L. Vandenberghe ECE236B (Winter 2024)

8. Geometric problems

- extremal volume ellipsoids
- centering
- classification
- placement and facility location

Minimum volume ellipsoid around a set

Löwner-John ellipsoid of a set C: minimum volume ellipsoid \mathcal{E} such that $C \subseteq \mathcal{E}$

- parametrize \mathcal{E} as $\mathcal{E} = \{v \mid ||Av + b||_2 \le 1\}$; w.l.o.g. assume $A \in \mathbb{S}_{++}^n$
- vol \mathcal{E} is proportional to $\det A^{-1}$; to compute minimum volume ellipsoid,

minimize (over
$$A$$
, b) $\log \det A^{-1}$ subject to
$$\sup_{v \in C} \|Av + b\|_2 \le 1$$

convex, but evaluating the constraint can be hard (for general C)

Finite set
$$C = \{x_1, ..., x_m\}$$
:

minimize (over
$$A$$
, b) $\log \det A^{-1}$
subject to $||Ax_i + b||_2 \le 1$, $i = 1, ..., m$

also gives Löwner-John ellipsoid for polyhedron $conv\{x_1, \ldots, x_m\}$

Maximum volume inscribed ellipsoid

maximum volume ellipsoid \mathcal{E} inside a convex set $C \subseteq \mathbf{R}^n$

- parametrize \mathcal{E} as $\mathcal{E} = \{Bu + d \mid ||u||_2 \le 1\}$; w.l.o.g. assume $B \in \mathbf{S}_{++}^n$
- vol \mathcal{E} is proportional to det B; can compute \mathcal{E} by solving

(where $I_C(x) = 0$ for $x \in C$ and $I_C(x) = \infty$ for $x \notin C$) convex, but evaluating the constraint can be hard (for general C)

Polyhedron
$$\{x \mid a_i^T x \le b_i, i = 1, ..., m\}$$
:

maximize
$$\log \det B$$

subject to $||Ba_i||_2 + a_i^T d \le b_i, \quad i = 1, ..., m$

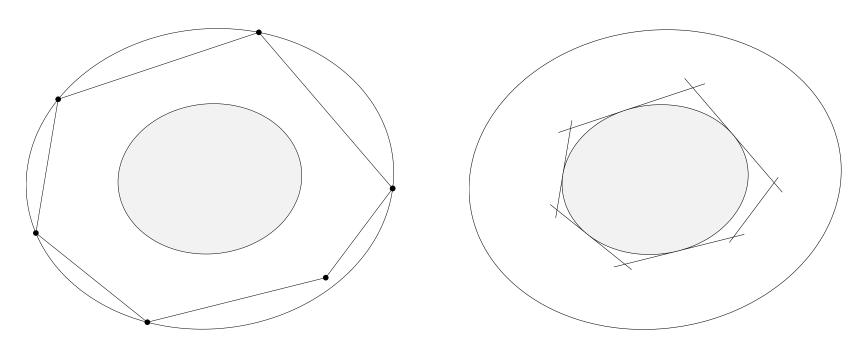
(constraint follows from $\sup_{\|u\|_2 \le 1} a_i^T (Bu + d) = \|Ba_i\|_2 + a_i^T d$)

Efficiency of ellipsoidal approximations

 $C \subseteq \mathbb{R}^n$ convex, bounded, with nonempty interior

- Löwner-John ellipsoid, shrunk by a factor n, lies inside C
- maximum volume inscribed ellipsoid, expanded by a factor n, covers C

Example (for two polyhedra in \mathbb{R}^2)

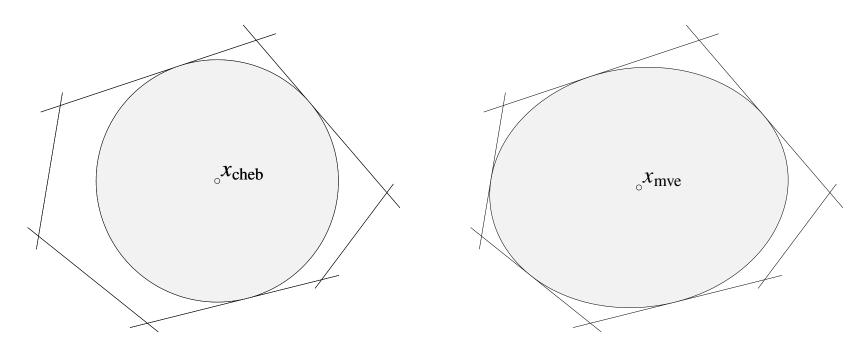


factor n can be improved to \sqrt{n} if C is symmetric

Centering

some possible definitions of 'center' of a convex set *C*:

- center of largest inscribed ball ('Chebyshev center')
 for polyhedron, can be computed via linear programming (page 4.16)
- center of maximum volume inscribed ellipsoid (page 8.3)



MVE center is invariant under affine coordinate transformations

Analytic center of a set of inequalities

the analytic center of set of convex inequalities and linear equations

$$f_i(x) \leq 0, \quad i = 1, \dots, m, \qquad Fx = g$$

is defined as the optimal point of

minimize
$$-\sum_{i=1}^{m} \log(-f_i(x))$$
 subject to
$$Fx = g$$

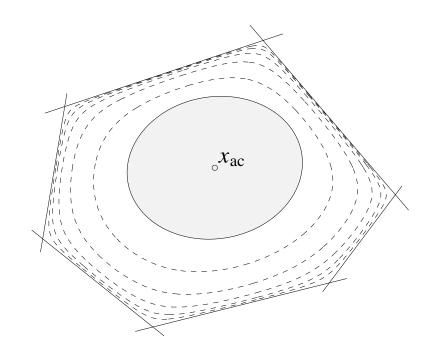
- more easily computed than MVE or Chebyshev center (see later)
- not just a property of the feasible set: two sets of inequalities can describe the same set, but have different analytic centers

Analytic center of linear inequalities

$$a_i^T x \le b_i, \quad i = 1, \dots, m$$

 $x_{\rm ac}$ is minimizer of

$$\phi(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$



inner and outer ellipsoids from analytic center:

$$\mathcal{E}_{inner} \subseteq \{x \mid a_i^T x \le b_i, i = 1, ..., m\} \subseteq \mathcal{E}_{outer}$$

where

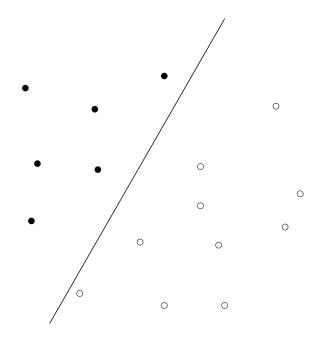
$$\mathcal{E}_{\text{inner}} = \{ x \mid (x - x_{\text{ac}})^T \nabla^2 \phi(x_{\text{ac}}) (x - x_{\text{ac}}) \le 1 \}$$

$$\mathcal{E}_{\text{outer}} = \{ x \mid (x - x_{\text{ac}})^T \nabla^2 \phi(x_{\text{ac}}) (x - x_{\text{ac}}) \le m(m - 1) \}$$

Linear discrimination

separate two sets of points $\{x_1, \ldots, x_N\}$, $\{y_1, \ldots, y_M\}$ by a hyperplane:

$$a^{T}x_{i} + b > 0$$
, $i = 1, ..., N$, $a^{T}y_{i} + b < 0$, $i = 1, ..., M$



homogeneous in a, b, hence equivalent to

$$a^{T}x_{i} + b \ge 1$$
, $i = 1, ..., N$, $a^{T}y_{i} + b \le -1$, $i = 1, ..., M$

a set of linear inequalities in a, b

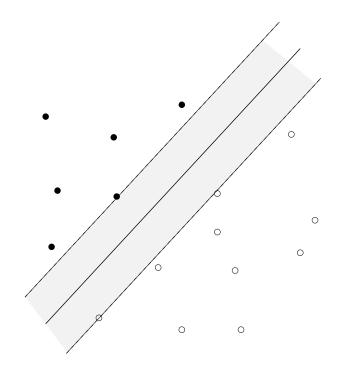
Robust linear discrimination

(Euclidean) distance between hyperplanes

$$\mathcal{H}_1 = \{z \mid a^T z + b = 1\}$$

$$\mathcal{H}_2 = \{z \mid a^T z + b = -1\}$$

is
$$d(\mathcal{H}_1, \mathcal{H}_2) = 2/\|a\|_2$$



to separate two sets of points by maximum margin,

minimize
$$(1/2)||a||_2$$

subject to $a^T x_i + b \ge 1, \quad i = 1, ..., N$
 $a^T y_i + b \le -1, \quad i = 1, ..., M$ (1)

(after squaring objective) a QP in a, b

Lagrange dual of maximum margin separation problem (1)

maximize
$$\mathbf{1}^{T}\lambda + \mathbf{1}^{T}\mu$$

subject to $2\|\sum_{i=1}^{N}\lambda_{i}x_{i} - \sum_{i=1}^{M}\mu_{i}y_{i}\|_{2} \leq 1$
 $\mathbf{1}^{T}\lambda = \mathbf{1}^{T}\mu, \quad \lambda \geq 0, \quad \mu \geq 0$ (2)

from duality, optimal value is inverse of maximum margin of separation

Interpretation

change variables to

$$\theta_i = \frac{\lambda_i}{\mathbf{1}^T \lambda}, \qquad \gamma_i = \frac{\mu_i}{\mathbf{1}^T \mu}, \qquad t = \frac{1}{\mathbf{1}^T \lambda + \mathbf{1}^T \mu}$$

• invert objective to minimize $1/(\mathbf{1}^T \lambda + \mathbf{1}^T \mu) = t$

minimize
$$t$$
 subject to $\|\sum_{i=1}^{N} \theta_i x_i - \sum_{i=1}^{M} \gamma_i y_i\|_2 \le t$ $\theta \ge 0$, $\mathbf{1}^T \theta = 1$, $\gamma \ge 0$, $\mathbf{1}^T \gamma = 1$

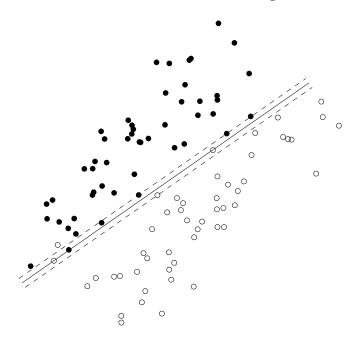
optimal value is distance between convex hulls

Approximate linear separation of non-separable sets

minimize
$$\mathbf{1}^T u + \mathbf{1}^T v$$

subject to $a^T x_i + b \ge 1 - u_i, \quad i = 1, \dots, N$
 $a^T y_i + b \le -1 + v_i, \quad i = 1, \dots, M$
 $u \ge 0, \quad v \ge 0$

- an LP in *a*, *b*, *u*, *v*
- at optimum, $u_i = \max\{0, 1 a^T x_i b\}, v_i = \max\{0, 1 + a^T y_i + b\}$
- can be interpreted as a heuristic for minimizing #misclassified points



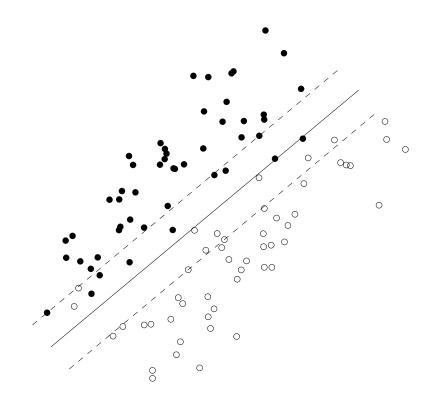
Support vector classifier

minimize
$$\|a\|_2 + \gamma (\mathbf{1}^T u + \mathbf{1}^T v)$$

subject to $a^T x_i + b \ge 1 - u_i, \quad i = 1, \dots, N$
 $a^T y_i + b \le -1 + v_i, \quad i = 1, \dots, M$
 $u \ge 0, \quad v \ge 0$

produces point on trade-off curve between inverse of margin $2/\|a\|_2$ and classification error, measured by total slack $\mathbf{1}^T u + \mathbf{1}^T v$

same example as previous page, with $\gamma = 0.1$:



Nonlinear discrimination

separate two sets of points by a nonlinear function:

$$f(x_i) > 0$$
, $i = 1, ..., N$, $f(y_i) < 0$, $i = 1, ..., M$

choose a linearly parametrized family of functions

$$f(z) = \theta^T F(z)$$

$$F = (F_1, \dots, F_k) : \mathbf{R}^n \to \mathbf{R}^k$$
 are basis functions

• solve a set of linear inequalities in θ :

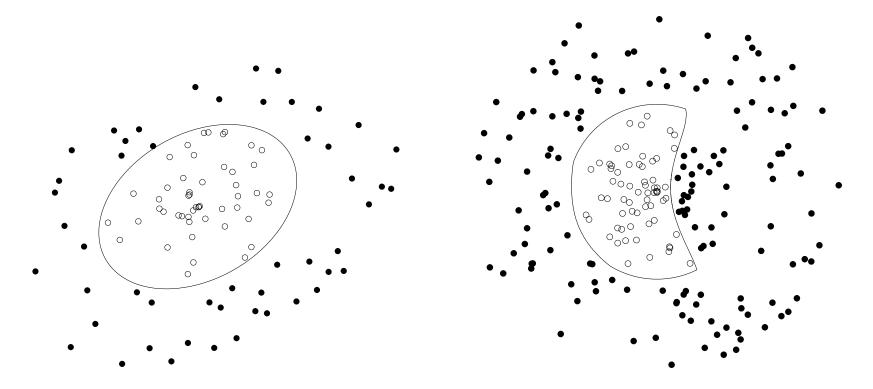
$$\theta^T F(x_i) \ge 1, \quad i = 1, ..., N, \qquad \theta^T F(y_i) \le -1, \quad i = 1, ..., M$$

Quadratic discrimination: $f(z) = z^T P z + q^T z + r$

$$x_i^T P x_i + q^T x_i + r \ge 1,$$
 $y_i^T P y_i + q^T y_i + r \le -1$

can add additional constraints (e.g., $P \leq -I$ to separate by an ellipsoid)

Polynomial discrimination: F(z) are all monomials up to a given degree



separation by ellipsoid

separation by 4th degree polynomial

Placement and facility location

- *N* points with coordinates $x_i \in \mathbb{R}^2$ (or \mathbb{R}^3)
- some positions x_i are given; the other x_i 's are variables
- for each pair of points, a cost function $f_{ij}(x_i, x_j)$

Placement problem

minimize
$$\sum_{i \neq j} f_{ij}(x_i, x_j)$$

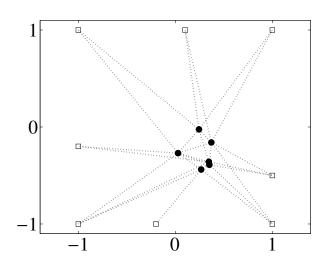
variables are positions of free points

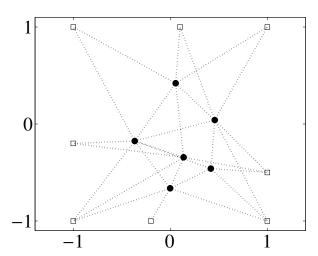
Interpretations

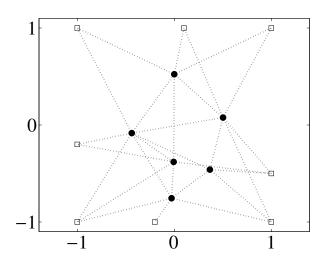
- points represent plants or warehouses; f_{ij} is transportation cost between facilities i and j
- points represent cells on an IC; f_{ij} represents wirelength

Example: minimize $\sum_{(i,j)\in\mathcal{A}} h(||x_i - x_j||_2)$, with 6 free points, 27 links

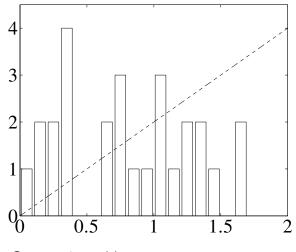
optimal placement for h(z) = z, $h(z) = z^2$, $h(z) = z^4$

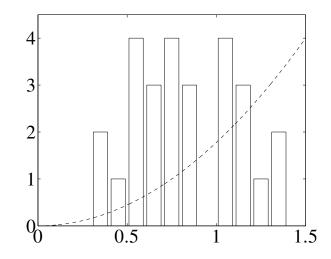






histograms of connection lengths $||x_i - x_j||_2$







Geometric problems

8.16