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Lecture 17

Network flow optimization

• minimum cost network flows

• total unimodularity

• examples
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Networks

network (directed graph, digraph): m nodes connected by n directed arcs

• arcs are ordered pairs (i, j) of nodes

• we assume there is at most one arc from node i to node j

• there are no loops (arcs (i, i))

arc-node incidence matrix: m× n matrix A with entries

Aij =







1 if arc j starts at node i

−1 if arc j ends at node i

0 otherwise
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
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









1 1 0 0 0 0 0 −1
−1 0 1 0 0 0 0 1
0 −1 −1 −1 1 1 0 0
0 0 0 1 0 0 −1 0
0 0 0 0 0 −1 1 0
0 0 0 0 −1 0 0 0
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




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Network flow

flow vector x ∈ Rn

• xj: flow (of material, traffic, charge, information, . . . ) through arc j

• positive if in direction of arc; negative otherwise

total flow leaving node i:

n
∑

j=1

Aijxj = (Ax)i

i

xj

Aij = −1
xk

Aik = 1
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External supply

supply vector b ∈ Rm

• bi is external supply at node i (negative bi represents external demand)

• must satisfy 1
T b = 0 (total supply = total demand)

i

xj

Aij = −1
xk

Aik = 1

bi

balance equations:

Ax = b
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Minimum cost network flow problem

minimize cTx

subject to Ax = b

l ≤ x ≤ u

• ci is unit cost of flow through arc i

• lj and uj are limits on flow through arc j (typically, lj ≤ 0, uj ≥ 0)

• we assume lj < uj, but allow lj = −∞ and uj = ∞ to simplify notation

includes many network optimization problems as special cases
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Maximum flow problem

maximize flow from node 1 (source) to node m (sink) through the network

1 mt t

maximize t

subject to Ax = te

l ≤ x ≤ u

where e = (1, 0, . . . , 0,−1)
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Formulation as minimum cost flow problem

1 m

artificial arc n+ 1

minimize −t

subject to
[

A −e
]

[

x

t

]

= 0

l ≤ x ≤ u
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Outline

• minimum cost network flows

• total unimodularity

• examples



Totally unimodular matrix

a matrix is totally unimodular if all its minors are −1, 0, or 1

(a minor is the determinant of a square submatrix)

examples

• the matrix




1 0 −1 0 1
0 −1 1 −1 −1
0 0 0 1 1





• node-arc incidence matrix of a directed graph (proof on next page)

properties of a totally unimodular matrix A

• the entries Aij (i.e., its minors of order 1) are −1, 0, or 1

• the inverse of any nonsingular square submatrix of A has entries ±1, 0
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proof: let A be an m× n node-arc incidence matrix

• the entries of A are −1, 0, or 1

• A has exactly two nonzero entries (−1 and 1) per column

consider a k × k submatrix B of A

• if B has a zero column, its determinant is zero

• if all columns of B have two nonzero entries, then 1
TB = 0, detB = 0

• otherwise B has a column, say column j, with one nonzero entry Bij, so

detB = (−1)i+jBij detC

C is square of order k− 1, obtained by deleting row i and column j of B

hence, can show by induction on k that all minors of A are ±1 or 0
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Integrality of extreme points

let P be a polyhedron in Rn defined by

Ax = b, l ≤ x ≤ u

where

• A is totally unimodular

• b is an integer vector

• the finite lower bounds lk and finite upper bounds uk are integers

then all the extreme points of P are integer vectors
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proof: apply rank test to determine whether x̂ ∈ P is an extreme point

• partition {1, 2, . . . , n} in three sets J0, J−, J+ with

lk < x̂k < uk for k ∈ J0
x̂k = lk for k ∈ J−
x̂k = uk for k ∈ J+

let A0, A−, A+ be the submatrices of A with columns in J0, J−, J+

• x̂ is an extreme point if and only if

rank





0 I 0
0 0 −I

A0 A− A+



 = n ⇐⇒ A0 has full column rank

integrality of x̂ then follows from A0x̂J0 = b−A−x̂J− −A+x̂J+

• right-hand side is an integral vector (x̂k is integer for k ∈ J− ∪ J+)

• inverse of any nonsingular submatrix of A0 has integer entries
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Implications for combinatorial optimization

minimize cTx

subject to Ax = b

l ≤ x ≤ u

x ∈ Zn

• an integer linear program, very difficult in general

• equivalent to its linear program relaxation

minimize cTx

subject to Ax = b

l ≤ x ≤ u

if A is totally unimodular and b, l, u are integer vectors

(extreme optimal solution of the relaxation is optimal for the integer LP)
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Shortest path problem

shortest path in directed graph with node-arc incidence matrix A

• (forward) paths from node 1 to m can be represented by vectors x with

Ax = (1, 0, . . . , 0,−1), x ∈ {0, 1}n

• shortest path is solution of

minimize 1
Tx

subject to Ax = (1, 0, . . . , 0,−1)
x ∈ {0, 1}n

LP formulation

minimize 1
Tx

subject to Ax = (1, 0, . . . , 0,−1)
0 ≤ x ≤ 1

extreme optimal solutions satisfy xi ∈ {0, 1}
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Birkhoff theorem

doubly stochastic matrix: N ×N matrices X with 0 ≤ Xij ≤ 1 and

N
∑

i=1

Xij = 1, j = 1, . . . , N,

N
∑

j=1

Xij = 1, i = 1, . . . , N

set of doubly stochastic matrices is a polyhedron P in RN×N

theorem (p.3–29): the extreme points of P are the permutation matrices

proof: interpret X as network flow

• N input nodes, N output nodes

• Xij is flow from input i to output j

hence extreme X has integer entries
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example (N = 3)
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Weighted bipartite matching

• match N persons to N tasks

• each person assigned to one task; each task assigned to one person

• cost of matching person i to task j is Aij

LP formulation

minimize
N
∑

i,j=1

AijXij

subject to
N
∑

i=1

Xij = 1, j = 1, . . . , N

N
∑

j=1

Xij = 1, i = 1, . . . , N

0 ≤ Xij ≤ 1, i, j = 1, . . . , N

integrality: extreme optimal solution X has entries Xij ∈ {0, 1}
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