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Abstract 

Four front-end processing techniques developed for noise 
robust speech recognition are tested with the Aurora 2 
database. These techniques include three previously published 
algorithms: variable frame rate analysis [Zhu and Alwan, 
2000], peak isolation [Strope and Alwan, 1997], and harmonic 
demodulation [Zhu and Alwan, 2000], and a new technique 
for peak-to-valley ratio locking. Our previous work has 
focused on isolated digit recognition. In this paper, these 
algorithms are modified for recognition of connected digits. 
Recognition results with the Aurora 2 database show that a 
combination of these four techniques results in 53% and 12% 
error rate reduction for the clean training and multicondition 
training, respectively, when compared to the baseline MFCC 
front-end, with no significant increase in computational 
complexity. 

1. Introduction 

This paper focuses on front-end feature extraction approaches 
for noise robust automatic speech recognition (ASR). Four 
front-end processing techniques are tested with the Aurora 2 
database. These techniques include three previously published 
algorithms: variable frame rate analysis [3], peak isolation 
[2], and harmonic demodulation [4], and a new technique for 
peak-to-valley ratio locking. Our previous work has focused 
on isolated digit recognition and mainly computer-generated 
additive noise.   

Here, training and testing followed the specifications 
described in [1]. A word-based ASR system for digit string 
recognition where each HMM word model has 16 emitting 
states is adopted. Training is done with either 8440 clean 
utterances (referred to as clean training) or with 8440 clean 
and noisy utterances (multi-condition training). A 3-state 
silence model and a one state short pause model are used. 
Test data included different kinds of realistic background 
noise at various SNRs. 

The Aurora 2 database CD included a program (FE2.0) to 
compute the MFCCs and log energy. The front-end used by 
HTK is MFCC_E_D_A, which contains 12 MFCCs and log 
energy together with their first and second derivatives. Each 
feature vector thus contains 39 components. Reference 
recognition results are computed with FE2.0. The techniques 
used in this paper were implemented by modifying the code in 
FE2.0. 

2. Noise robust frond-end feature extraction 
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Three previously published front-ends and a new algorithm 
are described in this section.  

2.1. Variable frame rate analysis (VFR) [3] 

Variable frame rate (VFR) analysis in [3] is motivated by the 
fact that changes in spectral characteristics are important cues 
for discriminating and identifying speech sounds. These 
changes can occur over very short time intervals. Computing 
frames every 10 ms, as commonly done in ASR, is not 
sufficient to capture such dynamic changes. The VFR 
algorithm increases the frame rate for rapidly-changing 
segments with relatively high energy and decreases the frame 
rate for steady-state segments, based on a weighted log energy 
Euclidean MFCC distance. The smallest frame step can be 2.5 
ms. An example is shown in Figure 1. The current 
implementation uses an average frame rate which is less than 
100 frames per second. 

20 00  40 00  60 00  80 00  10 000  12 000  

-20 00  

0  

20 00  

40 00  

S a m p le  

S e le c t io n   

 

Figure 1: The upper panel shows the utterance one
two . The lower panel shows the selected frames. 

MFCCs computed with the VFR technique reduce the 
error rate, when compared to reference results, in the clean 
training condition by 27.69% for Set A, 36.99% for Set B, 
and 0.92% for Set C. The overall error reduction is 27.27%. 

2.2. Peak isolation (PKISO) [2] 

This technique involves MFCC liftering, an inverse DCT 
(IDCT), and half wave rectification. After the IDCT, spectral 
valleys are often less than 0 and formants are larger than 0. 
Figure 2 shows an example of the recovered log Mel filter-
bank output from liftered MFCCs for a clean and noisy frame 
of /i/. Half-wave rectification is then applied on the recovered 
log Mel filter-bank  output so that the valleys are effectively 
removed. A DCT is applied on the rectified log Mel filter-
bank output to obtain  feature vectors which will be referred 
to as PKISO_MFCCs.  



Error rate reductions with PKISO_MFCCs in the clean 
training condition are, when compared to reference results, 
45.77% for Set A, 49.54% for Set B, and 10.60% for Set C. 
The overall error reduction is 41.48%. 
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Figure 2:Peak isolation. Log Mel filter-bank output 
recovered from liftered MFCCs for a clean and noisy 
(0 dB SNR) frame of /i/. After half-wave rectification 

only the upper part is retained. 

2.3. Peak-to-valley ratio locking 

We introduce in this paper the concept of  peak-to-valley ratio 
locking. In the presence of noise, spectral valleys will be 
buried by noise, but formants are, on average, not affected as 
much. An example can be seen in Figure 3, which shows 
spectra of a clean and noisy speech frame. The frame is from 
/i/ in zero (female talker) and the additive noise is speech
shaped at 0 dB SNR. The noisy spectrum is an average over 
150 frames. Note that the spectra are nearly the same at 
harmonic peaks around the formants, where the amplitude is 
about 3 ¨C5 times higher than the average noise spectrum. At 
frequencies where the signal amplitude is low, as in spectral 
valleys, the average noisy speech spectrum is nearly the same 
as the average noise spectrum. Because of the difference of 
the noise effects on valleys and peaks, often the peak-to-
valley ratio in spectra of noisy speech is lower than that in 
clean speech, hence leading to a mismatch between the clean 
and noisy data. 

After obtaining the recovered log Mel filter output from 
liftered MFCCs (without C0), as shown in Figure 2, both 
peaks and valleys will be affected. One approach to 
addressing this problem is peak-to-valley ratio locking. We 
set the highest peak of amplitude x to a fixed number p. The 
entire recovered Mel filter output is then scaled accordingly 
by a factor of p/x. In our implementation p was set to 10. This 
number is approximately the average amplitude of the highest 
peaks across the database. 

When used together with peak isolation, only the positive 
part in the recovered Mel filter output is scaled, and the 
negative part is set to zero. An example of the result of 
combining PKISO with peak-to-valley ratio locking is shown 
in Figure 4. 

The error rate reduction with peak-to-valley ratio locking 
only (without PKISO) in the clean training condition are: 
37.32% for Set A, 42.22% for Set B, and ¨C3.25% for Set C. 
The overall error reduction is 32.61%. 
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Figure 3: Linear clean and noisy (0 dB SNR) speech 
spectra. 
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Figure 4: Log Mel filter-bank output after liftering, 
rectification and peak-to-valley ratio locking for the 
same frame of /i/ in Figure 2. Notice that the highest 

peaks are set to 10. 

2.4. Harmonic demodulation (HD) [4] 

Harmonic demodulation is a method that aims at reducing the 
difference between clean and noisy speech spectra especially 
at inter-harmonic valleys.  

The LTI speech production model is viewed as amplitude 
modulation in the frequency domain, with the excitation 
spectrum being the carrier and the spectrum of the vocal tract 
transfer function being the modulator. Non-coherent 
demodulation with non-linear envelope detection is used to 
recover the spectrum of the vocal tract transfer function [4]. 
Envelopes of the speech spectra, instead of the speech spectra 
themselves, are used to compute the MFCCs.  

The error rate reduction with harmonic demodulation in 
the clean training condition are: 28.37% for Set A, 33.21% 
for Set B, and 5.62% for Set C. The overall error reduction is 
26.66%. 



3. Modifications of the algorithms for the 
Aurora 2 database  

3.1. Speech/nonspeech detection  

Our previous studies on VFR [3] PKISO [2], and HD [4], 
focused on isolated digits with endpoint detection. All 
techniques mentioned in this paper assume a speech model, 
hence speech/nonspeech detection is critical.  

Speech/nonspeech detection is based on energy and 
voicing. The general idea is that if a frame has high energy 
and is a voiced frame or is close to voiced frames, then it is 
classified as speech. The energy condition is implemented by 
comparing the log-energy of a frame to a threshold for the 
corresponding utterance. A threshold (T) for an utterance is 
determined empirically by T=(H+L)*0.5, where H and L are 
the average of the 10 highest and 10 lowest log energy values 
in the utterance, respectively. The voicing detection is 
performed with the open source software from the SVR group 
at University of Cambridge, Pitch_tracker 1.0, which is  based 
on [6]. If the log energy of a frame is higher than a threshold 
and it is voiced or it is within 30 ms from a voiced frame, then 
this frame is classified as speech and the algorithms are 
applied.  

The VFR algorithm is applied on each speech segment 
longer than 30 ms with a minimum frame step of 2.5 ms. For 
any speech segment shorter than 30 ms, a 10 ms frame step is 
used. A frame step of 25 ms is used for nonspeech segments. 

3.2. Increasing the variances of the silence model 

The HD, PKISO and peak-to-valley ratio locking algorithms 
remove the mean spectral difference between the clean and 
noisy speech spectra. For the silence model, however, which 
is trained with clean data, there will be a large mismatch with 
the noisy test data. One solution is to increase the variances in 
the silence and short pause models.  

We found that if the reference MFCCs are used, for the 
clean training condition, best performance is achieved by 
increasing the variances of the silence model by a factor of 
1.1, the overall improvement in accuracy rate is less than 2%.  
With  PKISO, HD, and peak-to-valley ratio locking, we get a 
better model of the digits, and hence a silence model with 
larger variance results in a larger increase in recognition 
performance. The increasing factor we use is 1.2, and the 
improvement in overall error rate reduction is 4.6%. 

3.3. Rasta-like filter in the cepstral domain 

The four techniques described in this paper have difficulty 
with Set C, where the problem is channel mismatch. A Rasta 
like band pass filter [5] is used at the final stage of the front-
end to avoid the mean shift effect caused by channel 
distortion. This results in a 5% improvement in error rate 
reduction in Set C, and a 0.5% and 1.3% improvement for 
sets A and B, respectively, compared with the results without 
the filter. 

4. Complexity considerations 

Even though our implementation did not optimize for 
computational cost (but focused on optimizing recognition 
performance) the increase in computational complexity of 
PKISO, HD and peak-to-valley ratio locking together is not 
high. In addition, these algorithms are frame-based and thus 
do not introduce a delay. The speech/non-speech detection 
algorithm introduces a delay equal to the utterance duration. 

The additional memory cost for HD is 128 floating 
numbers, which is half of the FFT length and the additional 
memory for PKISO and peak-to-valley ratio locking together 
is 23 floating numbers, which is the number of the Mel filters.   

The extra operations introduced for processing one frame 
in HD mainly comes from 7*128 (7 is the length of the filter 
characteristics and 128 is half the FFT size) floating number 
multiplications. The extra operations introduced by PKISO 
and peak-to-valley ratio locking mainly come from the extra 
IDCT and DCT, which contain 23*12 (23 is the number of 
the Mel filters and 12 is the length of the MFCC vector) 
floating number multiplication each. Liftering in PKISO adds 
12 multiplications and peak-to-valley ratio locking adds 
another 23 multiplications in processing one frame. 

When tested on a Sun Ultra Sparc 60 workstation, the 
computation load of PKISO and peak-to-valley ratio locking 
together is less than 4% of the total computation time of the 
original front-end (FE2.0) executable. HD adds about 20% 
more computational time. These measurements only count the 
front-end computation time, excluding the disk I/O time.  

The computational load of VFR is higher than the other 
algorithms and depends on the number of frames classified as 
speech in an utterance. A delay equivalent to the duration of 
speech segments is introduced. The threshold for frame 
selection is computed from the inter-frame MFCC distance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Block diagram of the front-end processing for 

clean training. 
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Percentage
Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Overall Improvement

Clean 98.62 98.31 98.42 98.49 98.46 98.62 98.31 98.42 98.49 98.46 98.28 98.04 98.16 98.40 -66.76%
20 dB 96.68 97.25 97.20 96.76 96.97 97.18 96.95 97.32 97.50 97.24 94.87 95.74 95.31 96.75 32.00%
15 dB 94.50 96.22 95.65 94.60 95.24 95.64 95.71 95.85 95.77 95.74 91.19 93.14 92.17 94.83 56.17%
10 dB 89.62 92.90 91.38 87.87 90.44 91.25 91.14 91.02 90.65 91.02 82.04 85.19 83.62 89.31 64.52%
5 dB 76.33 83.01 81.93 75.10 79.09 75.47 79.81 80.55 77.23 78.27 59.66 69.26 64.46 75.84 58.36%
0 dB 47.74 53.90 61.50 47.58 52.68 44.67 55.86 58.51 56.56 53.90 28.49 39.69 34.09 49.45 38.20%
-5dB 19.56 19.01 23.65 17.00 19.81 12.25 22.94 22.49 22.93 20.15 10.29 14.90 12.60 18.50 10.80%
Average 80.97 84.66 85.53 80.38 82.89 80.84 83.89 84.65 83.54 83.23 71.25 76.60 73.93 81.23

37.65% 69.38% 63.28% 43.31% 55.73% 59.59% 58.15% 67.17% 62.91% 62.11% 15.03% 30.95% 23.00% 53.01%

Aurora 2 Clean Training - Results
A B C

 
 

Table 4.1: Clean training results on Aurora 2 database using all four techniques mentioned in this paper. 
 

Percen tage
S u bw ay B a bb le C a r E x h ib itio n A v erage R e stauran t S tree t A irpo rt S ta tio n A v erage S u bw ay M S tree t M A v erage O verall Im provem ent

C le an 98 .62 98 .70 98 .75 98 .98 98 .76 98 .62 98 .70 98 .75 98 .98 98 .76 98 .56 98 .55 98 .56 98 .72 12 .67%
20  dB 98 .22 98 .04 98 .09 98 .24 98 .15 98 .22 98 .25 98 .18 98 .61 98 .32 97 .30 97 .58 97 .44 98 .07 25 .74%
15  dB 96 .75 97 .19 97 .67 97 .19 97 .20 96 .78 96 .98 97 .49 97 .35 97 .15 95 .61 96 .28 95 .95 96 .93 15 .33%
10  dB 94 .32 95 .28 94 .96 93 .83 94 .60 94 .63 94 .77 94 .99 95 .68 95 .02 91 .46 92 .47 91 .97 94 .24 5.15%
5 d B 89 .68 89 .69 88 .25 84 .97 88 .15 87 .66 88 .09 88 .37 87 .44 87 .89 79 .80 80 .96 80 .38 86 .49 6.87%
0 d B 73 .26 69 .17 64 .57 65 .01 68 .00 66 .50 68 .95 72 .11 65 .69 68 .31 46 .91 50 .73 48 .82 64 .29 13 .48%
-5 dB 31 .62 33 .98 22 .28 24 .31 28 .05 31 .99 30 .65 35 .52 25 .70 30 .97 19 .25 22 .07 20 .66 27 .74 4.39%
A v erage 90 .45 89 .87 88 .71 87 .85 89 .22 88 .76 89 .41 90 .23 88 .95 89 .34 82 .22 83 .60 82 .91 88 .00

15 .03% 15.97% 16.21% -1 .52% 11.52% 23.04% 18.28% 20.93% 26.31% 22.34% -6 .14% -4 .50% -5 .34%

A B C
Aurora 2 Multicondition Training - Results

11.86%  
 

Table 2: Multicondition training results on Aurora 2 database, only harmonic demodulated and VFR are used in computing MFCCs. 
 

5. Recognition results 

Recognition experiments were performed with scripts 
included in the Aurora 2 CD, and with HTK 2.2. Training 
follows the steps specified in [1]. The four techniques were 
combined to produce the front-end for ASR as shown in 
Figure 5. Tables 1 and 2 show the results (word accuracy) for 
the clean  and multi-condition training, respectively, when 
tested with sets A, B, and C at seven SNRs. Improvements in 
error reduction, when compared to the reference results with 
MFCCs, are shown in the last row and rightmost column in 
each table.  

As Table 1 shows, the methods mentioned in this paper 
reduce the overall error rate by 53.01%. Error reductions are 
55.7%, 62.1% and 23% for Sets A, B, and C, respectively. 

VFR has high computational complexity. If VFR is not 
used in combination with the other algorithms, the overall 
error reduction is 48.82%. Error reductions are 52.8% for Set 
A, 55.07% for Set B, and 23.4% for Set C.  

As shown in Table 1, the algorithms degrade slightly the 
performance of the clean condition (from 99% to 98.4%). But 
for all other SNRs the performance is improved significantly. 
Error reduction is best with babble (70%), airport (68%), car 
(63%), and train station (63%) background noise.  

Most of the techniques reported in this paper (PKISO, 
peak-to-valley ratio locking, and HD) aim at reducing the 
difference of the means between clean and noisy speech 
spectra. For the multicondition training, the mean shift is not 
a problem.  

HD removes harmonically related information, which is 
not perceptually important. This helps in the multicondition 
training experiment. The overall error rate reduction with HD 
for the multicondition training is 5.2%. Error reductions are 
5.3%, 8.8% ¨C1.5% for Sets A, B, and C, respectively. The 
other techniques do not help in the multicondition training 
experiment. Half-wave rectification in the peak isolation 
algorithm appears to be harmful in the matched condition 

because information on the valleys is removed. Peak-to-valley 
ratio locking also removes meaningful information on the 
height of the log spectral peak and hence is harmful to the 
matched training condition. VFR captures dynamic spectral 
changes and helps in the multicondition training. 

Table 2 shows the results in multicondition training with 
HD, VFR and RASTA. The error rate reduction are: 11.52%, 
22.34%, and ¨C5.34% for Sets A, B, and C, respectively. The 
overall error reduction is 11.86%.  

In summary, compared with the results in the previously 
submitted Eurospeech paper, there are two changes which 
improved ASR results. Voicing detection is added to speech 
classification, and VFR is applied on each speech segment 
instead of the whole utterance. By using the new speech 
detection technique, the overall error rate reduction for clean 
training is improved from 40.5% in the previous paper to 
48.8% here using all the techniques without VFR, and to 
53.01% with VFR. For the multicondition training experiment 
the overall error rate reduction is improved from 0.95% to 
5.2% using only HD with the new speech detection technique, 
and to 11.86% by using HD, VFR and RASTA together. 
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