L. Vandenberghe ECE236B (Winter 2024)

8. Geometric problems

e extremal volume ellipsoids
e centering
e classification

e placement and facility location
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Minimum volume ellipsoid around a set

Lowner-John ellipsoid of a set C: minimum volume ellipsoid & suchthat C C &
e parametrize Eas & = {v | ||Av+b||» < 1}; w.l.o.g. assume A € S,

e vol & is proportional to det A~!; to compute minimum volume ellipsoid,

minimize (over A, b) logdet A~!

subject to sup ||Av+ bl < 1
veC

convex, but evaluating the constraint can be hard (for general C)

Finite set C = {x,...,x;}:

minimize (over A, b) logdet A~!
subject to |Ax; + bl <1, i=1,...,m

also gives Léwner-John ellipsoid for polyhedron conv{xy, ..., x;}
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Maximum volume inscribed ellipsoid

maximum volume ellipsoid & inside a convex set C C R”

o parametrize & as & = {Bu+d | ||ul|, < 1}; w.l.o.g. assume B € S,

e vol & is proportional to det B; can compute & by solving

maximize logdetB
subjectto  sup Ic(Bu+d) <0

lull2<1
(where Ic(x) =0forx € C and I (x) = oo forx ¢ C)
convex, but evaluating the constraint can be hard (for general C)

Polyhedron {x | a/x < b;, i=1,...,m}:

maximize logdetB
subjectto ||Ba;llo+ald <b;, i=1,....,m

(constraint follows from supy,.<; a; (Bu +d) = ||Ball2 + a; d)
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Efficiency of ellipsoidal approximations

C C R” convex, bounded, with nonempty interior

e Lowner-John ellipsoid, shrunk by a factor n, lies inside C

e maximum volume inscribed ellipsoid, expanded by a factor n, covers C

Example (for two polyhedra in R?)

/
AN

factor n can be improved to v/n if C is symmetric
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Centering

some possible definitions of ‘center’ of a convex set C:

e center of largest inscribed ball (‘Chebyshev center’)
for polyhedron, can be computed via linear programming (page 4.16)

e center of maximum volume inscribed ellipsoid (page 8.3)

MVE center is invariant under affine coordinate transformations
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Analytic center of a set of inequalities

the analytic center of set of convex inequalities and linear equations
Jilx) <0, i=1,....m, Fx=g

is defined as the optimal point of

minimize - § log(—fi(x))
i=1
subjectto Fx =g

e more easily computed than MVE or Chebyshev center (see later)

e not just a property of the feasible set: two sets of inequalities can describe the
same set, but have different analytic centers
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Analytic center of linear inequalities

aiszb,-, i=1,....,m

Xac IS Minimizer of

p(x) = — > log(b; - al'x)
=1

inner and outer ellipsoids from analytic center:
T .
Sinner € {X | a; x < bi, i=1,...,m} C Eouter

where
Simer = {x|(x _xaC)TV2¢(xac) (X —xac) < 1}

Souter = {x | (x— xaC)TV2¢(Xac) (x —Xxac) <m(m—1)}
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Linear discrimination

separate two sets of points {x{,..., x5}, {y1,..., Ym} by a hyperplane:

a'xji+b>0, i=1,...,N, alyi+b<0, i=1,....M

homogeneous in a, b, hence equivalent to

aTxl-+b21, i=1,...,N, aTy,-+b§—1, i=1,...,.M

a set of linear inequalities in a, b
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Robust linear discrimination

(Euclidean) distance between hyperplanes

H = {z|aTz+b:1}
H, {zla'z+b=-1}

is d(Hy, Hz) =2/||all2

to separate two sets of points by maximum margin,

minimize  (1/2)||al|2
subjectto alx;j+b>1, i=1,...,N
aTyl-+b§—1, i=1,....M

(after squaring objective) a QP ina, b
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Lagrange dual of maximum margin separation problem (1)

maximize 17A1+17y

| N M
subjectto 2[| X Aix; — X wiyill2 <1

i=1 i=1
1"a=1"y, 2>0, u=0
from duality, optimal value is inverse of maximum margin of separation
Interpretation

e change variables to

A i 1

6. = , ;= , [ =
T VT ary, 171+ 174

e invert objective to minimize 1/(17A+ 11 y) =1
minimize ¢
| N M
subjectto || _Zl Oixi — 2 vivilla <t
i= =
6>0 1'6=1, y>=0 1y=1

optimal value is distance between convex hulls
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Approximate linear separation of hon-separable sets

minimize
subject to

e anlLPina, b, u,v

1Tu+1%0
aTx,-+b21—ui, i=1,...,N
aTyi+b£—1+vl-, i=1,...,.M

u>0, v=0

e at optimum, u; = max{0, 1 — a’x; — b}, v; = max{0, 1 +a’ly; + b}

e can be interpreted as a heuristic for minimizing #misclassified points
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Support vector classifier

minimize
subject to

lallz +y(1"u +1"0)
aTx,-+b21—ui, i=1,....N
aTyi+b£—1+vi, i=1,....M
u>0, v>0

produces point on trade-off curve between inverse of margin 2/||a||» and
classification error, measured by total slack 17u + 17v

same example as previous page,

with v = 0.1:
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Nonlinear discrimination
separate two sets of points by a nonlinear function:
f(x;)) >0, i=1,...,N, f(yi) <0, i=1,...,.M
e choose a linearly parametrized family of functions

f(z) =60"F(z)

F = (Fy,...,Fy) : R" > RF are basis functions

e solve a set of linear inequalities in 6:

o'F(x)>1, i=1,....,N, 0 F@uy)<-1, i=1,...
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Quadratic discrimination: 7(z) = z/ Pz+qlz+r
xl-Tle- + qTxi +r>1, yiTPy,- + qu,- +r < -1

can add additional constraints (e.g., P < —1I to separate by an ellipsoid)

Polynomial discrimination: F(z) are all monomials up to a given degree

separation by ellipsoid separation by 4th degree polynomial
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Placement and facility location

e N points with coordinates x; € R? (or R)
e some positions x; are given; the other x;’s are variables

e for each pair of points, a cost function f;;(x;,x;)

Placement problem
minimize % fi;j(xi, x;)
i)

variables are positions of free points

Interpretations

e points represent plants or warehouses; f;; is transportation cost between
facilities i and j

e points represent cells on an IC; f;; represents wirelength
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Example: minimize X (; jyea A(llx; — x;l[2), with 6 free points, 27 links

optimal placement for h(z) = z, h(z) = 22, h(z) = z*
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