L. Vandenberghe EE236A (Fall 2013-14)

Lecture 8
Linear-fractional optimization

e linear-fractional program
e generalized linear-fractional program

e examples
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Linear-fractional program

L 'z +d
minimize Tz T h
subject to Ax <b

glx+h >0

e if needed, we interpret a/0 as a/0 =+ if a >0, a/0 = - if a <0

e however, in most applications, Az < b implies g’z +h > 0

equivalent form (with added variable «)

minimize «

subject to clz+d < a(flfz+g)
Ax <b
ffz+g>0
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Level sets

(x| g'z+h>0, (cle+d)/(g'z+h) =a}
{z|g'2+h >0, (c—ag)lz=ah—d}

g’z +h <0 glz+h >0

five level sets with \\\\\\\\ Ca,

a1 > 0> a9 > a3 > a4
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Geometrical interpretation
gT:IJ +h =0
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Equivalent linear program

T d
LFP: minimize  p LP: minimize Ty + td
X
_ J subject to Ay < tb
subject to Az <b T h— 1
Te+h>0 gyrith=
g LT t>0

we will assume that g’z +h > 0 forall z € P = {x | Ax < b}

e nonlinear change of variables maps = € P to feasible (y,t) with ¢t > 0:

1 1
—
glx + B glx +h

y:

e inverse transformation = = y/t maps feasible (y,t) witht >0 to z € P

e change of variables and its inverse preserve objective values:
(clz+d)/(g'z+h)=cly+td
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Interpretation of t =0
suppose (y,t) is feasible for the LP with t = 0 (i.e., Ay <0, g7y =1)

e (y,t) does not correspond to a point x € P (x = y/t is not defined)

e 1y can be interpreted as the direction of a half-line based at any £ € P

{z+ Xy | A >0}

e this half-line is in P:

A +Xy) <b, gl (@4+Ay)+h>0 forall A>0

e the LFP objective approaches the LP objective ¢!y asymptotically:

T+ )\ d
c' (T4 Ay) + _ T,

I _
oo g1 (3 + \y) + h
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Generalized linear-fractional programming

minimize ~ max —=
i=1,....m fz x + g;

subject to Ax <b
ffe4+g; >0, i1=1,...,m

equivalent formulation (with auxiliary variable a € R)
minimize «
subject to Cz+d < a(Fz + g)

Ax <b
Fr+g>0

e C and F are matrices with rows ¢/, f
e in contrast to LFP of p. 8-2, generalized LFP is not reducible to an LP

e can be solved efficiently as a sequence of LP feasibility problems
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Sublevel sets

definition: a-sublevel set of objective function is

To 4 d.
Se = {r]| max CZTCIHL “<a, Fx+g>0}
i=1,...,m fz x + g;

= {z|Cx+d<a(Fr+g), Fxr+g >0}
(with a/0 interpreted as on page 8-2)

properties
e S, is a polyhedron
o the sublevel sets S, are nested: if « < 3 then S, C Sg:

Cr+d<oaFr+g)

Fotg>0 } — Cr+d<B(Fz+g)
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Bisection algorithm

algorithm

given: interval [[,u] of width ¢y = u — [ that contains the optimal «
repeat until ©u — [ < e€:

e take a = (u +1)/2 and solve the feasibility problem

find x

subject to Cx+d < a(Fzx+ g)
Az <b
Fr+g>0

e if feasible, take u := « if infeasible, take [ := «

convergence

e after each update, interval [I,u| contains optimal «

e width u — [ is halved at each step, so #iterations = [log,(€p/€)]
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Von Neumann economic growth problem

e simple model of an economy with m commodities, n activities (sectors)

e 1;(t) is 'intensity’ of activity ¢ in period ¢

T

e a; z(t): amount of commodity ¢ consumed in period ¢

e bl'z(t): amount of commodity i produced in period ¢

maximize growth rate of economy (variables (%), z(t + 1)):

maximize ._I{lil’l xi(t+1)/x;(t)

subject to Ax(t+ 1) < Bx(t)
xz(t) > 1

e cost function is growth rate of sector with slowest growth rate

e a generalized linear-fractional problem
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Optimal transmitter power allocation

transmitter k
-

receiver 7
\\\\\\ {

transmitter 2

e m transmitters, mn receivers all at same frequency
e n receivers labeled (¢,7), 7 = 1,...,n, listen to transmitter ¢

e transmitters k # i interfere at receivers (1, j)

variables: transmit powers p;

objective: maximize worst signal to noise-plus-interference ratio
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signal to noise-plus-interference ratio at receiver (i, j):

A; jiPi

> Aijkpr + Nyj
li

SINR;;(p)

e A, is path gain from transmitter k to receiver (i, j)

e N, is (self) noise power of receiver (i, )

optimization problem

maximize min SINR;;(p)
ij
subjectto 0 <p; < Pmax, =1,....m

a (generalized) linear-fractional optimization problem in the variables p
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