- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- complexity analysis via self-concordance
- second-order cone and semidefinite programming

Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$ (1)
 $Ax = b$

- f_i convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with rank A = p
- we assume p^{\star} is finite and attained
- we assume the problem is strictly feasible: there exists \tilde{x} with

$$\tilde{x} \in \text{dom } f_0, \qquad f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, \qquad A\tilde{x} = b$$

hence, strong duality holds and dual optimum is attained

Unconstrained (or equality-constrained) approximation

• write (1) as problem without inequality constraints:

minimize
$$f_0(x) + \sum_{i=1}^m h(f_i(x))$$

subject to $Ax = b$

where *h* is indicator function of **R**₋: h(u) = 0 if $u \le 0$ and $h(u) = \infty$ otherwise

• approximate indicator function by logarithmic barrier:

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$
ned problem
n improves as $t \to \infty$

- an equality constrained problem
- t > 0, approximation improves as $t \to \infty$

U

Logarithmic barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \text{dom}\,\phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}$$

- a convex function (follows from composition rules)
- twice continuously differentiable, with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Central path

• for t > 0, define $x^{\star}(t)$ as the solution of the *centering problem*

minimize $t f_0(x) + \phi(x)$ subject to Ax = b

(for now, assume $x^{\star}(t)$ exists and is unique for each t > 0)

• the set $\{x^{\star}(t) \mid t > 0\}$ is called the *central path*

Example: central path for an LP

minimize $c^T x$ subject to $a_i^T x \le b_i$, i = 1, ..., 6

hyperplane $c^T x = c^T x^*(t)$ is tangent to level curve of ϕ through $x^*(t)$

Dual points on central path

• optimality condition for centering problem: Ax = b and there exists a w such that

$$0 = t\nabla f_0(x) + \nabla \phi(x) + A^T w$$
$$= t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w$$

• point on central path $x^{\star}(t)$ minimizes the Lagrangian of the original problem

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \nu^T (Ax - b)$$

for λ , ν given by

$$\lambda_i^{\star}(t) = \frac{1}{-tf_i(x^{\star}(t))}, \quad i = 1, \dots, m, \qquad \nu^{\star}(t) = w/t$$

centering gives a strictly primal feasible $x^{\star}(t)$ and a dual feasible $\lambda^{\star}(t)$, $\nu^{\star}(t)$

Duality gap on central path

• value of dual objective function at $\lambda^{\star}(t)$, $\nu^{\star}(t)$ is

$$g(\lambda^{\star}(t), \nu^{\star}(t)) = \inf_{x} L(x, \lambda^{\star}(t), \nu^{\star}(t))$$

= $L(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t))$
= $f_0(x^{\star}(t)) + \sum_{i=1}^{m} \lambda_i^{\star}(t) f_i(x^{\star}(t)) + \nu^{\star T} (Ax^{\star}(t) - b)$
= $f_0(x^{\star}(t)) - \frac{m}{t}$

• this confirms the intuitive idea that $f_0(x^{\star}(t)) \to p^{\star}$ if $t \to \infty$:

$$f_0(x^\star(t)) - p^\star \le \frac{m}{t}$$

Interpretation via KKT conditions

 $x = x^{\star}(t), \lambda = \lambda^{\star}(t), \nu = \nu^{\star}(t)$ satisfy

- 1. primal constraints: $f_i(x) \le 0, i = 1, ..., m, Ax = b$
- 2. dual inequality: $\lambda \geq 0$
- 3. approximate complementary slackness:

$$\lambda_i f_i(x) = -\frac{1}{t}, \quad i = 1, \dots, m$$

4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

difference with KKT conditions is that condition 3 replaces $\lambda_i f_i(x) = 0$

Force field interpretation

Centering problem (for problem with no equality constraints)

minimize
$$tf_0(x) - \sum_{i=1}^m \log(-f_i(x))$$

Force field interpretation

• $t f_0(x)$ is potential of force field

$$F_0(x) = -t\nabla f_0(x)$$

• $-\log(-f_i(x))$ is potential of force field

$$F_i(x) = (1/f_i(x))\nabla f_i(x)$$

• the forces balance at $x^{\star}(t)$:

$$F_0(x^{\star}(t)) + \sum_{i=1}^m F_i(x^{\star}(t)) = 0$$

Example

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, ..., m$

- objective force field is constant: $F_0(x) = -tc$
- constraint force field decays as inverse distance to constraint hyperplane:

$$F_i(x) = \frac{-a_i}{b_i - a_i^T x}, \qquad \|F_i(x)\|_2 = \frac{1}{d(x, \mathcal{H}_i)}$$

where $d(x, \mathcal{H}_i)$ is distance of x to hyperplane $\mathcal{H}_i = \{x \mid a_i^T x = b_i\}$

Barrier method

given: strictly feasible $x, t := t^{(0)} > 0, \mu > 1$, tolerance $\epsilon > 0$ repeat

- 1. *centering step:* compute $x^{\star}(t)$ by minimizing $tf_0(x) + \phi(x)$ subject to Ax = b
- 2. *update:* $x := x^{\star}(t)$
- 3. *stopping criterion:* quit if $m/t < \epsilon$
- 4. increase *t*: $t := \mu t$
- terminates with strictly feasible point that satisfies $f_0(x) p^* \le m/t < \epsilon$
- centering is usually done using Newton's method, starting at current *x*
- an outer iteration loop (steps 1–4) and an inner (Newton) iteration loop (step 1)
- choice of μ involves trade-off between number of outer and inner iterations
- typical values of μ are 10–20
- several heuristics exist for choosing $t^{(0)}$

Convergence analysis

Number of outer (centering) iterations: exactly

$$\left\lceil \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

plus the initial centering step (to compute $x^{\star}(t^{(0)})$)

Centering problem: see convergence analysis of Newton's method

- $tf_0 + \phi$ must have closed sublevel sets for $t \ge t^{(0)}$
- classical analysis requires strong convexity, Lipschitz continuity of Hessian
- analysis via self-concordance requires self-concordance of $tf_0 + \phi$
- the additional assumptions also guarantee that solution exists and is unique

Example: inequality form LP

• starts with x on central path ($t^{(0)} = 1$, duality gap 100)

• terminates when
$$t = 10^8$$
 (gap 10^{-6})

- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \ge 10$

Example: geometric program

GP with m = 100 inequalities and n = 50 variables

minimize
$$\log(\sum_{k=1}^{5} \exp(a_{0k}^{T}x + b_{0k}))$$

subject to $\log(\sum_{k=1}^{5} \exp(a_{ik}^{T}x + b_{ik})) \le 0, \quad i = 1, ..., m$

Example: family of standard LPs

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b, \quad x \geq 0 \end{array}$

- $A \in \mathbf{R}^{m \times 2m}$ with m = 10, ..., 1000
- for each *m*, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100:1 ratio

Feasibility and phase I methods

Phase I: computes a strictly feasible starting point, *i.e.*, *x* that satisfies

$$f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (2)

Basic phase I method

minimize (over
$$x, s$$
) s
subject to $f_i(x) \le s, \quad i = 1, \dots, m$ (3)
 $Ax = b$

• problem (3) is strictly feasible: take any x, s that satisfies

$$x \in \operatorname{dom} f_i, \quad i = 1, \dots, m, \qquad Ax = b, \qquad s > \max_i f_i(x)$$

- if x, s are feasible for (3) with s < 0, then x is strictly feasible for (2)
- if optimal value \bar{p}^{\star} of (3) is positive, then problem (2) is infeasible
- if $\bar{p}^{\star} = 0$ and attained, then problem (2) is feasible (but not strictly)
- if $\bar{p}^{\star} = 0$ and not attained, then problem (2) is infeasible

Sum of infeasibilities phase I method

minimize
$$\mathbf{1}^T s$$

subject to $s \ge 0$, $f_i(x) \le s_i$, $i = 1, \dots, m$
 $Ax = b$

for infeasible problem, will find x that satisfies many more inequalities than (3)

Example (infeasible set of 100 linear inequalities in 50 variables)

- left: basic phase I solution; satisfies 39 inequalities
- right: sum of infeasibilities phase I solution; satisfies 79 inequalities

Complexity analysis via self-concordance

same assumptions as on page 11.2, plus:

- sublevel sets (of f_0 , on the feasible set) are bounded
- $tf_0 + \phi$ is self-concordant with closed sublevel sets

- second condition holds for LP, QP, QCQP
- may require reformulating the problem, *e.g.*,

$$\begin{array}{lll} \text{minimize} & \sum_{i=1}^{n} x_i \log x_i & \longrightarrow & \text{minimize} & \sum_{i=1}^{n} x_i \log x_i \\ \text{subject to} & Fx \leq g & & \text{subject to} & Fx \leq g, \quad x \geq 0 \end{array}$$

• assumptions are needed for complexity analysis, not to run the barrier method

Newton iterations per centering step

bound on effort of computing $x^+ = x^*(\mu t)$ starting at $x = x^*(t)$:

#Newton iterations
$$\leq \frac{\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)}{\gamma} + c$$
 (4)

- γ , c are constants (depend only on algorithm parameters); see page **??**
- upper bound on first term follows from duality:

$$\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)$$

$$= \mu t f_0(x) - \mu t f_0(x^+) + \sum_{i=1}^m \log(-\mu t \lambda_i f_i(x^+)) - m \log \mu$$

$$\leq \mu t f_0(x) - \mu t f_0(x^+) - \mu t \sum_{i=1}^m \lambda_i f_i(x^+) - m - m \log \mu$$

$$\leq \mu t f_0(x) - \mu t g(\lambda, \nu) - m - m \log \mu$$

$$= m(\mu - 1 - \log \mu)$$

where $\lambda_i = \lambda_i^{\star}(t) = -1/(tf_i(x^{\star}(t)))$

Total number of Newton iterations

- we exclude first centering step on page 11.11, assume we start at $x^{\star}(t^{(0)})$
- bound on Newton iterations is number of outer iterations times (4)

#Newton iterations
$$\leq N = \left[\frac{\log(m/(t^{(0)}\epsilon))}{\log\mu}\right] \left(\frac{m(\mu - 1 - \log\mu)}{\gamma} + c\right)$$

- confirms trade-off in choice of μ
- in practice, #iterations is in the tens and not very sensitive for $\mu \ge 10$

Polynomial-time complexity of barrier method

• for
$$\mu = 1 + 1/\sqrt{m}$$
:

$$N = O\left(\sqrt{m}\log\left(\frac{m/t^{(0)}}{\epsilon}\right)\right)$$

- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration to get bound on number of flops
- this choice of μ optimizes worst-case complexity
- in practice we choose μ fixed ($\mu = 10, \ldots, 20$)

Second-order cone programming

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$

- constraint functions are not differentiable
- barrier method for second-order cone programming uses barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log((c_i^T x + d_i)^2 - ||A_i x + b_i||_2^2)$$

= $-\sum_{i=1}^{m} \log(c_i^T x + d_i) - \sum_{i=1}^{m} \log(c_i^T x + d_i - \frac{||A_i x + b_i||_2^2}{c_i^T x + d_i})$

• equivalent to standard barrier method for reformulation with 2m inequalities

minimize
$$f^T x$$

subject to $\frac{\|A_i x + b_i\|_2^2}{c_i^T x + d_i} \le c_i^T x + d_i, \quad i = 1, \dots, m$
 $c_i^T x + d_i \ge 0, \quad i = 1, \dots, m$

Semidefinite programming

Primal and dual SDP (with $F_1, \ldots, F_n, G \in \mathbf{S}^m$)

minimize $c^T x$ maximize $-\operatorname{tr}(GZ)$ subject to $\sum_{i=1}^n x_i F_i \leq G$ subject to $\operatorname{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n$ $Z \geq 0$

Logarithmic barrier

$$\phi(x) = -\log \det F(x),$$
 where $F(x) = G - \sum_{i=1}^{n} x_i F_i$

- a convex differentiable function, with domain $\{x \mid F(x) > 0\}$
- gradient and Hessian are

$$\nabla \phi(x)_i = \operatorname{tr}(F_i F(x)^{-1}), \qquad \nabla^2 \phi(x)_{ij} = \operatorname{tr}(F_i F(x)^{-1} F_j F(x)^{-1}),$$

for i, j = 1, ..., n

Central path

points on central path $x^{\star}(t)$ for t > 0 are minimizers of $tc^T x + \phi(x)$

• optimality condition for centering problem:

$$0 = tc_i + \nabla \phi(x)_i = tc_i + tr(F_i F(x)^{-1}), \quad i = 1, ..., n$$

• dual feasible point on central path:

$$Z^{\star}(t) = \frac{1}{t}F(x^{\star}(t))^{-1}$$

• corresponding duality gap:

$$c^{T}x^{\star}(t) + \operatorname{tr}(GZ^{\star}(t)) = \operatorname{tr}\left(\left(-\sum_{i=1}^{n} x_{i}^{\star}(t)F_{i} + G\right)Z^{\star}(t)\right)$$
$$= \operatorname{tr}(F(x^{\star}(t))Z^{\star}(t))$$
$$= m/t$$

Barrier method for semidefinite programming

given: strictly feasible $x, t := t^{(0)} > 0, \mu > 1$, tolerance $\epsilon > 0$ repeat

- 1. *centering step:* compute $x^{\star}(t)$ by minimizing $tc^{T}x + \phi(x)$
- 2. *update:* $x := x^{\star}(t)$
- 3. *stopping criterion:* quit if $m/t < \epsilon$
- 4. increase t: $t := \mu t$

• number of outer iterations:

$$\left\lceil \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

• complexity analysis via self-concordance also applies to SDP

Examples

Second-order cone program (50 variables, 50 SOC constraints in \mathbf{R}^6

Semidefinite program (100 variables, constraint in S^{100})

Family of SDPs ($A \in \mathbf{S}^n, x \in \mathbf{R}^n$)

minimize $\mathbf{1}^T x$ subject to $A + \mathbf{diag}(x) \ge 0$

 $n = 10, \ldots, 1000$, for each *n* solve 100 randomly generated instances

Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

- update primal and dual variables at each iteration
- no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- steps can be interpreted as Newton iterates for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method