L. Vandenberghe EE236A (Fall 2013-14)

Lecture 17
Network flow optimization

e minimum cost network flows
e total unimodularity

e examples
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Networks

network (directed graph, digraph): m nodes connected by n directed arcs

e arcs are ordered pairs (i, j) of nodes
e we assume there is at most one arc from node ¢ to node j

e there are no loops (arcs (i,1))

arc-node incidence matrix: m x n matrix A with entries
1 if arc j starts at node ¢

A;; =< —1 ifarc j ends at node i
0 otherwise
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Example

-1 -1 -1

0
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Network flow

flow vector z € R"
o z;: flow (of material, traffic, charge, information, . .. ) through arc j

e positive if in direction of arc; negative otherwise

total flow leaving node ::

Z Aijiljj — (AQJ)Z
71=1
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External supply

supply vector b ¢ R
e b, is external supply at node i (negative b; represents external demand)

e must satisfy 17b = 0 (total supply = total demand)

balance equations:

Axr =0
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Minimum cost network flow problem

minimize ¢!z

subject to Ax =0b
[<x<u

e c; is unit cost of flow through arc 7
e [; and u; are limits on flow through arc j (typically, I; <0, u; > 0)

e we assume [; < u;, but allow [; = —o00 and u; = oo to simplify notation

includes many network optimization problems as special cases
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Maximum flow problem

maximize flow from node 1 (source) to node m (sink) through the network

maximize ¢
subject to Az =te
[<x<u

where e = (1,0,...,0,—1)
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Formulation as minimum cost flow problem

artificial arc n + 1

minimize  —t
. x
subject to [A _6][75]_0
[<zx<u
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Outline

e minimum cost network flows
e total unimodularity

e examples



Totally unimodular matrix

a matrix is totally unimodular if all its minors are —1, 0, or 1

(a minor is the determinant of a square submatrix)

examples

e the matrix

e node-arc incidence matrix of a directed graph (proof on next page)

properties of a totally unimodular matrix A

e the entries A;; (i.e., its minors of order 1) are —1, 0, or 1

e the inverse of any nonsingular square submatrix of A has entries £1, 0

Network flow optimization 17-9



proof: let A be an m X n node-arc incidence matrix

e the entries of A are —1, 0, or 1

e A has exactly two nonzero entries (—1 and 1) per column

consider a k x k submatrix B of A

e if B has a zero column, its determinant is zero
e if all columns of B have two nonzero entries, then 17B =0 det B =0

e otherwise B has a column, say column 7, with one nonzero entry B;;, so
det B = (—1)i+jBij det C
(' is square of order k£ — 1, obtained by deleting row ¢ and column j of B

hence, can show by induction on k that all minors of A are 1 or 0
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Integrality of extreme points

let P be a polyhedron in R™ defined by
Ax = b, [<zx<u

where

e A is totally unimodular
e b is an integer vector

e the finite lower bounds [; and finite upper bounds wuy are integers

then all the extreme points of P are integer vectors
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proof: apply rank test to determine whether & € P is an extreme point

e partition {1,2,...,n} in three sets Jy, J_, Jo with

[ < X < Up fOFkEJo

Tr = lp for k e J_
T = Uk fOI’kEJ_|_

let Ag, A_, A, be the submatrices of A with columns in Jy, J_, J4

e I is an extreme point if and only if

rank

0
0
Ao

I 0
0 I
A A

=n — Ag has full column rank

integrality of Z then follows from Aoz ;) =0—-A_z;, — A 2,

e right-hand side is an integral vector (2, is integer for k € J_ U J.)

e inverse of any nonsingular submatrix of Ay has integer entries
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Implications for combinatorial optimization

minimize c¢c'x
subject to Ax =

e an integer linear program, very difficult in general

e equivalent to its linear program relaxation

minimize c¢c'x
subject to Ax =1b

if A is totally unimodular and b, [, v are integer vectors

(extreme optimal solution of the relaxation is optimal for the integer LP)
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Shortest path problem

shortest path in directed graph with node-arc incidence matrix A
e (forward) paths from node 1 to m can be represented by vectors = with
Axr = (1,0,...,0,—1), r € {0,1}"
e shortest path is solution of
minimize 1%z

subject to Ax = (1,0,...,0,—1)
r e {0,1}"

LP formulation
minimize 11x
subject to Ax = (1,0,...,0,—1)
0<zx<1

extreme optimal solutions satisfy x; € {0, 1}
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Birkhoff theorem

doubly stochastic matrix: N x N matrices X with 0 < X;; <1 and

N N
» Xiy=1, j=1,...,N, > X;=1, i=1...,N
i=1 j=1

set of doubly stochastic matrices is a polyhedron P in RAY*N

theorem (p.3-29): the extreme points of P are the permutation matrices

proof: interpret X as network flow 1---- -1
e N input nodes, IV output nodes

o X;; is flow from input 7 to output j o "
hence extreme X has integer entries 1= ~1

example (N = 3)
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Weighted bipartite matching

e match N persons to IV tasks

e cach person assigned to one task; each task assigned to one person

e cost of matching person i to task j is A;;

LP formulation

N
minimize Z Az’inj

ij=1
N
subjectto > X;; =1, j=1,...,N
i=1
N
ng =1, =1, , N
j=1

integrality: extreme optimal solution X has entries X;; € {0,1}
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