L. Vandenberghe EE236A (Fall 2013-14)

Lecture 8 Linear-fractional optimization

- linear-fractional program
- generalized linear-fractional program
- examples

Linear-fractional program

$$\begin{array}{ll} \text{minimize} & \frac{c^Tx+d}{g^Tx+h} \\ \text{subject to} & Ax \leq b \\ & g^Tx+h \geq 0 \end{array}$$

- if needed, we interpret a/0 as $a/0 = +\infty$ if a > 0, $a/0 = -\infty$ if $a \le 0$
- however, in most applications, $Ax \leq b$ implies $g^Tx + h > 0$

equivalent form (with added variable α)

minimize
$$\alpha$$
 subject to
$$c^Tx+d\leq \alpha(f^Tx+g)$$

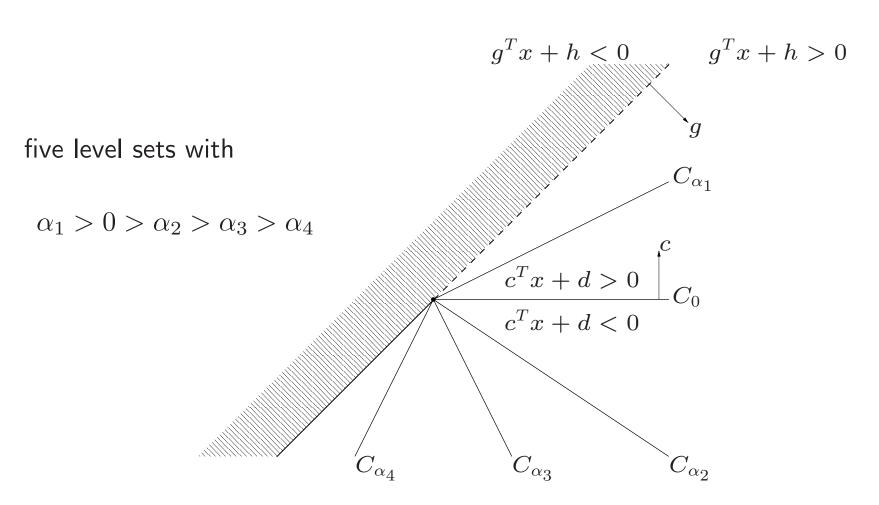
$$Ax\leq b$$

$$f^Tx+g\geq 0$$

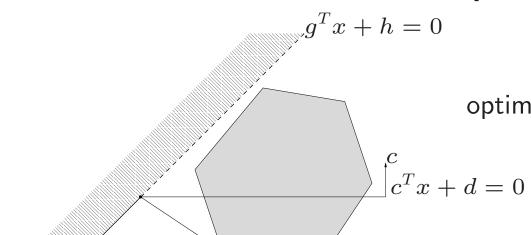
Level sets

$$C_{\alpha} = \{x \mid g^T x + h > 0, (c^T x + d)/(g^T x + h) = \alpha\}$$

= $\{x \mid g^T x + h > 0, (c - \alpha g)^T x = \alpha h - d\}$

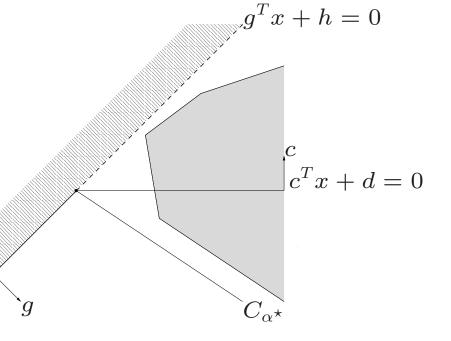


Geometrical interpretation



optimal value α^{\star} attained at x^{\star}

finite optimal value
$$\alpha^*$$
, not attained



Equivalent linear program

LFP: minimize
$$\frac{c^Tx+d}{g^Tx+h}$$
 LP: minimize
$$c^Ty+td$$
 subject to
$$Ax \leq b$$

$$g^Tx+h \geq 0$$

$$t \geq 0$$

$$Ty+td$$
 subject to
$$Ay \leq tb$$

$$g^Ty+th=1$$

we will assume that $g^Tx + h > 0$ for all $x \in P = \{x \mid Ax \le b\}$

• nonlinear change of variables maps $x \in P$ to feasible (y, t) with t > 0:

$$y = \frac{1}{g^T x + h} x, \qquad t = \frac{1}{g^T x + h}$$

- inverse transformation x = y/t maps feasible (y, t) with t > 0 to $x \in P$
- change of variables and its inverse preserve objective values:

$$(c^T x + d)/(g^T x + h) = c^T y + td$$

Interpretation of t = 0

suppose (y,t) is feasible for the LP with t=0 (i.e., $Ay \leq 0$, $g^Ty=1$)

- (y,t) does not correspond to a point $x \in P$ (x = y/t is not defined)
- ullet y can be interpreted as the direction of a half-line based at any $\hat{x} \in P$

$$\{\hat{x} + \lambda y \mid \lambda \ge 0\}$$

• this half-line is in P:

$$A(\hat{x} + \lambda y) \le b$$
, $g^T(\hat{x} + \lambda y) + h \ge 0$ for all $\lambda \ge 0$

ullet the LFP objective approaches the LP objective c^Ty asymptotically:

$$\lim_{\lambda \to \infty} \frac{c^T(\hat{x} + \lambda y) + d}{g^T(\hat{x} + \lambda y) + h} = c^T y$$

Generalized linear-fractional programming

minimize
$$\max_{i=1,...,m} \frac{c_i^T x + d_i}{f_i^T x + g_i}$$
 subject to
$$Ax \leq b$$

$$f_i^T x + g_i \geq 0, \quad i = 1, \dots, m$$

equivalent formulation (with auxiliary variable $\alpha \in \mathbf{R}$)

$$\begin{array}{ll} \text{minimize} & \alpha \\ \text{subject to} & Cx+d \leq \alpha(Fx+g) \\ & Ax \leq b \\ & Fx+g \geq 0 \end{array}$$

- ullet C and F are matrices with rows c_i^T , f_i^T
- in contrast to LFP of p. 8–2, generalized LFP is not reducible to an LP
- can be solved efficiently as a sequence of LP feasibility problems

Sublevel sets

definition: α -sublevel set of objective function is

$$S_{\alpha} = \{x \mid \max_{i=1,\dots,m} \frac{c_i^T x + d_i}{f_i^T x + g_i} \le \alpha, Fx + g \ge 0\}$$
$$= \{x \mid Cx + d \le \alpha (Fx + g), Fx + g \ge 0\}$$

(with a/0 interpreted as on page 8–2)

properties

- S_{α} is a polyhedron
- the sublevel sets S_{α} are nested: if $\alpha < \beta$ then $S_{\alpha} \subseteq S_{\beta}$:

$$\begin{cases} Cx + d \le \alpha(Fx + g) \\ Fx + g \ge 0 \end{cases} \implies Cx + d \le \beta(Fx + g)$$

Bisection algorithm

algorithm

given: interval [l,u] of width $\epsilon_0=u-l$ that contains the optimal α repeat until $u-l\leq \epsilon$:

ullet take lpha=(u+l)/2 and solve the feasibility problem

find
$$x$$
 subject to
$$Cx + d \leq \alpha(Fx + g)$$

$$Ax \leq b$$

$$Fx + g \geq 0$$

ullet if feasible, take u:=lpha; if infeasible, take l:=lpha

convergence

- ullet after each update, interval [l,u] contains optimal lpha
- width u-l is halved at each step, so #iterations = $\lceil \log_2(\epsilon_0/\epsilon) \rceil$

Von Neumann economic growth problem

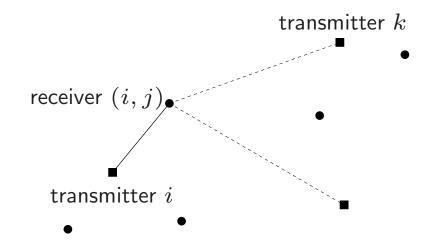
- ullet simple model of an economy with m commodities, n activities (sectors)
- $x_i(t)$ is 'intensity' of activity i in period t
- $a_i^T x(t)$: amount of commodity i consumed in period t
- $b_i^T x(t)$: amount of commodity i produced in period t

maximize growth rate of economy (variables x(t), x(t+1)):

$$\begin{array}{ll} \text{maximize} & \min_{i=1,\dots,n} x_i(t+1)/x_i(t) \\ \text{subject to} & Ax(t+1) \leq Bx(t) \\ & x(t) \geq \mathbf{1} \end{array}$$

- cost function is growth rate of sector with slowest growth rate
- a generalized linear-fractional problem

Optimal transmitter power allocation



- ullet m transmitters, mn receivers all at same frequency
- n receivers labeled (i, j), $j = 1, \ldots, n$, listen to transmitter i
- transmitters $k \neq i$ interfere at receivers (i, j)

variables: transmit powers p_i

objective: maximize worst signal to noise-plus-interference ratio

signal to noise-plus-interference ratio at receiver (i, j):

$$SINR_{ij}(p) = \frac{A_{iji}p_i}{\sum_{k \neq i} A_{ijk}p_k + N_{ij}}$$

- ullet A_{ijk} is path gain from transmitter k to receiver (i,j)
- N_{ij} is (self) noise power of receiver (i, j)

optimization problem

$$\begin{aligned} & \underset{ij}{\text{maximize}} & & \underset{ij}{\text{min}} \operatorname{SINR}_{ij}(p) \\ & \text{subject to} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

a (generalized) linear-fractional optimization problem in the variables p