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Abstract

In this paper we propose a new equivalence relation for dynamical and control
systems called bisimulation. As the name implies this definition is inspired by the
fundamental notion of bisimulation introduced by R. Milner for labeled transition
systems. It is however, more subtle than its namesake in concurrency theory, mainly
due to the fact that here, one deals with relations on manifolds. We further show
that the bisimulation relations for dynamical and control systems defined in this
paper are captured by the notion of abstract bisimulation of Joyal, Nielsen and
Winskel (JNW). This result not only shows that our equivalence notion is on the
right track, but also confirms that the abstract bisimulation of JNW is general
enough to capture equivalence notions in the domain of continuous systems. We
believe that the unification of the bisimulation relation for labeled transition systems
and dynamical systems under the umbrella of abstract bisimulation, as achieved in
this work, is a first step towards a unified approach to modeling of and reasoning
about the dynamics of discrete and continuous structures in computer science and
control theory.

1 Introduction

In the face of growing complexity of dynamical systems, various methods of
complexity reduction are crucial to the analysis and design of such systems.
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Hence, the problem of equivalence of systems is of great importance to systems
and control theory [20].

In the computer science community, and in particular in the field of concur-
rency theory, researchers have been working on various models and numerous
equivalence notions for these models. Among these, process algebras and the
notion of bisimulation are by now well established [13]. Category theory has
been successfully used to understand and compare the multitude of models
for concurrency by Winskel and Nielsen [22]. Related efforts include the cat-
egorically inspired framework for comparing models of computation in [12].

In [6], Joyal, Nielsen and Winskel proposed the notion of span of open maps
in an attempt to understand the various equivalence notions for concurrency
in an abstract categorical setting. They also showed that this abstract defi-
nition of bisimilarity captures the strong bisimulation relation of Milner [13].
Subsequently in [3] it was shown that abstract bisimilarity can also capture
Hennessy’s testing equivalences [4], Milner and Sangiorgi’s barbed bisimula-
tion [14] and Larsen and Skou’s probabilistic bisimulation [11]. More recently,
in [2], Blute et al. formulated a bisimulation relation for Markov processes
on Polish spaces in this categorical framework, extending the work of Larsen
and Skou. All this evidence further attests to the suitability of this abstract
definition as an appropriate venue for formulation of bisimilarity concepts for
dynamical, control, and hybrid systems. Other attempts to formulate the no-
tion of bisimulation in categorical language, include the coalgebraic approach
of [5,17].

In this paper we propose a new equivalence relation for dynamical and
control systems (see also [15,19]) that we call bisimulation and further show
that this equivalence relation is captured by the abstract bisimulation relation
of JNW [6]. This extends the latter abstract framework to the continuous
domains in control and systems theory. In this paper, our main focus, besides
introducing a new equivalence relation for dynamical and control systems, is
to establish a unification result for bisimulation of discrete and continuous
systems. We postpone the discussion of the important issue of computational
aspects of bisimulation for dynamical systems to subsequent work.

Our work also demonstrates the usefulness of a categorical language in
transferring important and nontrivial notions between the fields of systems
and control theory with a rich analytic [9], algebraic [8] and geometric struc-
ture [7], and automata-based models which are the main models in computer
science. This is especially important for understanding the correct notions of
equivalences for hybrid systems, a subject of our current research.

The rest of the paper is organized as follows: In Section 2, we briefly review
the abstract formulation of the notion of bisimilarity due to JNW. Section
3, then provides the main application of this method in concurrency theory
and recalls that the abstract bisimilarity captures Milner’s strong bisimulation
relation. The main theorems and results of our paper are contained in Sections
4 and 5 where we introduce and discuss bisimulation relations for dynamical

2



Haghverdi, Tabuada and Pappas

and control systems respectively. We include in an Appendix the proofs of the
results in Section 4, and leave the results of Section 5 without proof, as they
follow the same line of reasoning as in Section 4.

2 Abstract Bisimulation

The notion of bisimilarity, as defined in [13], has turned out to be one of the
most fundamental notions of operational equivalences in the field of process
algebras. This has inspired a great amount of research on various notions of
bisimulation for a variety of concurrency models. In order to unify most of
these notions, Joyal, Nielson and Winskel gave in [6] an abstract formulation
of bisimulation in a category theoretical setting.

The approach of [6] introduces a category of models where the objects are
the systems in question, and the morphisms are simulations. More precisely,
it consists of the following components:

• Model Category: The category M of models with objects the systems
being studied, and morphisms f : X → Y in M, that should be thought of
as a simulation of system X in system Y .

• Path Category: The category P, called the path category, where P is a
subcategory of M of path objects, with morphisms expressing how they can
be extended.

The path category will serve as an abstract notion of time. Since the path
category P is a subcategory of M of models, time is thus modeled as a (pos-
sibly trivial) system within the same category M of models. This allows the
unification of notions of time across discrete and continuous domains.

Definition 2.1 A path or trajectory in an object X of M is a morphism
p : P → X in M where P is an object in P.

Let f : X → Y be a morphism in M, and p : P → X a path in X, then
clearly f ◦ p : P → Y is a path in Y . Note that a path is a morphism in M
and so is the map f and hence f ◦ p is a map in M. This is the sense in which
Y simulates X; any path (trajectory) p in X is matched by the path f ◦ p in
Y .

The abstract notion of bisimulation in [6] demands a slightly stronger ver-
sion of simulation as follows: Let m : P → Q be a morphism in P and let the
diagram

P
p- X

Q

m
? q - Y

f
?

commute in M, i.e., the path f ◦ p in Y can be extended via m to a path q in
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Y . Then we require that there exist r : Q → X such that in the diagram

P
p- X

�
�

�r �

Q

m
? q - Y

f
?

both triangles commute. Note that this means that the path p can be extended
via m to a path r in X which matches q. In this case, we say that f : X → Y
is P-open. It can be shown that P-open maps form a subcategory of M.

Proposition 2.2 Let M be a category and P be the subcategory of path ob-
jects. Then, P-open maps in M form a subcategory of M.

The definition of P-open maps leads to the notion of P-bisimilarity. We
say that objects X1 and X2 of M are P-bisimilar, denoted X1 ∼P X2 iff there
is a span of P-open maps as shown below:

X

	�
�

�f1 @
@

@
f2

R

X1 X2

The relation of P-bisimilarity between objects is clearly reflexive (identities
are P-open) and symmetric. It is also transitive provided the model category
M has pullbacks, due to the fact that pullbacks of P-open morphisms are P-
open (see [6] for a proof). Indeed suppose X1 ∼P X2 and X2 ∼P X3, then
X1 ∼P X3 as can be seen from the following diagram.

Y

	�
�

�g′

1 @
@

@
f ′

2
R

X X ′

	�
�

�f1 @
@

@
f2

R 	�
�

�g1 @
@

@
g2

R

X1 X2 X3

Note that given X1 and X2 in M, if there exists a P-open morphism f : X1 →
X2, or a P-open morphism g : X2 → X1, then X1 and X2 are P-bisimilar.
The spans are (X1, idX1, f) and (X2, g, idX2) respectively.

We will see in the upcoming sections below that not all model categories
that we consider have pullbacks of all morphisms, in particular the category
of smooth manifolds and smooth mappings does not have pullbacks of all
morphisms. We discuss the solution to this problem in the sections below.
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3 Bisimulations of Transition Systems

We briefly illustrate how the framework described in Section 2 results in the
usual notion of bisimulation in the sense of Milner [13], for details see [6]. The
definitions of transition systems are slightly adapted from [22].

Definition 3.1 A transition system T = (S, i, L,−→) consists of the follow-
ing:

• A set S of states with a distinguished state i ∈ S called the initial state.

• A set L of labels

• A ternary relation −→⊆ S × L × S

We form the model category of transition systems T with objects being
transition systems and a morphism f : T0 → T1 with T0 = (S0, i0, L0,−→0)
and T1 = (S1, i1, L1,−→1) given by f = (σ, λ) where σ : S0 → S1 with
σ(i0) = i1 and λ : L0 → L1 a partial function such that

(i) (s, a, s′) ∈−→0 and λ(a) defined, implies (σ(s), λ(a), σ(s′)) ∈−→1 and

(ii) (s, a, s′) ∈−→0 and λ(a) undefined, implies σ(s) = σ(s′).

In order to discuss the usual bisimilarity of transition systems we need to
restrict our model category to the subcategory TL of transition systems with
the same label set L and morphisms of the form f = (σ, idL) which preserve
all the labels. The category TL has both binary products and pullbacks.

We define the path category BranL as the full subcategory of TL of all
synchronization trees with a single finite branch (possibly empty). Now a path
in a transition system T in TL is a morphism p : P → T in TL, with P an
object in BranL. Clearly this simply means that we look at the traces of the
transition system. The BranL-open maps in TL are characterized as follows:

Proposition 3.2 The BranL-open morphisms of TL are morphisms (σ, idL) :
T → T ′ with T, T ′ ∈ TL such that:

If σ(s)
a

−→ s′ in T ′, then there exists u ∈ S, s
a

−→ u in T and σ(u) = s′.

We now recall the strong notion of bisimulation introduced in [13]. Let T0 and
T1 be two transition systems in TL, as above.

Definition 3.3 A binary relation R ⊆ S0 × S1 is a strong bisimulation if
(s, t) ∈ R implies, for all α ∈ L:

(i) Whenever s
α

−→ s′ then, there is t′, t
α

−→ t′ and (s′, t′) ∈ R,

(ii) Whenever t
α

−→ t′ then, there is s′, s
α

−→ s′ and (s′, t′) ∈ R.

Transition systems T0 and T1 are called strongly bisimilar, written T0 ∼ T1, if
(i0, i1) ∈ R for some strong bisimulation relation R. The following theorem,
proven in [6], shows that the abstract notion of BranL-bisimilarity coincides
with the traditional strong notion of bisimulation.

Theorem 3.4 ([6]) Two transition systems (hence synchronization trees) over
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the same labeling set L, are BranL-bisimilar iff they are strongly bisimilar in
the sense of Milner [13].

In the next sections, we consider the notion of P-bisimilarity in the cate-
gories of dynamical and control systems.

4 Dynamical Systems

A dynamical system or vector field on a manifold M is a smooth section of
the tangent bundle on M , that is a smooth map X : M → TM such that
πMX = idM where πM : TM → M is the canonical projection of the tangent
bundle onto the manifold M .

We proceed to define the model category Dyn of dynamical systems. The
objects in Dyn are dynamical systems X : M → TM where M is smooth
manifold. A morphism in Dyn from object X : M → TM to object Y : N →
TN is a smooth map f : M → N such that

M
f - N

TM

X
? Tf- TN

Y
?

commutes. Thus related systems are said to be f -related [10]. The identity
morphisms and composition are induced by those in the category Man of
smooth manifolds and smooth mappings.

We proceed to define the path category P as the full subcategory of Dyn
with objects P : I → TI, where P (t) = (t, 1) and I is an open interval of R

containing the origin. Note that I is a manifold since it is an open set and
it is also parallelizable (trivializable), that is TI ∼= I × R. Observe that P
represents the differential equation dx(t)/dt = 1 modeling a clock running on
the interval I at unit rate. Also, any other choice P ′(t) = (t, c) with 0 6= c ∈ R

instead of P (t) = (t, 1) is isomorphic to P via f : P → P ′ with f(t) = tc.

Definition 4.1 A path or trajectory in a dynamical system X : M → TM is
a morphism c : P → X in Dyn, where P is an object in P. More explicitly, a
path c is a map c : I → M such that the following diagram commutes.

I
c- M

TI

P
? Tc- TM

X
?

This means that a path in X is a smooth map c : I → M for some open
interval I such that c′(t) = X(c(t)) for all t ∈ I. Thus, a path in X is just an
integral curve in M . Observe that given a path c in X, and f : X → Y , then
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f ◦ c is a path in Y . This is the sense of Y simulating or over-approximating
X.

The next issue to understand is the meaning of path extension. Suppose
P : I → TI and Q : J → TJ are objects in P with I, J open intervals in R

containing the origin, and m : P → Q. Then, m is a smooth map from I to
J , such that m′(t) = 1 or m(t) = t − t0 for some t0 ∈ I and for all t ∈ I.

We now introduce the following notation: let φX(x1, x2, t) denote the pred-
icate that system X evolves from state x1 to state x2 in time t. Hence,
φX(x1, x2, t) is true iff there is an open interval I in R containing the origin
and an integral curve c : I → M such that c(0) = x1 and c(t) = x2. With
this predicate, the characterization of P-open maps is given by the following
proposition.

Proposition 4.2 Given the dynamical systems X on M and Y on N , f :
X → Y is P-open if and only if

For any state x1 ∈ M of X and t ∈ R, if φY (f(x1), y2, t), then there exists
x2 ∈ M such that φX(x1, x2, t) where y2 = f(x2).

In the particular case where vector fields are complete, that is solutions
exist for all time, the previous proposition takes the following form.

Proposition 4.3 Let X and Y on manifolds M and N respectively be com-
plete vector fields. Then any f : X → Y is P-open.

Recall that by the general definition in Section 2, two objects X1 and X2

in the model category are bisimilar if there is a span of P-open maps, that
is an object X with P-open maps f1 : X → X1 and f2 : X → X2. The
bisimulation relation has to be an equivalence relation and for that purpose
one requires the existence of pullbacks in the underlying model category. As
is well known in differential geometry [1,10], in Man arbitrary pullbacks do
not exist. Structure needs to be imposed on the maps in order to guarantee
that pullbacks exist.

Definition 4.4 Given smooth manifolds M and N , a smooth map f : M →
N and x ∈ M , let Txf : TxM → Tf(x)N be the derivative of f . We say that:

(i) f is an immersion at x if and only if the map Txf is injective.

(ii) f is a submersion at x if and only if the map Txf is surjective.

Definition 4.5 Let M, N be smooth manifolds and f : M → N be a smooth
mapping and P be a submanifold of N . The map f is transversal on P iff for
each x ∈ M such that f(x) lies in P , the composite

Tx(M)
Txf
−→ Tf(x)(N) → Tf(x)(N)/Tf(x)(P )

is surjective.

In particular, if for every x ∈ M , Txf is surjective, that is, if f is a submersion
on M , then the composite in the definition above will be surjective and hence
every submersion f : M → N is transversal on every submanifold P of N .
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Definition 4.6 Given smooth maps f : M → P and g : N → P , we say
that f and g are transversal if f × g : M × N → P × P is transversal on the
diagonal subset ∆P of P × P .

Proposition 4.7 ([1]) Let M and N be smooth manifolds and f : M → N
a smooth map, then graph(f) is a smooth submanifold of M × N .

Proposition 4.8 The category Man has transversal pullbacks.

Obviously transversality is a sufficient condition and hence there are other
pullbacks in the category Man. In view of this proposition we have the
following result.

Proposition 4.9 Pullback of submersions exists in Man. Moreover, the pull-
back of any submersion is a submersion.

After all these preliminary results in the category Man of manifolds, we
can finally get to our desired goal in the category of dynamical systems.

Proposition 4.10 The category Dyn has binary products and transversal
pullbacks.

In this case, as we have seen above, we can only guarantee the transversal
pullbacks. Hence we modify the definition for P-bisimulation to ensure that
it becomes an equivalence relation. That is we require that there be a span of
P-open submersions.

Definition 4.11 We say that two dynamical systems X1 and X2 are P-
bisimilar if there exists a span of P-open submersions (Z, f1 : Z → X1, f2 :
Z → X2).

Note that if there exists a P-open submersion f : X1 → X2, or a P-
open submersion g : X2 → X1, then X1 and X2 are P-bisimilar. The spans
are (X1, idX1, f) and (X2, g, idX2) respectively. The existence of transversal
pullbacks in Dyn allows us to show the following result.

Proposition 4.12 The relation of P-bisimilarity is an equivalence relation
on the class of all dynamical systems.

We proceed with the definition of bisimulation for dynamical systems, for this
we need a notion of a well-behaved relation. We will show that bisimulation
and P-bisimulation coincide. The following definition which seems to be new,
is inspired by a relevant definition for equivalence relations on manifolds [1,18].

Definition 4.13 Let M and N be smooth manifolds and R be a relation
from M to N , that is to say R ⊆ M × N . We say that R is regular iff

• R is a smooth submanifold of M × N ,

• the projection maps π1 : R → M and π2 : R → N are submersions.

Proposition 4.14 Let X, Y and Z be smooth manifolds and R ⊆ X ×Y and
S ⊆ Y × Z be regular relations. Then S ◦ R ⊆ X × Z is a regular relation.
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Definition 4.15 Given two dynamical systems X on M and Y on N , we say
that a relation R ⊆ M × N is a bisimulation relation iff

(i) R is a regular relation,

(ii) for all (x, y) ∈ M × N and t ∈ R, (x, y) ∈ R implies
• if φX(x, x′, t), there exists y′ ∈ N such that φY (y, y′, t) and (x′, y′) ∈ R
• if φY (y, y′, t), there exists x′ ∈ M such that φX(x, x′, t) and (x′, y′) ∈ R

We say that two dynamical systems X and Y on manifolds M and N
respectively are bisimilar if there exists a bisimulation relation R ⊆ M × N
such that for all x ∈ M there exists a y ∈ N with (x, y) ∈ R and vice-versa.

Theorem 4.16 Given dynamical systems X and Y on manifolds M and N
respectively, X and Y are bisimilar iff they are P-bisimilar, i.e. X ∼P Y .

The above theorem shows that the abstract notion of P-bisimilarity co-
incides with the expected and natural notion of bisimulation for dynamical
systems. We now turn our attention to control systems.

5 Bisimulations of Control Systems

We define the model category Con as follows. Objects of Con are control
systems over manifolds, a control system X over a manifold M is given by
a pair (UM , XM) where XM : M × UM → TM is a smooth map such that
πMXM = π1 with πM the canonical tangent bundle projection. Here UM is a
smooth manifold called the input space. A morphism in Con from a control
system X = (UM , XM) to Y = (UN , YN) is given by a pair (φ1, φ2) of smooth
maps with φ1 : M × UM → N × UN and φ2 : M → N , such that

M × UM

φ1- N × UN M × UM

φ1- N × UN

TM

XM

? Tφ2 - TN

YN

?
M

π1
? φ2 - N

π1
?

both commute. Thus related control systems are said to be (φ1, φ2)-related
[16]. Note that since π1 is a surjective map, φ2 is uniquely determined given
φ1. The identity morphism idX : X → X for an object X in Con is given
by idX = (idM×UM

, idM). Given f : X → Y and g : Y → Z, the composite
gf : X → Z is given by gf = (g1f1, g2f2).

The path category P is defined as the full subcategory of Con with objects
control systems (UI , PI) where UI is the singleton space with trivial topology
and thus I × UI

∼= I. Hence PI : I → TI with P (t) = (t, 1) for all t ∈ I. I
is an open interval of R containing the origin. Thus (I, PI) is a well defined
control system.

Definition 5.1 A path in a control system X = (UM , XM) is then a morphism

9



Haghverdi, Tabuada and Pappas

c = (c1, c2) in Con with c1 : I → M × UM and c2 : I → M such that

I
c1- M × UM I

c1- M × UM

TI

PI

? Tc2 - TM

XM

?
I

idI

? c2 - M

π1
?

commute.

This means that a path in X is a pair of smooth maps c1 : I → M × UM and
c2 : I → M for some open interval I such that c′2(t) = X(c2(t), u(t)) for all
t ∈ I, where u(t) = π2c1(t). Let (I, PI) and (J, QJ) be two path objects in P
and m = (m1, m2) : P → Q be a path extension. Then from the diagram on
the right above we get that m1 = m2 : I → J and then the diagram on the
left coincides with the condition we had for dynamical systems. Thus a path
extension m = (m1, m2) is of the form m1 = m2 : I → J , m1(t) = t − t0 for
t0 ∈ I and for all t ∈ I.

Proposition 5.2 The category Con has binary products and transversal pull-
backs.

We introduce the following notation: let φX(x1, x2, t) denote the predicate
that system X = (UM , XM) evolves from state x1 to state x2 in time t, under
some input in UM . Hence, φX(x1, x2, t) is true iff there is an open interval
I of R containing the origin, a morphism c = (c1, c2) : (UI , PI) → X such
that c2(0) = x1 and c2(t) = x2. The input deriving the system is given by
π2c1 : I → UM . Similarly to the case of dynamical systems, we characterize
the P-open maps as follows.

Proposition 5.3 Given the control systems X = (M, XM) and Y = (N, YN),
f : X → Y is P-open iff

For any state x1 ∈ M of X and t ∈ R, if φY (f(x1), y2, t), then there exists
x2 ∈ M such that φX(x1, x2, t) where y2 = f(x2).

Definition 5.4 We say that two control systems X1 and X2 are P-bisimilar
if there exists a span of P-open submersions (Z, f1 : Z → X1, f2 : Z → X2).

Proposition 5.5 The relation of P-bisimilarity is an equivalence relation on
the class of all control systems.

We define the bisimulation relation for control systems, similarly to the
case of dynamical systems.

Definition 5.6 Given two control systems X = (UM , XM) and Y = (UN , YN),
we say that a relation R ⊆ M × N is a bisimulation relation iff

(i) R is a regular relation,

(ii) for all (x, y) ∈ M × N and t ∈ R, (x, y) ∈ R implies
• if φX(x, x′, t), there exists y′ ∈ N such that φY (y, y′, t) and (x′, y′) ∈ R,
• if φY (y, y′, t), there exists x′ ∈ M such that φX(x, x′, t) and (x′, y′) ∈ R.
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We say that two control systems X and Y as above are bisimilar if there
exists a bisimulation relation R ⊆ M ×N such that for all x ∈ M there exists
a y ∈ N with (x, y) ∈ R and vice-versa.

Theorem 5.7 Given control systems X = (UM , XM) and Y = (UN , YN), X
and Y are bisimilar if and only if they are P-bisimilar, i.e. X ∼P Y .

The above theorem, shows how the categorical notion of bisimulation de-
scribed in Section 2, also captures the expected notion of bisimulation for
control systems.

6 Conclusions and Future Work

In this paper we propose a new equivalence notion for dynamical and control
systems that we call bisimulation, we also prove that this definition is captured
in both cases (dynamical and control systems) by the abstract bisimulation
of JNW. As a natural extension of the present work, currently we are study-
ing the formulation of bisimulation relation for hybrid dynamical systems and
algebraic characterisations for bisimilarity that can lead to efficient compu-
tational methods. The abstract bisimilarity is also well connected with logic
and game characterisations of bisimulation and presheaf semantics in the case
of concurrency models [21]. Currently ongoing work includes the study and
development of similar connections for dynamical, control and hybrid systems.
In this way, we hope to get a natural specification logic for the description
of properties of such systems. We hope that the present work can provide a
framework general enough, thanks to category theoretical tools, in which to
study a unified approach to the dynamics of discrete and continuous systems.
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A Proofs

Proof. (Proposition 2.2.) Let X be an object in M, we first show that
idX : X → X is a P-open map. Let p : P → X and q : Q → X and m :
P → Q, where P and Q are path objects in P. Assume also that idXp = qm.
Then let r = q : Q → X: idXr = idXq = q and qm = p. Now suppose,
f : X → Y and g : Y → Z are P-open maps, let p : P → X and q : Q → Z,
and m : P → Q. Also assume that (gf)p = qm. As g : Y → Z is a P-open
map then there exists an r : Q → Y such that the triangles in the following
diagram commute:

P
f ◦ p- Y

�
�

�r �

Q

m
? q - Z

g
?

and as f : X → Y is P-open, there exists a map s : Q → X making the
triangles in the following diagram commute:

P
p- X

�
�

�s �

Q

m
? r - Y

f
?

Now (gf)s = g(fs) = gr = q, using the second and the first diagrams for the
last two equalities respectively. 2

Proof. (Proposition 4.2.) Suppose f : X → Y is a P-open map and
φY (f(x1), y2, t). Then there exists a path d1 : J1 → N such that d1(0) = f(x1)
and d1(t) = y2. Then, by the existence and uniqueness theorem for vector
fields there exists a path d : J → N with J maximal such that d(0) = f(x1)
and thus J1 ⊆ J and d1(t) = d(t) for all t ∈ J1. Hence we have a path
d : J → N such that d(0) = f(x1) and d(t) = d1(t) = y2. On the other hand,
there is a path c : I → M with c(0) = x1 for some open interval I of R. Thus
fc(0) = f(x1). By maximality, I ⊆ J and fc(t) = d(t) for all t ∈ I. Thus the
following diagram (with i the inclusion map) commutes:

I
c- M

J

i
? d- N

f
?

The P-openness of f , then implies that there exists r : J → M such that
ri = c and fr = d. Hence we have ri(0) = c(0) = x1 and fr(t) = d(t) = y2.
Let x2 = r(t), then clearly we have established φX(x1, x2, t).
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Conversely, suppose that the condition of Proposition 4.2 holds, and given
the path objects P and Q and m : P → Q, with p : P → X and q : Q → Y ,
fp = qm holds. Note that as was observed earlier with P : I → TI and
Q : J → TJ , m(t) = t − t0 for some t0 ∈ I. Consider the point p(t0) ∈ M , by
the existence and uniqueness theorem for vector fields there exists an integral
curve r̃ : Ĩ → M with Ĩ maximal with r̃(0) = p(t0). Suppose that there
exists a t ∈ J \ Ĩ, then as q is a Dyn-morphism, we have φY (q(0), q(t), t),
but φY (q(0), q(t), t) = φY (q(m(t0)), q(t), t) = φY (f(p(t0)), q(t), t) where the
latter equality follows from assumption. Hence, there exists a point x ∈ M
such that φX(p(t0), x, t) such that f(x) = q(t). Hence there exists an integral
curve c : Ic → M with c(0) = p(t0) and c(t) = x, and t ∈ Ic \ Ĩ contradicting
the maximality of Ĩ. Thus J ⊆ Ĩ. Now define r by r = r̃|J . Clearly r is a
Dyn-morphism. Now, fr(0) = fp(t0) = qm(t0) = q(0) and hence fr = q.
Also, rm(t0) = r(0) = p(t0) and hence rm = p.

2

Proof. (Proposition 4.3.) Note that for complete vector fields any integral
curve is defined on the whole of R. Suppose p : I → M and q : J → N are
paths and that fp = qm. Recall that m : P → Q is given by m(t) = t − t0
for some t0 ∈ I. Consider the point p(t0) ∈ M , then by the existence and
uniqueness theorem for vector fields there exists an integral curve d : R → M
such that d(0) = p(t0), define r = d|J : J → M . Clearly r is a Dyn-
morphism. Now, fr(0) = fp(t0) = qm(t0) = q(0) and hence fr = q. Similarly,
rm(t0) = r(0) = p(t0) and hence rm = p.

2

Proof. (Proposition 4.8.) Suppose M, N, P are smooth manifolds and f1 :
M → P and f2 : N → P are smooth transversal maps. Form the fiber product
of M and N on P , denoted M×P N = {(x, y) ∈ M×N | f1(x) = f2(y)}. As f1

and f2 are transversal, (f1 × f2)
−1∆P is a submanifold of M ×N , smoothness

is induced by the differential structure of M × N [10]. The rest of the proof
consists of checking the universal property of the pullback which follows from
the set theoretical construction. 2

Proof. (Proposition 4.9.) First note that the transversality condition given
in the paper for a given f1 : M → P and f2 : N → P is equivalent to the
following condition: for any p ∈ P such that p = f1(x) = f2(y) for some x ∈ M
and y ∈ N , im(Txf1) + im(Tyf2) = TpP [10]. In other words, the tangent
spaces on the left together must span the whole of TpP . Now given that f1

and f2 are submersions we conclude that im(Txf1) = im(Tyf2) = TpP for
any x ∈ M and y ∈ N and hence transversality follows. To prove the second
statement, recall that the pullback morphisms are projections restricted to
M ×P N , let g1 : M ×P N → N be the pullback of f1 (see the diagram below),
Tg1 : T (M ×P N) ∼= TM ×TP TN → TN . Given any (x, y) ∈ M ×P N ,
T(x,y)g1 : TxM ×Tf1(x)P TyN → TyN is surjective as f1 is a submersion. Hence
g1 is a submersion.
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M ×P N
g1- N

M

g2
? f1- P

f2
?

2

Proof. (Proposition 4.10.) Given the dynamical systems X : M → TM
and Y : N → TN , define X × Y : M × N → TM × TN ∼= T (M × N)
by (X × Y )(x, y) = (X(x), Y (y)). The projections π1 : X × Y → X and
π2 : X × Y → Y are morphisms in Dyn as can be easily seen from the
definition.

Let X, Y and Z be dynamical systems on the manifolds M, N, P respec-
tively and f1 : X → Z and f2 : Y → Z. By assumption the maps f1 : M → P
and f2 : N → P are transversal, so M ×P N is a smooth submanifold of
M × N . We define the dynamical system W : M ×P N → T (M ×P N) ∼=
TM ×TP TN , denoted X ×P Y by W = X × Y |M×P N . For this definition
to be well-defined one has to ensure that for every point (x, y) ∈ M ×P N ,
(X ×Y )(x, y) ∈ TM ×TP TN , in other words one has to show that the vector
field X × Y is tangent to the submanifold M ×P N . We proceed by proving
the equivalent statement: for any (x, y) ∈ M ×P N the flow of (x, y) along
X × Y at any time t (for which the flow is defined), denoted F lX×Y

t (x, y) is
in M ×P N .

(Z ◦ f1)(x) = (Z ◦ f2)(y), as (x, y) ∈ M ×P N

Txf1.X(x) = Tyf2.Y (y), as f1, f2 are Dyn-morphisms

(LXf1)|x = (LY f2)|y, LX denotes the Lie derivative along the vector

field X

f1(F lXt (x)) = f2(F lYt (y)), by integration

F lX×Y
t (x, y) ∈ M ×P N, by definition.

The fact that M ×P N is a pullback in the category Man implies that W is
a pullback in Dyn. 2

Proof. (Proposition 4.12.) Reflexivity follows from the fact that idX is a
P-open submersion for any dynamical system X. Symmetry is trivial. For
transitivity, suppose that X1 ∼P X2 and X2 ∼P X3. Then there exists the
spans (Z1, f1 : Z1 → X1, f2 : Z1 → X2) and (Z2 : g1 : Z2 → X2, g2 : Z2 →
X3). The pullback of f2 and g1 exist as these are submersions, denote these
pullbacks by f ′

2 and g′

1 respectively. We also know that f ′

2 and g′

1 are P-
open submersions. Moreover, composition of P-open maps is P-open and
composition of submersions is a submersion. Thus we have the span of P-
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open submersions (Z, f1g
′

1 : Z → X1, g2f
′

2 : Z → X3) where Z is the vertex of
the pullback square. 2

Proof. (Proposition 4.14.) As R and S are regular relations the following
pullback exists

R×Y S
f2- S

R

f1
? pr2- Y

pr1
?

Note that R ×Y S = {(r, s) | pr1(s) = pr2(r)} = {(x, y, y′, z) | y = y′}. Now

consider R×Y S
pr1×pr2
−→ X × Z, then S ◦R = (pr1 × pr2)(R×Y S). However,

pr1×pr2 is a submersion and hence an open map. Thus S◦R is an open subset
of X×Z and so a smooth submanifold of X×Z. Furthermore, π1 : S◦R → X

is given by R ×Y S
f1
−→ R

pr1
−→ X which is a submersion. Similarly for

π2 : S ◦ R → Z. 2

Proof. (Theorem 4.16.) Suppose that X ∼P Y and (Z, f : Z → X, g :
Z → Y ) is the span where Z : P → TP . Note that graph(f) ⊆ P × M
and graph(g) ⊆ P × N are regular relations. Consider the converse relation
graph(f) and let R = graph(g) ◦ graph(f). By the proposition above R
is regular. Let (x, y) ∈ R and φX(x, x′, t), then there exists a z ∈ P such
that (x, z) ∈ graph(f) and (z, y) ∈ graph(g), so x = f(z). As f is a P-
open map, then there exist z′ ∈ P such that φZ(z, z′, t) and f(z′) = x′, i.e.
(z′, x′) ∈ graph(f). Let y′ = g(z′), then φY (g(z), g(z′), t) = φY (y, y′, t) and
(x′, y′) ∈ R. Similarly, the other bisimilarity condition is satisfied.

Conversely, suppose that X and Y are bisimilar and R is the bisimulation
relation. As it is regular, it is a smooth manifold. Consider the dynamical
system Z : R → TR defined by Z = (X × Y )|R. Note that as in Proposition
4.10 for Z to be well defined, one has to show that X × Y is tangent to
the submanifold R. We prove: for any point (x, y) ∈ R, F lX×Y

t (x, y) =
(F lXt (x), F lYt (y)) ∈ R. Let F lXt (x) = x′, then φX(x, x′, t) and as R is a
bisimulation relation, there exists y′ such that φY (y, y′, t) and (x′, y′) ∈ R,
where y′ = F lYt (y). Also pr1 : R → M is a submersion. We need to show that
pr1 is P-open. Let φX(pr1(x, y), x′, t) = φX(x, x′, t), then there exists y′ such
that φY (y, y′, t) and (x′, y′) ∈ R, so φZ((x, y), (x′, y′), t) and pr1(x

′, y′) = x′,
so pr1 is P-open. Similarly for pr2 and hence (Z, pr1 : Z → X, pr2 : Z → Y )
is a span of P-open submersions and hence X ∼P Y . 2
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