
L. Vandenberghe EE236A (Fall 2013-14)

Lecture 4

Convexity

• convex hull

• polyhedral cone

• decomposition
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Convex combination

a convex combination of points v1, . . . , vk is a linear combination

x = θ1v1 + θ2v2 + · · ·+ θkvk

with θi ≥ 0 and
∑k

i=1
θi = 1

for k = 2, the point x is in the line segment with endpoints v1, v2

v1

v2

θ1 = 1, θ2 = 0

θ1 = 0, θ2 = 1

θ1 = 0.6, θ2 = 0.4
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Convex set

a set S is convex if it contains all convex combinations of points in S

examples

• affine sets: if Cx = d and Cy = d, then

C(θx+ (1− θ)y) = θCx+ (1− θ)Cy = d ∀θ ∈ R

• polyhedra: if Ax ≤ b and Ay ≤ b, then

A(θx+ (1− θ)y) = θAx+ (1− θ)Ay ≤ b ∀θ ∈ [0, 1]
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Convex hull and polytope

convex hull of a set S: the set of all convex combinations of points in S

notation: convS

polytope: the convex hull conv{v1, v2, . . . , vk} of a finite set of points

(the first set in the figure is an example)
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Exercise: Carathéodory’s theorem

by definition, conv(S) is the set of points x that can be expressed as

x = θ1v1 + · · ·+ θkvk with

k
∑

i=1

θi = 1, θi ≥ 0, v1, . . . , vk ∈ S

show that if S ⊆ Rn then k can be taken less than or equal to n+ 1

x

in R2, every x ∈ convS can be
written as a convex combination of 3
points in S
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solution: start from any convex decomposition of x:

[

x

1

]

=

[

v1 v2 · · · vm
1 1 · · · 1

]









θ1
θ2
...
θm









, θi ≥ 0, i = 1, . . . ,m

let P be the set of vectors θ = (θ1, . . . , θm) that satisfy these conditions

• P is a nonempty polyhedron, described in ‘standard form’ (page 3–27)

• if θ̂ ∈ P is an extreme point of P , then (from page 3–27)

rank(

[

vi1 vi2 · · · vik
1 1 · · · 1

]

= k

where {i1, . . . , ik} = {i | θ̂i > 0}

• the rank condition implies k ≤ n+ 1
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Convex cone

convex cone: a nonempty set S with the property

x1, . . . , xk ∈ S, θ1 ≥ 0, . . . , θk ≥ 0 =⇒ θ1x1 + · · ·+ θk ∈ S

• all nonnegative combinations of points in S are in S

• S is a convex set and a cone (i.e., αx ∈ S implies αx ∈ S for α ≥ 0)

examples

• subspaces

• a polyhedral cone: a set defined as

S = {x | Ax ≤ 0, Cx = 0}

(the solution of a finite system of homogeneous linear inequalities)
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Conic hull

conic hull of a set S: set of all nonnegative combinations of points in S

• also known as the cone generated by S

• notation: coneS

o o

finitely generated cone: the conic hull cone{v1, v2, . . . , vk} of a finite set
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Pointed polyhedral cone

consider a polyhedral cone K = {x ∈ Rn | Ax ≤ 0, Cx = 0}

• the lineality space is the nullspace of

[

A

C

]

• K is pointed if

[

A

C

]

has rank n

• if K is pointed, it has one extreme point (the origin)

• the one-dimensional faces are called extreme rays
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Recession cone

the recession cone of a polyhedron P = {x | Ax ≤ b, Cx = d} is

K = {y | Ay ≤ 0, Cy = 0}

(also known as the asymptotic cone of P )

• K has the same lineality space as P

• K is pointed if and only if P is pointed

• if x ∈ P then x+ y ∈ P for all y ∈ K

P

K

x 0

x + K
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Decomposition

every polyhedron P can be decomposed as

P = L+Q = L+ conv{v1, . . . , vr}+ cone{w1, . . . , ws}

• L is the lineality space

• Q is a pointed polyhedron

• v1, . . . , vr are the extreme points of Q

• w1, . . . , ws generate the extreme rays of the recession cone of Q

(we’ll skip the proof)

applications

• useful for theoretical purposes

• in general, extremely costly to compute from inequality description of P

• implicitly used by some algorithms
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