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e n optimization variables: x4, . ..
e problem data (parameters): the coefficients ¢;, a;;, b;, dij, fi

e ) ;cjxj is the cost function or objective function

Linear optimization

minimize ) c;z;

subject to Z Q55 < bz‘, 1= 1, . o

, T, (real scalars)

o Zj a;;z; < b; and Zj d;;x; = fi are inequality and equality constraints

called a linear optimization problem or linear program (LP)
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Importance

low complexity

e problems with several thousand variables, constraints routinely solved

e much larger problems (millions of variables) if problem data are sparse

e widely available software

e theoretical worst-case complexity is polynomial

wide applicability
e originally developed for applications in economics and management
e today, used in all areas of engineering, data analysis, finance, . ..

e a key tool in combinatorial optimization

extensive theory

no simple formula for solution but extensive, useful (duality) theory
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Example: open-loop control problem

single-input /single-output system (input u(¢), output y(¢) at time t)

y(t) = hou(t) + hiu(t — 1) + hou(t — 2) + hau(t —3) + - - -

output tracking problem: minimize deviation from desired output yges(?)

t:%l’?ffN 1Y(t) — Ydes(t)]

subject to input amplitude and slew rate constraints:

u@®)| < U, Ju(t+1) —u)] <5

variables: u(0), ..., u(M) (with u(t) =0 fort <0, t > M)

solution: can be formulated as an LP, hence easily solved (more later)
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example

step response (s(t) = ht + -+ + ho) and desired output:

step response Ydes(t)
1,
1 L
0
0
— 1!
0 | 100 | 200 0 | 100 | 200

amplitude and slew rate constraint on u:

lu(t)] < 1.1, lu(t) —u(t—1) <0.25
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optimal solution (computed via linear optimization)
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Example: assignment problem

e match N people to IV tasks

e each person is assigned to one task; each task assigned to one person
e cost of assigning person ¢ to task j is a;;
combinatorial formulation
N
minimize > i Ti;
1,J=1
N
subjectto Y =z =1, j=1,...,N
—
N
ZZC@jZl, ’L:l,,N
j=1
.Cl?z'jE{O,l}, ,7=1,...,N
e variable z;; = 1 if person i is assigned to task j; x;; = 0 otherwise

e V! possible assignments, i.e., too many to enumerate
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linear optimization formulation

N

minimize > i Ti;
i =1
N

subjectto > w;; =1, j=1,...
i—=1
N
Z LTij = 1, 1= 1a
j=1

e we have relaxed the constraints z;; € {0, 1}

e it can be shown that at the optimum x;; € {0,1} (see later)

e hence, can solve (this particular) combinatorial problem efficiently (via

linear optimization or specialized methods)
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Brief history

e 1940s (Dantzig, Kantorovich, Koopmans, von Neumann, . . .)

foundations, motivated by economics and logistics problems
e 1947 (Dantzig): simplex algorithm
e 1950s—60s: applications in other disciplines

e 1979 (Khachiyan): ellipsoid algorithm: more efficient (polynomial-time)
than simplex in worst case, much slower in practice

e 1984 (Karmarkar): projective (interior-point) algorithm:
polynomial-time worst-case complexity, and efficient in practice

e since 1984: variations of interior-point methods (improved complexity
or efficiency in practice), software for large-scale problems
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Tentative syllabus

e linear and piecewise-linear optimization

e polyhedral geometry

e duality

e applications

e algorithms: simplex algorithm, interior-point algorithms, decomposition
e applications in network and combinatorial optimization

e extensions: linear-fractional programming

e introduction to integer linear programming
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Vectors

vector of length n (or n-vector)

e we also use the notation = = (x1,x2,...,%y)
e x; is ith component or element (real unless specified otherwise)

e set of real n-vectors is denoted R"

special vectors (with n determined from context)

o v =0 (zero vector): z; =0,i=1,...,n
e r =1 (vector of all ones): z; =1,i=1,...,n

e x = ¢; (ith basis or unit vector): x; =1, x;, =0 for k # ¢
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Matrices

matrix of size m X n

| All A12 o Aln |
i Aml Am2 U Amn i

o A;; (ora;;) is the i,j element (or entry, coefficient)

e set of real m X n-matrices is denoted R"**"

e vectors can be viewed as matrices with one column

special matrices (with size determined from context)

o X =0 (zero matrix): X;; =0fori=1,....,m,5=1,...,n

e X = [ (identity matrix): m =n with X;; =1, X;; =0 for i # j
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Operations

e matrix transpose A’

e scalar multiplication a4

e addition A + B and subtraction A — B of matrices of the same size
e product y = Ax of a matrix with a vector of compatible length

e product C' = AB of matrices of compatible size

e inner product of n-vectors:

:UTy =T1Y1 + "+ TnYn
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LP in inner-product notation
n
minimize ) c;x;
j=1

n
subject to Z ;5 < b;, 1=1,....m
g=1
n

dijﬂjj:fi, ’1::1,...,]?
71=1

inner-product notation

minimize ¢!z
subject to alx <b;, i=1,...,m

dfe=f, i=1,...,p

c, a;, d; are n-vectors:

C = (Cl,...,Cn>, a; — (ail,...,am), d’L:(d’Ll7
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LP in matrix notation

minimize ) c;x;

subject to Z ;5 < b;, 1=1,...

matrix notation

minimize cl'z

subject to Ax <b
Dx=f

e A is m X n-matrix with elements @;j, FOWS a’f
e D is p x n-matrix with elements d;;, rows d;

e inequality is component-wise vector inequality
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Terminology

minimize cl'z

subject to Ax <b
Dx = f

e 1 is feasible if it satisfies the constraints Ax < b and Dx = f
e feasible set is set of all feasible points

e 2* is optimal if it is feasible and ¢’ z* < ¢!z for all feasible x

e the optimal value of the LP is p* = ¢! 2*

T

e unbounded problem: ¢’z unbounded below on feasible set (p* = —oc0)

e infeasible probem: feasible set is empty (p* = +00)
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Vector norms

Euclidean norm

lzl| = \/23 + 23+ + 22 = VaTa

/1-norm and /.,-norm

lzlly = [waf 4 |waf + - -+ [

|lzlleo = max{|zl,[za],..., [zal}

properties (satisfied by any norm f(x))

o f(ax) = |a|f(x) (homogeneity)
e f(x+y) < f(x)+ f(y) (triangle inequality)
e f(x) > 0 (nonnegativity); f(x) =0 if only if x = 0 (definiteness)
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Cauchy-Schwarz inequality
—[l=llllyll <"y < 2|yl

e holds for all vectors x, y of the same size
o zly = ||z|||y|| iff z and y are aligned (nonnegative multiples)
T

o x'y = —|x|/||ly|l iff z and y are opposed (nonpositive multiples)

e implies many useful inequalities as special cases, for example,

n
—vnllz| <>z < Vx|
1 =1
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Angle between vectors

the angle # = /(x,y) between nonzero vectors = and y is defined as

:IzTy

6 = arccos ———— (i.e., 21y = ||z||||y|| cos #)
l[[{ly]

e we normalize @ sothat 0 <86 <=«

e relation between sign of inner product and angle

zly>01|60<
zly=01|0=
zly<0|6>

(vectors make an acute angle)

(orthogonal vectors)

N NoER N

(vectors make an obtuse angle)
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Projection

projection of z on the line defined by nonzero y: the vector ty with

t = argmin ||z — ty||
t

expression for t:

ey |z cosd

— —
lyl1° Iyl
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Hyperplanes and halfspaces

hyperplane

solution set of one linear equation with nonzero coefficient vector a

a r=>

halfspace

solution set of one linear inequality with nonzero coefficient vector a

ale <b

a 1s the normal vector
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Geometrical interpretation

G={z|a'z =0} H={x]a"z<b}

a

u = (b/llal*)a

Tu=19

e the vector u = (b/|]|a||?)a satisfies a
e z is in hyperplane G if ! (z — u) = 0 (x — u is orthogonal to a)

e 7 is in halfspace H if a’'(x —u) < 0 (angle /(z — u,a) > 7/2)
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Polyhedron
solution set of a finite number of linear inequalities

aix < by, asx < bo, ey al x < by,

aq az

as
as

ay

e intersection of a finite number of halfspaces
T

e in matrix notation: Ax < b if A is a matrix with rows a;

e can include equalities: F'x = g is equivalent to F'x < g, —Fx < —¢
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Example

1+ 22 > 1, —2x1 + 19 < 2, xr1 > 0, x2 > 0

—2£IZ‘1 + X9 = 2
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Example

0< 2 <2, 0 <2y <2, 0 <z3<2, r1+ T2 +23<5H
I3
(0,0, 2) (0,2, 2)
(1,2,2)
(2, 0’ 2) (2) 17 2)
0,2.0
(2,2,1) 2
(2,0,0 (2,2,0)
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Geometrical interpretation of LP

minimize ¢!z

subject to Az <b

T

dashed lines (hyperplanes) are level sets ¢ x = « for different «
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Example

—L] — X2

minimize

subject to 2x1 + 19 < 3

1+ 4xe <5

— X1 — I2

optimal solution is (1,1)
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