.
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5.1.3 Compute ∂Q({α,M}, {ᾱ,M})/∂ᾱ

By using the chain rule, we have

∂Q({α,M}, {ᾱ,M})

∂ᾱ
(5.6)

= −
∑

g∈{s,d,a}

R∑

r=1

M∑

m=1

T (r)∑

t=1

[
γ(r)

m (t)
∂ȳg(r)

t

∂ᾱ
Σg−1(r)

m (ȳg(r)

t − µg(r)

m )
]

At frame t, let ētl denote the energy out of the lth filter, and ēt = [ēt1 · · · ētL ]

denote the energy output of the filter bank. When ēt is taken as input, the static

cepstral coefficient ȳs
t is the output of the three cascaded feature extraction sub-

procedures: logarithm, DCT and cepstral liftering:

ȳs
t = MT

CEP LFTMT
DCT log ēt (5.7)

where MCEP LFT is a D ×D diagonal matrix:

[MCEP LFT]d = 1 +
d− 1

2
sin

π(d− 1)

N
, d = 1 · · ·D, (5.8)

where d denotes the diagonal index, D denotes the dimension of the static fea-

tures, N denotes the cepstral liftering coefficient; MDCT is an L×D matrix:

[MDCT]l,d =

√
2

L
cos

π(l − 0.5)(d− 1)

L
, l = 1 · · ·L, d = 1 · · ·D (5.9)

where l denotes the row index, d denotes the column index, L denotes the number

of the filters.

Re-applying the chain rule, ∂ȳs
t/∂ᾱ can be expressed as:

∂ȳs
t

∂ᾱ
=

∂ēt

∂ᾱ

∂ log ēt

∂ēt

MDCTMCEP LFT (5.10)

∂ēt/∂ᾱ is solved as follows. Let Hl[f ] denote the frequency response of the
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triangular filter l in the filter bank shown in Fig. 5.1, we have:

Hl[f ] =






f − ᾱl−1

ᾱl − ᾱl−1
ᾱl−1 ≤ f < ᾱl

f − ᾱl+1

ᾱl − ᾱl+1
ᾱl ≤ f < ᾱl+1

0 otherwise

(5.11)

where f denotes the frequency. Let St[f ] denote the power spectrum at frame t,

the energy output of lth filter can be expressed as: ētl =
∑Fs/2

f=0 Hl[f ]St[f ], where

Fs is the sampling frequency. ∂ log ēt/∂ēt in Eq. 5.10 is an L×L diagonal matrix:

[∂ log ēt

∂ēt

]

l

=
1

ētl

, l = 1 · · ·L (5.12)

where l denotes the diagonal index. ∂ēt/∂ᾱ in Eq. 5.10 is an (L + 2) × L band

matrix:

[∂ēt

∂ᾱ

]

p,l
=






ᾱl∑
f=ᾱl−1

f − ᾱl

(ᾱl−1 − ᾱl)2
St[f ] p = l

[ ᾱl+1∑
f=ᾱl

f − ᾱl+1

(ᾱl − ᾱl+1)2
−

ᾱl∑
f=ᾱl−1

f − ᾱl−1

(ᾱl − ᾱl−1)2

]
St[f ] p = l + 1

ᾱl+1∑
f=ᾱl

f − ᾱl

(ᾱl+1 − ᾱl)2
St[f ] p = l + 2

0 otherwise

(5.13)

p = 1 · · ·L + 2, l = 1 · · ·L

where p denotes the row index, and l denotes the column index.

Since the derivative features are calculated as:

ȳd
t =

∑Θd

θ=1 θ(ȳs
t+θ − ȳs

t−θ)

2
∑Θd

θ=1 θ2
(5.14)

where Θd denotes the coefficient for computing the derivative features, after cal-

culating ∂ȳs
t/∂ᾱ, ∂ȳg

t /∂ᾱ (g = d) in Eq. 5.6 can be computed as:

∂ȳd
t

∂ᾱ
=

∑Θd

θ=1 θ
(∂ȳs

t+θ

∂ᾱ
−

∂ȳs
t−θ

∂ᾱ

)

2
∑Θd

θ=1 θ2
(5.15)
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Since the acceleration features are obtained from the derivative features in the

same way as obtaining the derivative features from the static features, ∂ȳg
t /∂ᾱ (g =

a) in Eq. 5.6 is calculated as:

∂ȳa
t

∂ᾱ
=

∑Θa

θ=1 θ
(∂ȳd

t+θ

∂ᾱ
−

∂ȳd
t−θ

∂ᾱ

)

2
∑Θa

θ=1 θ2
(5.16)

where Θa denotes the coefficient for computing the acceleration features.

5.1.4 Solve M̂

Let ŷt denote the features extracted from the optimal filter bank α̂ obtained from

Step 2 of the current iteration. In Step 3, the estimated model parameters, i.e.

M̂(r), can be expressed as:

ω̂(r)
m =

∑T (r)

t=1 γ
(r)
m (t)

T (r)
(5.17)

µ̂(r)
m =

∑T (r)

t=1 γ
(r)
m (t)ŷ

(r)
t∑T

t=1 γ
(r)
m (t)

(5.18)

Σ̂
(r)

m =

∑T (r)

t=1 γ
(r)
m (t)(ŷ

(r)
t − µ̂(r)

m )(ŷ
(r)
t − µ̂(r)

m )T

∑T
t=1 γ

(r)
m (t)

(5.19)

where ω̂
(r)
m , µ̂(r)

m , and Σ̂
(r)

m are the estimated weight, mean, and covariance matrix

of the Gaussian mixture m of class r. These model parameters will be used in

Step 2 of the next iteration as shown in Eq. 5.4. Note that in Step 1, the model

parameters are estimated the same way as Step 3, except replacing ŷt with initial

MFCC features.

5.2 Experiments

The Antbird call corpus contains 3366 bird calls from 5 species: Barred Antshrike

(BAS), Dusky Antbird (DAB), Great Antshrike (GAS), Mexican Antthrush (MAT),
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Dot-winged Antwren (DWA) [38]. The training set is 85 minutes long and the

testing set is 42 minutes long. The calls are 0.5 - 5.0 seconds long. Examples

of bird calls are shown in [38]. The frequency range of the bird calls is from

500 to 6000 Hz. The signal is downsampled from 44.1 kHz to 16 kHz. The low

and high cut-off frequencies of the filter bank, αmin and αmax, are set to 360 and

6500 Hz, respectively, to remove irrelevant frequency components for bird call

classification [68].

Two feature extraction methods are compared: the standard MFCC extrac-

tion with a Mel-scaled filter bank, and the improved MFCC extraction with an

optimized filter bank obtained from Algorithm 1. The number of filters in the

filter bank, L, is set to 26. The cepstral liftering coefficient, N , is set to 22. The

dimension of the static, derivative, and acceleration features, D, is set to 13. The

coefficients for computing the derivative and acceleration features, Θd and Θa,

are both set to 2. The frame step size is 10 ms, and the frame length is 25 ms. In

the GMM classifier, the number of Gaussians in each species’ model, M , is set to

256. In the filter bank optimization, the convergence threshold, ǫ, is set to 10−3.

The baseline system using MFCC features has a classification error rate of

8.7%. By using the new features extracted using the optimal filter bank obtained

from Algorithm 1, the error rate is reduced to 6.2%. The p-value of significance

test is 0.024, which means that the proposed method is statistically significant

for a significance level of 0.05. The optimization converges at the 6-th iteration,

while the lowest classification error rate is achieved at the 4-th iteration. Model

overfitting can be the explanation.

The confusion matrix of results obtained by using the Mel-scaled and opti-

mized filter banks are shown in Table 5.1. The calls of BAS, MAT, and DWA

are less likely to be misclassified as other species compared to those of DAB and
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GAS. The optimized filter bank effectively reduced the DAB and GAS classifica-

tion errors by 1.0% and 0.4%, respectively.

Let α0
l /α̂l and B0

l /B̂l denote the center frequency and bandwidth of lth filter

in the Mel-scaled/optimal filter bank, respectively. Note that in the triangular

filter bank shown in Fig. 5.1, we have:

B0
l = α0

l+1 − α0
l−1 (5.20)

B̂l = α̂l+1 − α̂l−1 (5.21)

To show the percentages of the center frequencies and bandwidths of the

optimal filter bank that are shifted, compared to the corresponding ones in the

Mel-scaled filter bank, two difference measures regarding the lth filter denoted by

∆α
l and ∆B

l , are defined as follows:

∆α
l = (α̂l/α

0
l − 1)× 100% (5.22)

∆B
l = (B̂l/B

0
l − 1)× 100% (5.23)

In a Mel-scaled filter bank, the distances of the center frequency of lth filter

to its left and right counterparts are α0
l − α0

l−1 and α0
l+1 − α0

l . The smaller the

distances are, the higher the frequency resolution at frequencies near α0
l is [48].

Since B0
l = [α0

l+1 − α0
l ] + [α0

l − α0
l−1], the bandwidth of the filter can be used as

a measure of the frequency resolution at frequencies near the center frequency of

the filter. The same conclusion can be drawn from the optimal filter bank.

A comparison of frequency parameters of the Mel-scaled and optimal filter

banks are shown in Table 5.2. In the optimal filter bank, the bandwidth se-

quence {B̂0, · · · , B̂L} is no longer monotonically increasing compared to the Mel-

scaled filter bank. As mentioned before, the shifting of the center frequencies and

changing of the bandwidths compared to their counterparts in the Mel-scaled fil-

ter bank cause the frequency resolutions at different frequencies to change. In
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Table 5.1: The confusion matrix of the species classification results on the test

set. The numbers without parentheses are obtained by using the Mel-scaled filter

bank. The numbers in parentheses denote the changes after using the optimized

filter bank. For example, GAS was confused as MAT 32 times with Mel-scaled

filter bank, but the confusion times were reduced by 11 after optimization.

Classified (#)

BAS DAB GAS MAT DWA

C
la

ss
es

(#
)

BAS 118(+1) 0(0) 1(-1) 0(0) 1(+1)

DAB 2(0) 415(0) 13(-4) 13(-2) 1(+2)

GAS 9(-5) 7(+2) 127(+3) 32(-11) 0(0) )

MAT 0(0) 0(-2) 3(-1) 301(+2) 0(0)

DWA 1(+2) 9(-2) 3(-2) 2(0) 62(0)

the fbEM algorithm, the maximum likelihood criterion is used to raise or lower

the frequency resolutions at certain frequencies such that more discriminative

information for classification can be extracted from spectra. Therefore, a lower

classification error rate can be achieved.

The bandwidths of the filters in both filter banks are small at low frequencies,

which means more discriminative information for classification resides at low

frequencies. The bandwidths of 1st, 2nd, 9th, 10th, and 15th filters in the optimal

filter bank are small compared to other adjacent filters. The bandwidths of these

filters are also significantly less (> 25%) than their counterparts in the Mel-scaled

filter bank. Thus, more discriminative information for classification may reside

between 360 - 532, 1176 - 1458, and 2227 - 2552 Hz compared to other frequencies

in the filter bank.
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Table 5.2: Center frequencies (α0
l and α̂l) and bandwidths (B0

l and B̂l) of the

Mel-scaled and optimized filter bank, where l = 1 · · ·L. L = 26. ∆α
l and ∆B

l

are the percentage change as defined in Eqs. 5.22 and 5.23. The upper and lower

cut-off frequencies of the filter banks are: α0
0 = α̂0 = 360 Hz, and α0

L+1 = α̂L+1 =

6500 Hz, respectively.

l α0

l
(Hz) α̂l (Hz) ∆α

l
(%) B0

l
(Hz) B̂l (Hz) ∆B

l
(%)

1 438 415 -5.3 162 112 -30.4

2 522 472 -9.5 174 118 -31.8

3 611 532 -12.8 186 177 -4.8

4 708 650 -8.2 200 270 35.2

5 811 803 -1.0 215 250 16.3

6 923 899 -2.5 230 213 -7.6

7 1042 1016 -2.5 247 277 11.9

8 1170 1176 0.5 266 257 -3.2

9 1307 1273 -2.6 285 187 -34.5

10 1455 1363 -6.3 306 185 -39.6

11 1614 1458 -9.6 329 286 -12.9

12 1784 1649 -7.5 353 315 -10.8

13 1966 1772 -9.9 379 577 52.4

14 2162 2227 -3.0 407 595 46.4

15 2373 2368 -0.2 436 325 -25.5

16 2599 2552 -1.8 469 399 -14.9

17 2841 2767 -2.6 503 607 20.7

18 3102 3159 1.8 540 639 18.4

19 3381 3406 0.7 580 508 -12.4

20 3682 3667 -0.4 622 676 8.7

21 4004 4083 2.0 668 700 4.8

22 4350 4367 0.4 717 667 -7.0

23 4721 4750 0.6 770 829 7.6

24 5120 5196 1.5 827 788 -4.7

25 5547 5537 -0.2 887 886 -0.1

26 6007 6082 1.3 953 963 1.1
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5.3 Conclusions

The fbEM algorithm offers an approach to jointly estimate filter bank parame-

ters in feature extraction, and model parameters. Using the fbEM algorithm, the

bird species classification accuracy on a large noisy corpus is increased by opti-

mizing the center frequencies and bandwidths of the filter bank used in cepstral

feature extraction. In the future, we will attempt to expand the work to speech

recognition.
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CHAPTER 6

Syllable Pattern-Based Bird Song Detection

The motivation of this study is to automatically detect Robin songs from contin-

uous recordings.

An HMM-based detector with a general model trained from all the syllables

is designed as a baseline system. In an improved system, syllable patterns are

first inferred from similar syllables observed in the recordings; HMMs of the

inferred syllable patterns are then trained to allow finer acoustic modelling of the

syllables. According to our experimental results, the proposed syllable pattern-

based detector is promising in terms of the hit rate and false alarm rate.

6.1 Robin Syllable and Song

The time waveform and spectrogram of a typical Robin song is shown in Fig. 6.1.

It can be seen that the song is composed of several different syllables. Note that

these units are sometimes referred to as phrases or song types [29]. Although these

syllables have similar harmonic structures as voiced speech of humans, there are

three main differences. The first is that the pitch of the Robin is higher than

that of humans with fundamental frequencies ranging between 1500 and 4500

Hz. The second is that Robins can only intermittently vocalize syllables, but not

continuously as can humans. The third is that Robins may produce two pitch

frequencies simultaneously during vocalization as shown in the regions labeled as
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Figure 6.1: Time waveform and spectrogram of a typical Robin song. SYL refers

to the syllable units.

A and B in Fig. 6.1. This phenomenon can be attributed to how birds produce

songs [69]. During Robin vocalizations, air flows from two different syringes are

controlled by the lateral labium and the medial tympaniform membranes. These

membranes are located on the medial walls of the bronchus, and these morpholog-

ical structures enable Robins to have two voicing sources. When the controllers

of the two sources are vibrating at different speeds, two different fundamental

frequencies are produced simultaneously.

6.2 RMBL-Robin Database

The RMBL-Robin database used in this study was collected by using a close-

field song meter (www.wildlifeacoustics.com) at the Rocky Mountain Biological

Laboratory near Crested Butte, Colorado. The sampling rate is 44.1 kHz. The

recorded Robin songs are naturally corrupted by different kinds of background
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Table 6.1: The details of the RMBL-Robin database

Length (minutes) Syllable # Song #

Training Set 45.5 1644 457

Test Set 32.8 970 277

noises, such as wind, water and other vocal bird species. Non-target songs may

overlap with target songs. Each song usually consists of 2-10 syllables. The

dataset is 78.3 minutes long and divided into two sets for training and testing

purposes. The details of the database are shown in Table 6.1. Note that all

analyses are conducted on the training set.

6.3 Inference of Syllable Patterns

Objectively inferring syllable patterns is not only important in studying the

singing behaviour of Robins, but also necessary to improve Robin song detec-

tion in the audio stream.

6.3.1 Distance Measure Between Syllables

A distance measure which was originally used for isolated word recognition is

adopted. The distance between two syllables is defined as the minimum accu-

mulative frame-level difference obtained in a dynamic time warping scheme [70].

The difference between two frames is based on the log likelihood ratio of the

minimum prediction error [26].

The details of the distance measure is described in the following.

The likelihood ratio of the prediction error from frame y to frame x, D(y||x),
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is defined as

D(y||x) = log
Eyx

Exx
= log

aT
y Rxay

aT
x Rxax

(6.1)

where Eyx denotes the error obtained by feeding frame y into the inverse LPC

filter inferred from frame x, Exx is the minimum prediction error for the LPC

system inferred from frame x; ax and Rx denote the LPC coefficients and auto-

correlation coefficient matrix of frame x, Rx. Here, we use a symmetric difference

measure, Df(x, y), defined as

Df(x, y) =
1

2

[
(D(x||y) + D(y||x)

]
(6.2)

In this study, a fixed frame rate LPC analysis is first conducted on the train-

ing set to acquire the distribution of the difference Df (x, y) between two adjacent

frames. There are some frames between which the distances are small. Downsam-

pling of the LPC analysis over these frames is essential to removing redundant

information. When the distances are large between other frames, an upsampling

of the LPC analysis is also necessary to capture the rapidly changing pitch in-

formation. In essence, a frame dropping LPC analysis is then applied on each

syllable.

We also use a symmetric distance measure between every two syllables X and

Y. It is denoted by Ds(X,Y), which is defined as

Ds(X,Y) =
1

2

[
Ds(Y||X) + Ds(X||Y))

]
(6.3)

where Ds(Y||X) denotes the distance from syllable Y to syllable X. It is obtained

through dynamic time warping (DTW) [71], i.e. minimizing the accumulative

aligned frame-level differences defined in Eq. 6.2.

Although the defined distance Ds(X,Y) does not satisfy the triangular in-

equality, it was used as a distance measure for isolated word recognition [70],
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and can be used as the distance measure for the Robin syllable clustering in the

following section.

6.3.2 Hierarchical Clustering Analysis

The objective of clustering analysis in this section is to search common patterns

which allow fine acoustic modelling of the Robin syllables compared to only using

one single general pattern for all the syllables. Training different models or tem-

plates for different keywords has proved to be effective for keyword spotting [72]

in which phoneme level transcription is available. However, for the training set

of Robin songs, only boundary information of the syllables is annotated. Thus,

it is necessary to infer the number of common syllable patterns from the training

set, and then train acoustic models for those patterns.

Providing the distance measure between two syllables defined in the previous

section, it is possible to conduct a distance measure-based hierarchical clustering

analysis. In this study, a modified average-linkage hierarchical clustering is used

to reliably cluster syllables into patterns. Before introducing the algorithm, the

inter-cluster distance of cluster C, Dc(C), is defined as

Dc(C) =
1

NC(NC − 1)

NC∑

i=1

NC∑

j=1

Ds(Xi,Xj) (6.4)

where NC denotes the number of syllables in the cluster, Xi denotes the ith

syllable in the cluster. The intra-cluster distance between cluster Ca and Cb

denoted by Dc(Ca, Cb) is defined as

Dc(Ca, Cb) =
1

NCa
NCb

NCa∑

i=1

NCb∑

j=1

Ds(X
Ca

i ,XCb

j ) (6.5)

where NCa
denotes the number of syllables in the cluster Ca, and XCa

i denotes

the ith syllable in the cluster Ca.
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The pseudocode of the modified average-linkage hierarchical clustering algo-

rithm is expressed in the following:

Algorithm 6.3.1: A modified hierarchical clustering (C)

Set the stopping distance threshold as DC
max

Each syllable is initiated as a cluster.

do






Search the closest two clusters, Ci∗ and Cj∗, by

comparing Dc(Ci, Cj)

Copy the elements of Ci∗ and Cj∗ into a new cluster C∗

if Dc(C
∗) > DC

max

then Remove C∗,break ;

else

then Use C∗ to replace Ci∗ and Cj∗

while More than one cluster is left

Dc(C): intra cluster distance of cluster C;

Dc(Ca, Cb): inter cluster distance of cluster Ca and Cb;

s In this

chapter, only clusters with a number of syllables greater than a threshold, de-

noted by NC
th, are retained as syllable patterns. The relationship between the

number of syllable patterns and the stopping distance threshold DC
max given dif-

ferent NC
th is shown in Figure 6.2. Under the same clustering stopping threshold,

the larger the cluster number threshold, the fewer syllable patterns there are.

Under each cluster number threshold, the number of syllable patterns first in-

creases then decreases when the clustering stopping threshold DC
max increases.

The increase/decrease patterns might occur because when DC
max is small, many

small clusters are not regarded as syllable patterns; when DC
max has a high value,

i.e. the allowable maximum intra-cluster distance is high, many syllables are
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Figure 6.2: The relationship between the number of syllable patterns and stop-

ping distance threshold DC
max given different cluster number threshold NC

th. Only

clusters with numbers of syllables greater than NC
th are regarded as syllable pat-

terns.

clustered together, which causes the number of patterns to be small.

It is still difficult to infer the actual number of syllable patterns from the

clustering results, because biologists are not clear about the repertoire size of the

syllable patterns in Robin songs. However, clustering results are helpful in the

sense of training acoustic models from the syllable patterns that are close in a

certain feature space, which may improve detection and classification results.
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6.4 Robin Song Detection System

During training, feature segments required by the template-based approach, i.e.

DTW, can be obtained by examining the boundary information contained in

the transcriptions. However, the boundary information is no longer available

in the test set which implies that the template-based method is not suitable

for the detection task, and pre-processing is needed to acquire the boundary

information. As an HMM-based system with models of the Robin syllables and

background sounds is capable of detecting the boundaries and classifying the

sounds, by decoding the continuous feature stream, simultaneously, HMMs are

used for acoustic modelling in our detection task. A left-to-right HMM with 3

emitting states is adopted for modelling the syllable patterns; an ergodic HMM

with 3 emitting states is used for modelling the background sounds.

Two HMM networks A and B are constructed for acoustic model training and

audio feature stream decoding purposes. Network A, shown in Figure 6.3, mod-

els all syllables as a single general HMM, and all background sounds as another

general HMM. The difference between networks A and B, shown in Figure 6.4,

is that different syllable patterns are modeled as different HMMs. As mentioned

above, not all syllables can be clustered into a syllable pattern. An extra HMM

with the same topology as the syllable pattern HMM is used for modelling un-

clustered syllables. Syllable patterns are inferred by using the clustering-based

method mentioned in the previous section.

Bigram models for both HMM networks are learned from the training set such

that each arc in the network is assigned a transition probability. The integration

of the bigram model into the HMM networks implies the occurrence relationship

between syllable and background sounds are taken into consideration.
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Figure 6.3: HMM network A. RBN: the general HMM for all Robin syllables.

BGS: background sound HMM.

Figure 6.4: HMM network B. RBNn: the HMM for the nth Robin syllable

pattern. RBN0: the HMM for the remaining Robin syllables that do not belong

to any syllable pattern. BGS: background sound HMM.
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Unsupervised Maximum Likelihood Linear Regression (MLLR) adaptation [62]

is applied to minimize the mismatch between the trained acoustic models and the

test cases.

As we are interested in detecting the existence of the Robin songs, the syllable

level decoding results need to be converted to song level results. According to

our observation, the duration between syllables in a Robin song is less than 0.5

seconds most of the time. Therefore, detected syllables that are less than 0.5

seconds in distance are grouped into a single song.

6.5 Experimental Results

The performance of the Robin song detection is evaluated in terms of the recall

rate and precision rate denoted by R and P which can be expressed as

R =
Nh

Ng

× 100%, P =
Nh

Nd

× 100%, (6.6)

where Nh is the number of hit songs, Ng is the number of the ground truth songs,

and Nd is the number of detected songs. A detected song is regarded as a hit

song only if the center of the detected song in time falls into the vicinity (±0.5

seconds) of the center of a ground truth song.

The objective is to increase the recall rate and precision rate at the same

time. Because of the well-known trade-off relationship between the two rates, the

F-score, a weighted combination of the two rates denoted by F [73], is defined

as:

F =
(1 + β2)PR

β2P + R
, (6.7)

where β is a weighting factor. Since the recall rate is more important than the

precision rate in this study, β is set to be 1.5.

114



The sampling rate of the recordings is 44.1 kHz. When the microphone is far

from the vocalizers during the recording, the high frequency components (> 5000

Hz) of the songs are sometimes strongly attenuated. As the pitch information of

the Robin ranging from 1500 to 4500 Hz are retained most of the time, a band

pass filter with cut-off frequencies of 1000 and 5000 Hz is applied to the raw

recordings.

For Robin syllables, the magnitude of the first harmonic is usually higher

than other harmonics, and hence is less susceptible to background noise. As a

pair of conjugate poles of the LPC filter is supposed to match one spectral peak,

given the fact that there may exist one or two pitch harmonics in the pass-band,

i.e. one or two spectral peaks in the spectrum, the order of LPC has to be 4 to

capture the possible pitch frequencies.

In the fixed frame rate LPC analysis, a frame shift of 5 ms is used. In a frame

dropping (FD)-based LPC analysis, effective frame shifts of 5, 10, and 20 ms are

used. The parameters of the FD scheme are set to make the ratio of the numbers

of frames with high, middle, and low frame rates to be 1:1:1. In both analyses,

the frame length is 10 ms. A Hamming window is used in the framing processing.

In feature extraction, to be consistent with LPC-based clustering analysis,

a 15-dimension feature composed of the 4th-order LPCs plus logarithm energy

and first and second derivatives is computed every frame for model training and

testing. The frame step size is fixed to 5 ms. The frame length is 10 ms.

In the frame dropping-based clustering analysis, the clustering stopping thresh-

old DC
max ranges from 0.08 to 0.40, the threshold of the number of syllables in a

cluster NC
th is set to be 5, 10, 25, 50, or 100. In acoustic modelling, the number

of Gaussian mixtures per state is set to be 1, 2, 4, 8, 16, or 32. For the HMM

network B, the highest F-score is achieved when DC
max = 0.12, NC

th = 25, and
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Table 6.2: the detection results including the Recall Rate (R), Precision Rate (P ),

and F-score (F ) using HMM networks A and B. wo VFR: uses a fixed frame

rate in syllable pattern clustering. + adapt: unsupervised MLLR adaptation.

R (%) P (%) F

Network A 74.2 71.8 0.734

Network B wo VFR 75.5 73.3 0.748

Network B 76.0 73.6 0.753

Network B + adapt 76.0 75.2 0.758

the number of Gaussian mixtures per state is 8. Changing the number of the

states in the HMMs to other than 3 can not improve the F-score. Under this

configuration, there are 3 HMMs for syllable patterns and 1 HMM for the back-

ground sound. The details of the detection results using HMM networks A and

B are shown in Table 6.2. When replacing the simple HMM network A with the

advanced network B, the recall and precision rate are both improved by 1.8% .

When the network B is followed by an unsupervised MLLR adaptation module,

the precision rate has a gain of 1.6% while the recall rate is unchanged. We also

found that using a fixed frame rate in the syllable pattern clustering can result

in a lower recall and precision rate.

6.6 Conclusions

Syllable patterns of Robin songs can be objectively inferred by performing a

hierarchical clustering analysis in which the distance measure is calculated by

aligning the LPC-based frame level differences. This HMM-based Robin song

detection system with models trained for the syllable patterns has a higher hit

rate under the same false alarm rate compared with a system with models trained
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from all syllables.
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CHAPTER 7

Summary and Future Work

7.1 Summary and Discussion

In this dissertation, we investigate noise-robust F0 tracking methods to reduce

F0 estimation and voicing decision errors, and analyze bird song properties to

improve bird song classification and detection accuracy.

In Chapter 2, we show that Prominent Signal-to-Noise Ratio (SNR) peaks

constitute a simple and effective information source for F0 inference under both

clean and noisy conditions. We model the effect of additive noise on clean speech

spectra, given F0, in a statistical framework. We find that middle and high fre-

quency bands (1-3 kHz) provide supplemental useful information for F0 inference

in addition to low frequencies. We show that the proposed SAFE algorithm is

more effective in reducing the Gross Pitch Errors (GPE) compared to other F0

estimators especially at low SNRs, and is robust in maintaining low Mean and

Standard Deviation of the Fine Pitch Errors.

In Chapter 3, we show that the model-based U/V classifier can output robust

U/V masks for F0 trackers under both white and babble noise conditions which

is helpful for reducing the overall F0 Frame Errors (FFE), which is combination

of GPE and Voicing Decision Errors (VDE). We also show that minimizing the

FFE is more effective than minimizing the VDE alone. We have shown that the

SAFE algorithm using masks generated from the GMM-based unvoiced/voiced
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classifier has lower FFEs compared with prevailing F0 tracking algorithms under

both clean and noisy conditions.

In Chapter 4, we propose a Correlation-Maximization denoising filter which is

effective in enhancing target bird calls with a quasi-periodic structure in the time

domain and suppressing non-target bird calls and other non-stationary noises,

which results in a reduction in classification error rate. We show that compared to

the Wiener filter, the Correlation-Maximization filter avoids estimating the SNR

by using the periodicity of the target bird call. The advantage of the Correlation-

Maximization filter over the Wiener filter is the ability of handling non-stationary

noise.

In Chapter 5, we propose the fbEM algorithm which is an approach to jointly

estimate filter bank parameters in feature extraction, and model parameters. We

use the fbEM algorithm to increase the bird species classification accuracy on a

large noisy corpus by optimizing the center frequencies and bandwidths of the

filter bank used in cepstral feature extraction.

In Chapter 6, we show that syllable patterns of Robin songs can be objectively

inferred by performing a hierarchical clustering analysis in which the distance

measure is calculated by aligning the LPC-based frame level differences. The

HMM-based Robin song detection system with models trained with information

about ’syllable patterns’ achieves a higher hit rate under the same false alarm

rate compared with a system with models trained from all syllables.

7.2 Future work

Since the SAFE algorithm is a data-driven method, it is worthwhile to train it

on a larger F0 database to obtain more robust models for F0 estimation and
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unvoiced/voiced classification. However, recording a database with simultaneous

speech and laryngograph signals is less easy than recording a database with only

audio speech signals. For example, both KEELE and CSTR corpora used in this

work are less than 6 minutes. Therefore, obtaining large databases for training

F0 estimation models is an issue to be solved.

Currently, the SAFE algorithm assumes that the noise type and level are

known in F0 estimation. However, it is necessary for a real world application to

estimate the noise type and level. Therefore, a noise type and level identifier is

needed.

For bird call classification, we currently denoise acoustic signals by running the

proposed Correlation-maximization filter before feature extraction. We also used

the proposed fbEM algorithm to improve the discriminability of the extracted

features. In the future, long-term features should be explored and combined with

MFCC features. Acoustic modeling techniques other than GMM and HMM can

also be explored.

For bird song detection, we currently improve the detection accuracy by train-

ing finer acoustic models based on the inferred syllable patterns. In the future,

it should be worthwhile to explore better acoustic modeling techniques.
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