3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions

Definition

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if $\operatorname{dom} f$ is a convex set and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

- f is concave if $-f$ is convex
- f is strictly convex if $\operatorname{dom} f$ is convex and

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)
$$

for $x, y \in \operatorname{dom} f, x \neq y, 0<\theta<1$

Examples on \mathbf{R}

Convex

- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- exponential: $e^{a x}$, for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^{p}$ on \mathbf{R}, for $p \geq 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

Concave

- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++}, for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbf{R}^{n} and $\mathbf{R}^{m \times n}$

- affine functions are convex and concave
- all norms are convex

Examples on \mathbf{R}^{n}

- affine function $f(x)=a^{T} x+b$
- norms: $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1 ;\|x\|_{\infty}=\max _{k}\left|x_{k}\right|$

Examples on $\mathbf{R}^{m \times n}$ ($m \times n$ matrices)

- affine function

$$
f(X)=\operatorname{tr}\left(A^{T} X\right)+b=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} X_{i j}+b
$$

- 2-norm (spectral norm): maximum singular value

$$
f(X)=\|X\|_{2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}
$$

Extended-value extension

extended-value extension \tilde{f} of f is

$$
\tilde{f}(x)=f(x), \quad x \in \operatorname{dom} f, \quad \tilde{f}(x)=\infty, \quad x \notin \operatorname{dom} f
$$

often simplifies notation; for example, the condition

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad \tilde{f}(\theta x+(1-\theta) y) \leq \theta \tilde{f}(x)+(1-\theta) \tilde{f}(y)
$$

(as an inequality in $\mathbf{R} \cup\{\infty\}$), means the same as the two conditions

- $\operatorname{dom} f$ is convex
- for $x, y \in \operatorname{dom} f$,

$$
0 \leq \theta \leq 1 \Longrightarrow f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

Restriction of a convex function to a line

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(t)=f(x+t v), \quad \operatorname{dom} g=\{t \mid x+t v \in \operatorname{dom} f\}
$$

is convex (in t) for any $x \in \operatorname{dom} f, v \in \mathbf{R}^{n}$
can check convexity of f by checking convexity of functions of one variable
Example: $f: \mathbf{S}^{n} \rightarrow \mathbf{R}$ with $f(X)=\log \operatorname{det} X, \operatorname{dom} f=\mathbf{S}_{++}^{n}$

$$
\begin{aligned}
g(t)=\log \operatorname{det}(X+t V) & =\log \operatorname{det} X+\log \operatorname{det}\left(I+t X^{-1 / 2} V X^{-1 / 2}\right) \\
& =\log \operatorname{det} X+\sum_{i=1}^{n} \log \left(1+t \lambda_{i}\right)
\end{aligned}
$$

where λ_{i} are the eigenvalues of $X^{-1 / 2} V X^{-1 / 2}$
g is concave in t (for any choice of $X>0, V$); hence f is concave

First-order condition

f is differentiable if $\operatorname{dom} f$ is open and the gradient

$$
\nabla f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)
$$

exists at each $x \in \operatorname{dom} f$
First-order condition: differentiable f with convex domain is convex iff

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y \in \operatorname{dom} f
$$

$f(y)$

$$
f(x)+\nabla f(x)^{T}(y-x)
$$

first-order approximation of f is global underestimator

Second-order conditions

f is twice differentiable if $\operatorname{dom} f$ is open and the Hessian $\nabla^{2} f(x) \in \mathbf{S}^{n}$,

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}, \quad i, j=1, \ldots, n
$$

exists at each $x \in \operatorname{dom} f$

Second-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

$$
\nabla^{2} f(x) \geq 0 \quad \text { for all } x \in \operatorname{dom} f
$$

- if $\nabla^{2} f(x)>0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

Examples

Quadratic function: $f(x)=(1 / 2) x^{T} P x+q^{T} x+r$ (with $P \in \mathbf{S}^{n}$)

$$
\nabla f(x)=P x+q, \quad \nabla^{2} f(x)=P
$$

convex if $P \geq 0$
Least squares objective: $f(x)=\|A x-b\|_{2}^{2}$

$$
\nabla f(x)=2 A^{T}(A x-b), \quad \nabla^{2} f(x)=2 A^{T} A
$$

convex (for any A)
Quadratic-over-linear function: $f(x, y)=x^{2} / y$

$$
\begin{aligned}
\nabla^{2} f(x, y) & =\frac{2}{y^{3}}\left[\begin{array}{c}
y \\
-x
\end{array}\right]\left[\begin{array}{c}
y \\
-x
\end{array}\right]^{T} \geq 0 \\
\operatorname{dom} f & =\{(x, y) \mid y>0\}
\end{aligned}
$$

Examples

Log-sum-exp function: $f(x)=\log \sum_{k=1}^{n} \exp x_{k}$ is convex

$$
\nabla^{2} f(x)=\frac{1}{\mathbf{1}^{T} z} \boldsymbol{\operatorname { d i a g }}(z)-\frac{1}{\left(\mathbf{1}^{T} z\right)^{2}} z^{T} \quad \text { with } z_{k}=\exp x_{k}
$$

to show $\nabla^{2} f(x) \geq 0$, we must verify that $v^{T} \nabla^{2} f(x) v \geq 0$ for all v :

$$
v^{T} \nabla^{2} f(x) v=\frac{\left(\sum_{k=1}^{n} z_{k} v_{k}^{2}\right)\left(\sum_{k=1}^{n} z_{k}\right)-\left(\sum_{k=1}^{n} v_{k} z_{k}\right)^{2}}{\left(\sum_{k=1}^{n} z_{k}\right)^{2}} \geq 0
$$

since $\left(\sum_{k} v_{k} z_{k}\right)^{2} \leq\left(\Sigma_{k} z_{k} v_{k}^{2}\right)\left(\sum_{k} z_{k}\right)$ (from Cauchy-Schwarz inequality)
Geometric mean: $f(x)=\left(\prod_{k=1}^{n} x_{k}\right)^{1 / n}$ on \mathbf{R}_{++}^{n} is concave (similar proof as for log-sum-exp)

Epigraph and sublevel set

α-sublevel set of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$:

$$
C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

sublevel sets of convex functions are convex (converse is false)
Epigraph of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$:

$$
\text { epi } f=\left\{(x, t) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, f(x) \leq t\right\}
$$

f is convex if and only if epi f is a convex set

Jensen's inequality

Basic inequality: if f is convex, then for $0 \leq \theta \leq 1$,

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

Extension: if f is convex, then

$$
f(\mathbf{E} z) \leq \mathbf{E} f(z)
$$

for any random variable z
basic inequality is special case with discrete distribution

$$
\operatorname{prob}(z=x)=\theta, \quad \operatorname{prob}(z=y)=1-\theta
$$

Operations that preserve convexity

methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show $\nabla^{2} f(x) \geq 0$
3. show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective

Positive weighted sum and composition with affine function

Nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

Sum: $f_{1}+f_{2}$ convex if f_{1}, f_{2} convex (extends to infinite sums, integrals)

Composition with affine function: $f(A x+b)$ is convex if f is convex

Examples

- logarithmic barrier for linear inequalities

$$
f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right), \quad \operatorname{dom} f=\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}
$$

- (any) norm of affine function: $f(x)=\|A x+b\|$

Pointwise maximum

if f_{1}, \ldots, f_{m} are convex, then the function

$$
f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}
$$

is convex

Examples

- piecewise-linear function: $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$ is convex
- sum of r largest components of $x \in \mathbf{R}^{n}$:

$$
f(x)=x_{[1]}+x_{[2]}+\cdots+x_{[r]}
$$

is convex ($x_{[i]}$ is i th largest component of x) proof:

$$
f(x)=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\}
$$

Pointwise supremum

if $f(x, y)$ is convex in x for each $y \in \mathcal{A}$, then the function

$$
g(x)=\sup _{y \in \mathcal{A}} f(x, y)
$$

is convex

Examples

- support function of a set: $S_{C}(x)=\sup _{y \in C} y^{T} x$ is convex for any set C
- distance to farthest point in a set C :

$$
f(x)=\sup _{y \in C}\|x-y\|
$$

- maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^{n}$,

$$
\lambda_{\max }(X)=\sup _{\|y\|_{2}=1} y^{T} X y
$$

Proof.

- suppose $f(x, y)$ is a convex function of x, for any fixed $y \in \mathcal{A}$ (and $\mathcal{A} \neq \emptyset)$
- this means that for all $y \in \mathcal{A}, x_{1}, x_{2}$, and $\theta \in[0,1]$,

$$
f\left(\theta x_{1}+(1-\theta) x_{2}, y\right) \leq \theta f\left(x_{1}, y\right)+(1-\theta) f\left(x_{2}, y\right)
$$

- for simplicity, we use the extended-value convention (where $0 \cdot \infty=0$)
convexity of g follows from

$$
\begin{aligned}
g\left(\theta x_{1}+(1-\theta) x_{2}\right) & =\sup _{y \in \mathcal{A}} f\left(\theta x_{1}+(1-\theta) x_{2}, y\right) \\
& \leq \sup _{y \in \mathcal{A}}\left(\theta f\left(x_{1}, y\right)+(1-\theta) f\left(x_{2}, y\right)\right) \\
& \leq \theta \sup _{y \in \mathcal{A}} f\left(x_{1}, y\right)+(1-\theta) \sup _{y \in \mathcal{A}} f\left(x_{2}, y\right) \\
& =\theta g\left(x_{1}\right)+(1-\theta) g\left(x_{2}\right)
\end{aligned}
$$

Partial minimization

if $f(x, y)$ is convex in (x, y) and C is a convex set, then the function

$$
g(x)=\inf _{y \in C} f(x, y)
$$

is convex

Examples

- $f(x, y)=x^{T} A x+2 x^{T} B y+y^{T} C y$ with

$$
\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \geq 0, \quad C>0
$$

minimizing over y gives $g(x)=\inf _{y} f(x, y)=x^{T}\left(A-B C^{-1} B^{T}\right) x$
g is convex, hence Schur complement $A-B C^{-1} B^{T} \geq 0$

- distance to a set: $d(x, S)=\inf _{y \in S}\|x-y\|$ is convex if S is convex

Proof.

- suppose $f: \mathbf{R}^{n} \times \mathbf{R}^{m} \rightarrow \mathbf{R}$ is jointly convex in (x, y)
- without loss of generality, we make C part of the domain of f, i.e., redefine

$$
\operatorname{dom} f:=\operatorname{dom} f \cap\{(x, y) \mid y \in C\}, \quad C:=\mathbf{R}^{m}
$$

- convexity of $f(x, y)$ jointly in (x, y) means that for all $x_{1}, y_{1}, x_{2}, y_{2}, \theta \in[0,1]$,

$$
f\left(\theta x_{1}+(1-\theta) x_{2}, \theta y_{1}+(1-\theta) y_{2}\right) \leq \theta f\left(x_{1}, y_{1}\right)+(1-\theta) f\left(x_{2}, y_{2}\right)
$$

- assume $\inf _{y} f(x, y)>-\infty$ for all x (we don't allow functions that take value $-\infty$)
convexity of g follows from

$$
\begin{aligned}
g\left(\theta x_{1}+(1-\theta) x_{2}\right) & =\inf _{y} f\left(\theta x_{1}+(1-\theta) x_{2}, y\right) \\
& =\inf _{y_{1}, y_{2}} f\left(\theta x_{1}+(1-\theta) x_{2}, \theta y_{1}+(1-\theta) y_{2}\right) \\
& \leq \inf _{y_{1}, y_{2}}\left(\theta f\left(x_{1}, y_{1}\right)+(1-\theta) f\left(x_{2}, y_{2}\right)\right) \\
& =\theta \inf _{y_{1}} f\left(x_{1}, y_{1}\right)+(1-\theta) \inf _{y_{2}} f\left(x_{2}, y_{2}\right) \\
& =\theta g\left(x_{1}\right)+(1-\theta) g\left(x_{2}\right)
\end{aligned}
$$

Summary of minimization/maximization rules

if we include the counterparts for concave functions, there are four rules

Maximization

$$
g(x)=\sup _{y \in C} f(x, y)
$$

- g is convex if f is convex in x for fixed $y ; C$ can be any set
- g is concave if f is jointly concave in (x, y) and C is a convex set

Minimization

$$
g(x)=\inf _{y \in C} f(x, y)
$$

- g is convex if f is jointly convex in (x, y) and C is a convex set
- g is concave if f is concave in x for fixed $y ; C$ can be any set

Composition with scalar functions

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $h: \mathbf{R} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))
$$

f is convex if h is convex and one of the following three cases holds

$$
\begin{aligned}
& g \text { is convex and } \tilde{h} \text { nondecreasing } \\
& g \text { is concave and } \tilde{h} \text { nonincreasing } \\
& g \text { is affine }
\end{aligned}
$$

- monotonicity properties of h must hold for extended-value extension \tilde{h}
- quick proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x)
$$

Examples

- $\exp g(x)$ is convex if g is convex
- $1 / g(x)$ is convex if g is concave and positive

Proof (first composition rule)

- suppose g is convex and h is convex
- suppose \tilde{h} is nondecreasing: this means that

$$
y \leq x, \quad x \in \operatorname{dom} h \quad \Longrightarrow \quad y \in \operatorname{dom} h, \quad h(y) \leq h(x)
$$

consider convex combination of points $x_{1}, x_{2} \in \operatorname{dom} f$

- $x_{1}, x_{2} \in \operatorname{dom} f$ means that $x_{1}, x_{2} \in \operatorname{dom} g$ and $g\left(x_{1}\right), g\left(x_{2}\right) \in \operatorname{dom} h$
- by convexity of g, the convex combination $\theta x_{1}+(1-\theta) x_{2}$ is in $\operatorname{dom} g$ and

$$
g\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta g\left(x_{1}\right)+(1-\theta) g\left(x_{2}\right)
$$

- by monotonicity of \tilde{h} and convexity of $h, g\left(\theta x_{1}+(1-\theta) x_{2}\right) \in \operatorname{dom} h$ and

$$
\begin{aligned}
h\left(g\left(\theta x_{1}+(1-\theta) x_{2}\right)\right) & \leq h\left(\theta g\left(x_{1}\right)+(1-\theta) g\left(x_{2}\right)\right) \\
& \leq \theta h\left(g\left(x_{1}\right)\right)+(1-\theta) h\left(g\left(x_{2}\right)\right)
\end{aligned}
$$

Vector composition

composition of $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ and $h: \mathbf{R}^{k} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))=h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)
$$

f is convex if h is convex and for each i, one of the following three cases holds g_{i} is convex and \tilde{h} nondecreasing in its i th argument g_{i} is concave and \tilde{h} is nonincreasing in its i th argument g_{i} is affine

- \tilde{h} is extended-value extension of h
- quick proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=g^{\prime}(x)^{T} \nabla^{2} h(g(x)) g^{\prime}(x)+\nabla h(g(x))^{T} g^{\prime \prime}(x)
$$

Examples

- $\sum_{i=1}^{m} \log g_{i}(x)$ is concave if g_{i} are concave and positive
- $\log \sum_{i=1}^{m} \exp g_{i}(x)$ is convex if g_{i} are convex

Proof (first composition rule)

- suppose g_{1}, \ldots, g_{k} is convex and h is convex
- Jensen's inequality for g_{1}, \ldots, g_{k} can be written as a vector inequality

$$
g\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta g\left(x_{1}\right)+(1-\theta) g\left(x_{2}\right)
$$

- suppose \tilde{h} is nondecreasing in each argument; this means that

$$
y \leq x, x \in \operatorname{dom} h \quad \Longrightarrow \quad y \in \operatorname{dom} h, \quad h(y) \leq h(x)
$$

consider a convex combination of points $x_{1}, x_{2} \in \operatorname{dom} f$

- $x_{1}, x_{2} \in \operatorname{dom} f$ means that $x_{1}, x_{2} \in \operatorname{dom} g$ and $g\left(x_{1}\right), g\left(x_{2}\right) \in \operatorname{dom} h$
- by convexity of g_{1}, \ldots, g_{k}, the convex combination $\theta x_{1}+(1-\theta) x_{2} \in \operatorname{dom} g$ and

$$
g\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta g\left(x_{1}\right)+(1-\theta) g\left(x_{2}\right)
$$

- hence, by monotonicity of \tilde{h} and convexity of $h, g\left(\theta x_{1}+(1-\theta) x_{2}\right) \in \operatorname{dom} h$ and

$$
\begin{aligned}
h\left(g\left(\theta x_{1}+(1-\theta) x_{2}\right)\right) & \leq h\left(\theta g\left(x_{1}\right)+(1-\theta) g\left(x_{2}\right)\right) \\
& \leq \theta h\left(g\left(x_{1}\right)\right)+(1-\theta) h\left(g\left(x_{2}\right)\right)
\end{aligned}
$$

Perspective

the perspective of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the function $g: \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(x, t)=t f(x / t), \quad \operatorname{dom} g=\{(x, t) \mid x / t \in \operatorname{dom} f, t>0\}
$$

g is convex if f is convex

Examples

- $f(x)=x^{T} x$ is convex; hence $g(x, t)=x^{T} x / t$ is convex for $t>0$
- negative logarithm $f(x)=-\log x$ is convex; hence relative entropy

$$
g(x, t)=t \log t-t \log x
$$

is convex on \mathbf{R}_{++}^{2}

- if f is convex, then

$$
g(x)=\left(c^{T} x+d\right) f\left((A x+b) /\left(c^{T} x+d\right)\right)
$$

is convex on $\left\{x \mid c^{T} x+d>0,(A x+b) /\left(c^{T} x+d\right) \in \operatorname{dom} f\right\}$

Proof.

- consider convex combination of two points $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in \operatorname{dom} g$:

$$
t_{1}>0, \quad x_{1} / t_{1} \in \operatorname{dom} f, \quad t_{2}>0, \quad x_{2} / t_{2} \in \operatorname{dom} f
$$

- we verify Jensen's inequality:

$$
\begin{aligned}
g & \left(\theta x_{1}+(1-\theta) x_{2}, \theta t_{1}+(1-\theta) t_{2}\right) \\
& =\left(\theta t_{1}+(1-\theta) t_{2}\right) f\left(\frac{\theta x_{1}+(1-\theta) x_{2}}{\theta t_{1}+(1-\theta) t_{2}}\right) \\
& =\left(\theta t_{1}+(1-\theta) t_{2}\right) f\left(\frac{\theta t_{1}}{\theta t_{1}+(1-\theta) t_{2}}\left(x_{1} / t_{1}\right)+\frac{(1-\theta) t_{2}}{\theta t_{1}+(1-\theta) t_{2}}\left(x_{2} / t_{2}\right)\right) \\
& \leq \theta t_{1} f\left(x_{1} / t_{1}\right)+(1-\theta) t_{2} f\left(x_{2} / t_{2}\right) \\
& =\theta g\left(x_{1}, t_{1}\right)+(1-\theta) g\left(x_{2}, t_{2}\right)
\end{aligned}
$$

the inequality follows from convexity of f :

$$
f\left(\mu\left(x_{1} / t_{1}\right)+(1-\mu)\left(x_{2} / t_{2}\right)\right) \leq \mu f\left(x_{1} / t_{1}\right)+(1-\mu) f\left(x_{2} / t_{2}\right)
$$

where $\mu=\theta t_{1} /\left(\theta t_{1}+(1-\theta) t_{2}\right)$

The conjugate function

the conjugate of a function f is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)
$$

- f^{*} is convex (even if f is not)
- will be useful when we discuss duality

Examples

- negative logarithm $f(x)=-\log x$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x>0}(x y+\log x) \\
& = \begin{cases}-1-\log (-y) & y<0 \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- strictly convex quadratic $f(x)=(1 / 2) x^{T} Q x$ with $Q \in \mathbf{S}_{++}^{n}$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x}\left(y^{T} x-(1 / 2) x^{T} Q x\right) \\
& =\frac{1}{2} y^{T} Q^{-1} y
\end{aligned}
$$

Quasiconvex functions

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is quasiconvex if $\operatorname{dom} f$ is convex and the sublevel sets

$$
S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}
$$

are convex for all α

$$
\begin{aligned}
S_{\alpha} & =[a, b] \\
S_{\beta} & =(-\infty, c)
\end{aligned}
$$

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbf{R}
- $\operatorname{ceil}(x)=\inf \{z \in \mathbf{Z} \mid z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is quasiconcave on \mathbf{R}_{++}^{2}
- linear-fractional function

$$
f(x)=\frac{a^{T} x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

is quasilinear

- distance ratio

$$
f(x)=\frac{\|x-a\|_{2}}{\|x-b\|_{2}}, \quad \operatorname{dom} f=\left\{x \mid\|x-a\|_{2} \leq\|x-b\|_{2}\right\}
$$

is quasiconvex

Internal rate of return

- cash flow $x=\left(x_{0}, \ldots, x_{n}\right) ; x_{i}$ is payment in period i (to us if $\left.x_{i}>0\right)$
- we assume $x_{0}<0$ and $x_{0}+x_{1}+\cdots+x_{n}>0$
- present value of cash flow x, for interest rate r :

$$
\operatorname{PV}(x, r)=\sum_{i=0}^{n}(1+r)^{-i} x_{i}
$$

- internal rate of return is smallest interest rate for which $\mathrm{PV}(x, r)=0$:

$$
\operatorname{IRR}(x)=\inf \{r \geq 0 \mid \operatorname{PV}(x, r)=0\}
$$

IRR is quasiconcave: superlevel set is intersection of open halfspaces

$$
\operatorname{IRR}(x) \geq R \quad \Longleftrightarrow \quad \sum_{i=0}^{n}(1+r)^{-i} x_{i}>0 \quad \text { for } 0 \leq r<R
$$

Properties

Modified Jensen inequality: for quasiconvex f

$$
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta x+(1-\theta) y) \leq \max \{f(x), f(y)\}
$$

First-order condition: differentiable f with cvx domain is quasiconvex iff

$$
f(y) \leq f(x) \Longrightarrow \nabla f(x)^{T}(y-x) \leq 0
$$

Sums: sums of quasiconvex functions are not necessarily quasiconvex

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$
f(\theta x+(1-\theta) y) \geq f(x)^{\theta} f(y)^{1-\theta} \quad \text { for } 0 \leq \theta \leq 1
$$

f is log-convex if $\log f$ is convex

- powers: x^{a} on \mathbf{R}_{++}is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$
f(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^{T} \Sigma^{-1}(x-\bar{x})}
$$

- cumulative Gaussian distribution function Φ is log-concave

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u
$$

Properties of log-concave functions

- twice differentiable f with convex domain is log-concave if and only if

$$
f(x) \nabla^{2} f(x) \leq \nabla f(x) \nabla f(x)^{T} \quad \text { for all } x \in \operatorname{dom} f
$$

- product of log-concave functions is log-concave
- sum of log-concave functions is not always log-concave
- integration: if $f: \mathbf{R}^{n} \times \mathbf{R}^{m} \rightarrow \mathbf{R}$ is log-concave, then

$$
g(x)=\int f(x, y) d y
$$

is log-concave (not easy to show)

Consequences of integration property

- convolution $f * g$ of log-concave functions f, g is log-concave

$$
(f * g)(x)=\int f(x-y) g(y) d y
$$

- if $C \subseteq \mathbf{R}^{n}$ convex and y is a random variable with log-concave p.d.f. then

$$
f(x)=\operatorname{prob}(x+y \in C)
$$

is log-concave
proof: write $f(x)$ as integral of product of log-concave functions

$$
f(x)=\int g(x+y) p(y) d y, \quad g(u)= \begin{cases}1 & u \in C \\ 0 & u \notin C\end{cases}
$$

p is p.d.f. of y

Example: yield function

$$
Y(x)=\operatorname{prob}(x+w \in S)
$$

- $x \in \mathbf{R}^{n}$: nominal parameter values for product
- $w \in \mathbf{R}^{n}$: random variations of parameters in manufactured product
- S : set of acceptable values
if S is convex and w has a log-concave p.d.f., then
- Y is log-concave
- yield regions $\{x \mid Y(x) \geq \alpha\}$ are convex

