11. Interior-point methods

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- complexity analysis via self-concordance
- second-order cone and semidefinite programming

Inequality constrained minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \tag{1}\\
& A x=b
\end{array}
$$

- f_{i} convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with rank $A=p$
- we assume p^{\star} is finite and attained
- we assume the problem is strictly feasible: there exists \tilde{x} with

$$
\tilde{x} \in \operatorname{dom} f_{0}, \quad f_{i}(\tilde{x})<0, \quad i=1, \ldots, m, \quad A \tilde{x}=b
$$

hence, strong duality holds and dual optimum is attained

Unconstrained (or equality-constrained) approximation

- write (1) as problem without inequality constraints:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)+\sum_{i=1}^{m} h\left(f_{i}(x)\right) \\
\text { subject to } & A x=b
\end{array}
$$

where h is indicator function of $\mathbf{R}_{-}: h(u)=0$ if $u \leq 0$ and $h(u)=\infty$ otherwise

- approximate indicator function by logarithmic barrier:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)-(1 / t) \sum_{i=1}^{m} \log \left(-f_{i}(x)\right) \\
\text { subject to } & A x=b
\end{array}
$$

- an equality constrained problem
- $t>0$, approximation improves as $t \rightarrow \infty$

Logarithmic barrier function

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right), \quad \operatorname{dom} \phi=\left\{x \mid f_{1}(x)<0, \ldots, f_{m}(x)<0\right\}
$$

- a convex function (follows from composition rules)
- twice continuously differentiable, with derivatives

$$
\begin{aligned}
\nabla \phi(x) & =\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x) \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{f_{i}(x)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{T}+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla^{2} f_{i}(x)
\end{aligned}
$$

Central path

- for $t>0$, define $x^{\star}(t)$ as the solution of the centering problem

$$
\begin{array}{ll}
\operatorname{minimize} & t f_{0}(x)+\phi(x) \\
\text { subject to } & A x=b
\end{array}
$$

(for now, assume $x^{\star}(t)$ exists and is unique for each $t>0$)

- the set $\left\{x^{\star}(t) \mid t>0\right\}$ is called the central path

Example: central path for an LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, 6
\end{array}
$$

hyperplane $c^{T} x=c^{T} x^{\star}(t)$ is tangent to level curve of ϕ through $x^{\star}(t)$

Dual points on central path

- optimality condition for centering problem: $A x=b$ and there exists a w such that

$$
\begin{aligned}
0 & =t \nabla f_{0}(x)+\nabla \phi(x)+A^{T} w \\
& =t \nabla f_{0}(x)+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x)+A^{T} w
\end{aligned}
$$

- point on central path $x^{\star}(t)$ minimizes the Lagrangian of the original problem

$$
L(x, \lambda, v)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+v^{T}(A x-b)
$$

for λ, ν given by

$$
\lambda_{i}^{\star}(t)=\frac{1}{-t f_{i}\left(x^{\star}(t)\right)}, \quad i=1, \ldots, m, \quad v^{\star}(t)=w / t
$$

centering gives a strictly primal feasible $x^{\star}(t)$ and a dual feasible $\lambda^{\star}(t), \nu^{\star}(t)$

Duality gap on central path

- value of dual objective function at $\lambda^{\star}(t), v^{\star}(t)$ is

$$
\begin{aligned}
g\left(\lambda^{\star}(t), v^{\star}(t)\right) & =\inf _{x} L\left(x, \lambda^{\star}(t), v^{\star}(t)\right) \\
& =L\left(x^{\star}(t), \lambda^{\star}(t), v^{\star}(t)\right) \\
& =f_{0}\left(x^{\star}(t)\right)+\sum_{i=1}^{m} \lambda_{i}^{\star}(t) f_{i}\left(x^{\star}(t)\right)+v^{\star T}\left(A x^{\star}(t)-b\right) \\
& =f_{0}\left(x^{\star}(t)\right)-\frac{m}{t}
\end{aligned}
$$

- this confirms the intuitive idea that $f_{0}\left(x^{\star}(t)\right) \rightarrow p^{\star}$ if $t \rightarrow \infty$:

$$
f_{0}\left(x^{\star}(t)\right)-p^{\star} \leq \frac{m}{t}
$$

Interpretation via KKT conditions

$x=x^{\star}(t), \lambda=\lambda^{\star}(t), v=v^{\star}(t)$ satisfy

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, A x=b$
2. dual inequality: $\lambda \geq 0$
3. approximate complementary slackness:

$$
\lambda_{i} f_{i}(x)=-\frac{1}{t}, \quad i=1, \ldots, m
$$

4. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+A^{T} v=0
$$

difference with KKT conditions is that condition 3 replaces $\lambda_{i} f_{i}(x)=0$

Force field interpretation

Centering problem (for problem with no equality constraints)

$$
\operatorname{minimize} \quad t f_{0}(x)-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right)
$$

Force field interpretation

- $t f_{0}(x)$ is potential of force field

$$
F_{0}(x)=-t \nabla f_{0}(x)
$$

- $-\log \left(-f_{i}(x)\right)$ is potential of force field

$$
F_{i}(x)=\left(1 / f_{i}(x)\right) \nabla f_{i}(x)
$$

- the forces balance at $x^{\star}(t)$:

$$
F_{0}\left(x^{\star}(t)\right)+\sum_{i=1}^{m} F_{i}\left(x^{\star}(t)\right)=0
$$

Example

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

- objective force field is constant: $F_{0}(x)=-t c$
- constraint force field decays as inverse distance to constraint hyperplane:

$$
F_{i}(x)=\frac{-a_{i}}{b_{i}-a_{i}^{T} x}, \quad\left\|F_{i}(x)\right\|_{2}=\frac{1}{d\left(x, \mathcal{H}_{i}\right)}
$$

where $d\left(x, \mathcal{H}_{i}\right)$ is distance of x to hyperplane $\mathcal{H}_{i}=\left\{x \mid a_{i}^{T} x=b_{i}\right\}$

$$
t=1
$$

$$
t=3
$$

Barrier method

given: strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$ repeat

1. centering step: compute $x^{\star}(t)$ by minimizing $t f_{0}(x)+\phi(x)$ subject to $A x=b$
2. update: $x:=x^{\star}(t)$
3. stopping criterion: quit if $m / t<\epsilon$
4. increase $t: t:=\mu t$

- terminates with strictly feasible point that satisfies $f_{0}(x)-p^{\star} \leq m / t<\epsilon$
- centering is usually done using Newton's method, starting at current x
- an outer iteration loop (steps 1-4) and an inner (Newton) iteration loop (step 1)
- choice of μ involves trade-off between number of outer and inner iterations
- typical values of μ are $10-20$
- several heuristics exist for choosing $t^{(0)}$

Convergence analysis

Number of outer (centering) iterations: exactly

$$
\left\lceil\frac{\log \left(m /\left(\epsilon t^{(0)}\right)\right)}{\log \mu}\right\rceil
$$

plus the initial centering step (to compute $x^{\star}\left(t^{(0)}\right)$)

Centering problem: see convergence analysis of Newton's method

- $t f_{0}+\phi$ must have closed sublevel sets for $t \geq t^{(0)}$
- classical analysis requires strong convexity, Lipschitz continuity of Hessian
- analysis via self-concordance requires self-concordance of $t f_{0}+\phi$
- the additional assumptions also guarantee that solution exists and is unique

Example: inequality form LP

LP with $m=100$ inequalities, $n=50$ variables

- starts with x on central path $\left(t^{(0)}=1\right.$, duality gap 100)
- terminates when $t=10^{8}\left(\right.$ gap $\left.10^{-6}\right)$
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \geq 10$

Example: geometric program

GP with $m=100$ inequalities and $n=50$ variables

$$
\begin{array}{ll}
\text { minimize } & \log \left(\sum_{k=1}^{5} \exp \left(a_{0 k}^{T} x+b_{0 k}\right)\right) \\
\text { subject to } & \log \left(\sum_{k=1}^{5} \exp \left(a_{i k}^{T} x+b_{i k}\right)\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

Example: family of standard LPs

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \geq 0
\end{array}
$$

- $A \in \mathbf{R}^{m \times 2 m}$ with $m=10, \ldots, 1000$
- for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100: 1 ratio

Feasibility and phase I methods

Phase I: computes a strictly feasible starting point, i.e., x that satisfies

$$
\begin{equation*}
f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{2}
\end{equation*}
$$

Basic phase I method

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, s) & s \\
\text { subject to } & f_{i}(x) \leq s, \quad i=1, \ldots, m \tag{3}\\
& A x=b
\end{array}
$$

- problem (3) is strictly feasible: take any x, s that satisfies

$$
x \in \operatorname{dom} f_{i}, \quad i=1, \ldots, m, \quad A x=b, \quad s>\max _{i} f_{i}(x)
$$

- if x, s are feasible for (3) with $s<0$, then x is strictly feasible for (2)
- if optimal value \bar{p}^{\star} of (3) is positive, then problem (2) is infeasible
- if $\bar{p}^{\star}=0$ and attained, then problem (2) is feasible (but not strictly)
- if $\bar{p}^{\star}=0$ and not attained, then problem (2) is infeasible

Sum of infeasibilities phase I method

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} s \\
\text { subject to } & s \geq 0, \quad f_{i}(x) \leq s_{i}, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

for infeasible problem, will find x that satisfies many more inequalities than (3)

Example (infeasible set of 100 linear inequalities in 50 variables)

- left: basic phase I solution; satisfies 39 inequalities
- right: sum of infeasibilities phase I solution; satisfies 79 inequalities

Complexity analysis via self-concordance

same assumptions as on page 11.2, plus:

- sublevel sets (of f_{0}, on the feasible set) are bounded
- $t f_{0}+\phi$ is self-concordant with closed sublevel sets
- second condition holds for LP, QP, QCQP
- may require reformulating the problem, e.g.,

| minimize | $\sum_{i=1}^{n} x_{i} \log x_{i}$ | \longrightarrow | minimize |
| :--- | :--- | :--- | :--- |$\sum_{i=1}^{n} x_{i} \log x_{i}$.

- assumptions are needed for complexity analysis, not to run the barrier method

Newton iterations per centering step

bound on effort of computing $x^{+}=x^{\star}(\mu t)$ starting at $x=x^{\star}(t)$:

$$
\begin{equation*}
\text { \#Newton iterations } \leq \frac{\mu t f_{0}(x)+\phi(x)-\mu t f_{0}\left(x^{+}\right)-\phi\left(x^{+}\right)}{\gamma}+c \tag{4}
\end{equation*}
$$

- γ, c are constants (depend only on algorithm parameters); see page ??
- upper bound on first term follows from duality:

$$
\begin{aligned}
& \mu t f_{0}(x)+\phi(x)-\mu t f_{0}\left(x^{+}\right)-\phi\left(x^{+}\right) \\
& \quad=\mu t f_{0}(x)-\mu t f_{0}\left(x^{+}\right)+\sum_{i=1}^{m} \log \left(-\mu t \lambda_{i} f_{i}\left(x^{+}\right)\right)-m \log \mu \\
& \quad \leq \mu t f_{0}(x)-\mu t f_{0}\left(x^{+}\right)-\mu t \sum_{i=1}^{m} \lambda_{i} f_{i}\left(x^{+}\right)-m-m \log \mu \\
& \quad \leq \mu t f_{0}(x)-\mu t g(\lambda, v)-m-m \log \mu \\
& \quad=m(\mu-1-\log \mu)
\end{aligned}
$$

where $\lambda_{i}=\lambda_{i}^{\star}(t)=-1 /\left(t f_{i}\left(x^{\star}(t)\right)\right)$

Total number of Newton iterations

- we exclude first centering step on page 11.11 , assume we start at $x^{\star}\left(t^{(0)}\right)$
- bound on Newton iterations is number of outer iterations times (4)

$$
\text { \#Newton iterations } \leq N=\left\lceil\frac{\log \left(m /\left(t^{(0)} \epsilon\right)\right)}{\log \mu}\right\rceil\left(\frac{m(\mu-1-\log \mu)}{\gamma}+c\right)
$$

figure shows N for typical values of γ, c,

$$
m=100, \quad \frac{m}{t^{(0)} \epsilon}=10^{5}
$$

- confirms trade-off in choice of μ
- in practice, \#iterations is in the tens and not very sensitive for $\mu \geq 10$

Polynomial-time complexity of barrier method

- for $\mu=1+1 / \sqrt{m}$:

$$
N=O\left(\sqrt{m} \log \left(\frac{m / t^{(0)}}{\epsilon}\right)\right)
$$

- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration to get bound on number of flops
- this choice of μ optimizes worst-case complexity
- in practice we choose μ fixed $(\mu=10, \ldots, 20)$

Second-order cone programming

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m
\end{array}
$$

- constraint functions are not differentiable
- barrier method for second-order cone programming uses barrier function

$$
\begin{aligned}
\phi(x) & =-\sum_{i=1}^{m} \log \left(\left(c_{i}^{T} x+d_{i}\right)^{2}-\left\|A_{i} x+b_{i}\right\|_{2}^{2}\right) \\
& =-\sum_{i=1}^{m} \log \left(c_{i}^{T} x+d_{i}\right)-\sum_{i=1}^{m} \log \left(c_{i}^{T} x+d_{i}-\frac{\left\|A_{i} x+b_{i}\right\|_{2}^{2}}{c_{i}^{T} x+d_{i}}\right)
\end{aligned}
$$

- equivalent to standard barrier method for reformulation with $2 m$ inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \frac{\left\|A_{i} x+b_{i}\right\|_{2}^{2}}{c_{i}^{T} x+d_{i}} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m \\
& c_{i}^{T} x+d_{i} \geq 0, \quad i=1, \ldots, m
\end{array}
$$

Semidefinite programming

Primal and dual SDP (with $F_{1}, \ldots, F_{n}, G \in \mathbf{S}^{m}$)

$$
\begin{array}{llll}
\text { minimize } & c^{T} x & \text { maximize } & -\operatorname{tr}(G Z) \\
\text { subject to } & \sum_{i=1}^{n} x_{i} F_{i} \leq G & \text { subject to } & \operatorname{tr}\left(F_{i} Z\right)+c_{i}=0, \quad i=1, \ldots, n \\
& & Z \geq 0
\end{array}
$$

Logarithmic barrier

$$
\phi(x)=-\log \operatorname{det} F(x), \quad \text { where } F(x)=G-\sum_{i=1}^{n} x_{i} F_{i}
$$

- a convex differentiable function, with domain $\{x \mid F(x)>0\}$
- gradient and Hessian are

$$
\nabla \phi(x)_{i}=\operatorname{tr}\left(F_{i} F(x)^{-1}\right), \quad \nabla^{2} \phi(x)_{i j}=\operatorname{tr}\left(F_{i} F(x)^{-1} F_{j} F(x)^{-1}\right),
$$

$$
\text { for } i, j=1, \ldots, n
$$

Central path

points on central path $x^{\star}(t)$ for $t>0$ are minimizers of $t c^{T} x+\phi(x)$

- optimality condition for centering problem:

$$
0=t c_{i}+\nabla \phi(x)_{i}=t c_{i}+\operatorname{tr}\left(F_{i} F(x)^{-1}\right), \quad i=1, \ldots, n
$$

- dual feasible point on central path:

$$
Z^{\star}(t)=\frac{1}{t} F\left(x^{\star}(t)\right)^{-1}
$$

- corresponding duality gap:

$$
\begin{aligned}
c^{T} x^{\star}(t)+\operatorname{tr}\left(G Z^{\star}(t)\right) & =\operatorname{tr}\left(\left(-\sum_{i=1}^{n} x_{i}^{\star}(t) F_{i}+G\right) Z^{\star}(t)\right) \\
& =\operatorname{tr}\left(F\left(x^{\star}(t)\right) Z^{\star}(t)\right) \\
& =m / t
\end{aligned}
$$

Barrier method for semidefinite programming

given: strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$ repeat

1. centering step: compute $x^{\star}(t)$ by minimizing $t c^{T} x+\phi(x)$
2. update: $x:=x^{\star}(t)$
3. stopping criterion: quit if $m / t<\epsilon$
4. increase $t: t:=\mu t$

- number of outer iterations:

$$
\left\lceil\frac{\log \left(m /\left(\epsilon t^{(0)}\right)\right)}{\log \mu}\right\rceil
$$

- complexity analysis via self-concordance also applies to SDP

Examples

Second-order cone program (50 variables, 50 SOC constraints in \mathbf{R}^{6}

Semidefinite program (100 variables, constraint in \mathbf{S}^{100})

Family of SDPs $\left(A \in \mathbf{S}^{n}, x \in \mathbf{R}^{n}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} x \\
\text { subject to } & A+\operatorname{diag}(x) \geq 0
\end{array}
$$

$n=10, \ldots, 1000$, for each n solve 100 randomly generated instances

Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

- update primal and dual variables at each iteration
- no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- steps can be interpreted as Newton iterates for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method

