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ABSTRACT OF THE DISSERTATION

On Classification with Unreliable Labels for
Environmental and Medical Applications

by

Mohamed Nabil Hassan Hajjchehade
Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2012

Professor Gregory J. Pottie, Chair

Information technology is undergoing yet another revolution, dubbed the data revolu-

tion. The recent advancements in sensing technology, storage systems, computational

systems, and mathematical tools are enabling the realization of systems that can ob-

serve the world at a low cost, store large amounts of data, and run complex algorithms

efficiently to process these large datasets. A key component in the design of such

systems is the validation process where we need to evaluate the system on datasets

representative of real life. In this dissertation, we consider environmental and medical

classification problems where the validation process is challenging due to the difficulty

of collecting class labels and ground truth.

We divide our work into three parts. In the first part, we present a system for tree

type classification using satellite or aerial images. The system is used to update the

current forest maps of the National French Forest Inventory (IFN).

In the second part, we present three motion recognition systems using wearable

accelerometers designed for healthcare and medical applications. The first system is

designed to monitor the workplace activities and study the seated posture habits of

the user. The second one is designed to recognize the activity of the user from a set

xv



of 14 common daily activities. The third system is designed for stumble detection

in analyzing the gait of the user, and studying the effect of frequent stumbles on the

risk of falling. We also present two large datasets collected for the validation of the

systems.

In the third part, we present a novel algorithm to collect data that optimizes the

model selection in the maximum likelihood framework, for linear regression models

used in spatial process estimation.
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CHAPTER 1

Introduction

1.1 Introduction

With the beginning of the 21st century, information technology is witnessing yet an-

other revolution: the data revolution. This revolution is due to the recent advance-

ments in low cost sensing technology, storage systems, computational and processing

systems, and mathematical tools. We are now able to observe the world at a low cost,

store large amounts of data, and run complex algorithms efficiently to process these

data. This revolution is affecting many different fields: astronomy, medicine, environ-

mental science, entertainment, telecommunications, social science, economics, etc.

We are now able to observe large-scale phenomena, and analyze them to improve our

quality of life on our planet.

A general data-based system has many components:

• Phenomenon component: the phenomenon of interest that the system is sensing

and analyzing. This component include the prior information we have about the

signal or data model.

• Sensor component: the data acquisition system which includes the sensor model,

as well as the cost, and the power required for the sensing technology.

• Storage component: the system could be analyzing a large-scale spatial and tem-

poral phenomenon, and needs a large storage system for the data acquired.
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• Processing and modeling component: the set of mathematical methods used to

model and process the data acquired, in order to make inferences about the phe-

nomenon of interest.

• Validation component: the set of experiments needed to validate the system.

This includes producing the ground truth about the data acquired through these

experiments. Producing the ground truth information could be very challenging

depending on the system and desired application.

In this dissertation we focus on classification systems for environmental and med-

ical applications. In these two fields, the validation component of the system is very

challenging.

1.1.1 Environmental Monitoring Systems

Studying the environment is now possible by observing processes over a large scale

both in space and time. It is now possible to embed the physical world with wire-

less sensor networks, and use them to monitor many aspects of the environment. In

chapter 2, we study the problem of creating forest maps using satellite and aerial im-

ages. Forest maps are currently constructed manually, and the problem is clearly in the

efficiency and scalability of the manual forest mapping. We designed an automated

mapping method using support vector machines and texture analysis of the forest im-

ages. The challenge in this system is in the validation component, since it is very hard

to create the ground truth and measure the performance of the system. In our solution,

we seek the help of an expert on forest maps to create labels for a training set, and to

evaluate our results.
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1.1.2 Medical Systems

The medical and healthcare field is undergoing a technology revolution, and a new

field called mobile health (or wireless health) is emerging. Doctors will soon be able

to monitor their patients wirelessly and continuously from their communities. This

will have a huge impact and reduce the costs of healthcare tremendously. In the work

of this dissertation, we consider medical and healthcare applications that are based on

the body motion, e.g. motion rehabilitation after an injury or stroke, fall prevention,

athletic training, etc. Specifically we build systems for continuous activity monitoring

using low-cost wearable sensors [htt]. The challenge for these systems is again the

validation component, where we need to evaluate our systems on users in their daily

life and community. This is very challenging, and the challenge is due to the difficulty

of producing labels and ground truth for the experiments.

1.2 Contributions and Organization

We make several contributions and we list them below:

• We provide an algorithm for tree type classification using satellite or aerial color-

infra-red imaging, to update the French forest maps. We validate our method on

a real image provided by the French forest inventory (IFN).

• We provide a system to monitor the workplace activities, and the seated posture

habits of the user.

• We provide a motion recognition system for a set of 14 common daily life activ-

ities.

• We provide a system for stumble detection in analyzing the gait of the user, and

studying the effect of frequent stumbles on the risk of falling.

3



• We provide a large data set of 14 activities from 8 subjects instrumented with 14

accelerometers on different locations of the body.

• We provide a large data set of realistic stumbles during walking, for 9 subjects.

The data set contains a total 100 stumbles and 45 minutes of walking with reli-

able labels.

• We provide a novel algorithm to collect data that optimizes the model selec-

tion in the maximum likelihood framework, for linear regression models used

in spatial process estimation. We also provide a path planning version of the

algorithm.

This dissertation is structured as follows. In chapter 2, we present a method for

classifying the vegetation types in an aerial Color Infra-Red (CIR) image. Different

vegetation types do not only differ in color, but also in texture. We study the use of four

Haralick features (energy, contrast, entropy, homogeneity) for texture analysis, and

then perform the classification using the One-Against-All (OAA) multi-class Support

Vector Machine (SVM), which is a popular supervised learning technique for classifi-

cation. The choice of features (along with their corresponding parameters), the choice

of the training set, and the choice of the SVM kernel highly affect the performance

of the classification. The study was done on several CIR aerial images provided by

the French National Forest Inventory (IFN). We will show one example on a national

forest near Sedan (in France), and compare our result with the IFN map.

In chapter 3, we describe a physical activity classification system using a body

sensor network (BSN) consisting of low cost tri-axial accelerometers. We focus on

workspace activities (different motions and sitting postures). We use a Naive Bayes

classier and show that we can train the system simply and systematically. For each

task, we find a set of features that separate the corresponding activities.

4



In chapter 4, we consider a classification problem of 14 physical activities using a

body sensor network (BSN) consisting of 14 tri-axial accelerometers. We use a tree-

based classifier, and develop a feature selection algorithm based on mutual information

to find the relevant features at every internal node of the tree. We evaluate our algo-

rithm on 31 features per accelerometer (total of 434), and we present the results on 8

subjects with a 96% average accuracy.

In chapter 5, we develop a system for the detection of stumbles with an accelerom-

eter system. Our system consists of low cost triaxial accelerometers that may be worn

by patients and are convenient for a wide range of subjects. We use machine learning

and data mining techniques to detect and count the stumbles in the acceleration data.

We also validate our system with a large data set collected from 9 subjects. The data

set contains a total of 100 stumbles and 45 minutes of walking.

In chapter 6, we consider the problem of estimating a spatial environmental process

using a sensor network. Finding strategies for sensor placement and data collection

to optimize the estimation is a fundamental task for these applications. We present

optimization formulations for obtaining good strategies. The formulations are based

on minimizing the probability of error in selecting the correct model. The locations for

this formulation are found in a sequential algorithm that provides a strategy for sensor

placement and data collection. We focus on linear fields, and we provide simulations

that describe these solutions and show their benefits.

Finally, in chapter 7 we present our conclusions and plans for future research.
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CHAPTER 2

Multi-Class SVM for Forestry Classification

This chapter presents collaborative work with Jean-Guy Bourean and Claude Vidal of

the Inventaire Forestier National (IFN) in France, and Professor Josiane Zerubia in the

ARIANA group of the Institut National de Recherche en Informatique et Automatique

(INRIA), in France. This work was first published as a paper in the IEEE International

Conference on Image Processing (ICIP), 2009 [HBV09].

2.1 Introduction

Forest management has a very broad social, environmental and economical impact in

our societies. It is largely needed for balancing the society needs for forest products,

and the preservation of the society, the environment, the vegetation, and the animal

health. Forest maps (type, density, age, etc.) are fundamental components for this

task.

With the recent advances in space and computer technologies, the combination

of remote sensing and image processing became a very powerful tool for developing

these maps. Acquiring global and local forest images became easier, and processing

these images for information extraction became faster.

SVM has been widely applied in the classification of remote sensing images. In

[ZDZ07], SVM is used to detect burnt areas in satellite images, in a two-class classifi-

cation setting. In [FCB06], multi-class SVM is used for the classification of hyperspec-
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tral remote sensing data. The classification was done using the image spectral bands,

without any texture analysis. In [KMS07], tree species classification was done in high

resolution CIR aerial images, where the tree crown shape feature was very useful. The

images that we used, were of a lower resolution making the shape feature uninfor-

mative, and the focus on texture features. In [MB04], multi-class SVM is shown to

be a valid alternative to other common classification methods for the classification of

hyperspectral remote sensing images.

In this chapter, we present a method to classify tree types in an aerial Color Infra-

Red (CIR) image. The method consists of extracting relevant image features that en-

hance the distinguishability of the tree types, and then performing the classification in

the feature space. The Haralick features were chosen for the feature extraction, and

the Support Vector Machine (SVM) for the classification. The image that we used was

provided by the French National Forest Inventory (IFN). It contains two types of trees,

which makes the problem a three-class classification one. This research was mainly

motivated by the need of IFN to improve their forestry maps. Fig.2.5, taken from the

IFN registry available on [ifn], is the IFN map for the test image (Fig.2.3), where it is

clear that the map does not show enough details.

2.2 Support Vector Machines

The support vector machine (SVM) is one of the most popular methods for classifica-

tion. It has been used in many domains and applied to different classification problems

[ZDZ07], [WMB07], [Bur98]. SVM falls in the category of supervised learning tech-

niques, and consists of finding the optimal separating hyperplanes between the clas-

sification classes, based on training data. The training data are representational data

from each class. The task is, then, to find the optimal hyperplanes separating the train-

ing data, and classifying a new datum depending on where it falls with respect to the

7



hyperplanes. The popularity of SVM is due to its small generalization error, and its

low computational complexity as it is formulated as a convex program. In this section

we will briefly review the theory behind SVM.

2.2.1 The two-class SVM

The basic version of SVM deals with two linearly separable classes. Given two linearly

separable classes of data, there is an infinite number of linear hyperplanes to separate

them. SVM finds the optimal one, which is the hyperplane that results in the maximal

separation margin. The attractive feature of SVM is that it can be rigorously formulated

as a convex problem [Vap95].

1

2

Figure 2.1: Two-class SVM.

Suppose the training data are xi in Rd with corresponding labels yi in {−1,+1},

where i = 1, · · · , N . A linear classifier consists of finding a linear hyperplane sepa-

rating the positive labeled data (yi = +1), from the negative labeled data (yi = −1).

Mathematically, we seek to find a linear function f(x) = w.x + b, where w and b are

8



the function parameters, that classifies the points, i.e. [BV04]

yi.f(xi) ≥ +1 (2.1)

The inequality (2.1) defines the feasibility condition for a linear hyperplane to sep-

arate the two classes of the training data. Anyw and b that satisfy (2.1) define a feasible

separating hyperplane. The resulting separation margin between the two classes can

be found to be 2/||w||, where ||w|| denotes the vector norm of w [Bur98].

SVM consists of finding the separating hyperplane, (2.1), that maximizes the sep-

aration margin, 2/||w||, between the two classes. This can be formulated as:

minw,b ||w||2/2

subject to yi(w.xi + b) ≥ +1
(2.2)

which is a convex problem. The Lagrange dual of this problem can be found to be

[Bur98]:

maxα

N∑
i=0

αi − 1/2
N∑
i=0

N∑
j=0

αiαjyiyjxixj

subject to
N∑
i=0

αiyi = 0, αi ≥ 0

(2.3)

where αi, the Lagrangian multipliers, are the optimization variables. The dual problem

(2.3) is also convex, and is easier to solve than (2.2), since the constraints are linear.

The parameters w and b are found from the solution of (2.3) [Bur98]; w =
N∑
i=0

αiyixi,

and b = yi − w.xi by choosing any i such that αi 6= 0. The classification function is

thus:

f(x) =
N∑
i=0

αiyixi · xj + b (2.4)

When the data are not linearly separable, i.e. the set of inequalities (2.1) is unfeasi-

ble for any w and b, we can relax the feasibility constraints by introducing nonnegative

slack variables ξi, to allow some misclassification: yi.f(xi) ≥ +1− ξi. Moreover, we
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can consider the tradeoff between the number of misclassified points and the width of

the separation margin, by introducing a regularization term to the optimization prob-

lem:

minw,b ||w||2/2 + C

N∑
i=0

ξi

subject to yi(w.xi + b) ≥ +1− ξi, ξi ≥ 0

(2.5)

The dual problem becomes

maxα

N∑
i=0

αi − 1/2
N∑
i=0

N∑
j=0

αiαjyiyjxixj

subject to
N∑
i=0

αiyi = 0, 0 ≤ αi ≤ C

(2.6)

We can as well seek a nonlinear function f , that separates the two classes, i.e.

satisfying (2.1). Boser et al. [BGV92] showed that we can use Aizerman’s kernel

trick to generalize the above methods to nonlinear functions (or nonlinear separating

hyperplanes). The idea is to map the original non-linearly separable data into a higher-

dimensional Euclidean space H , where the linear classifier can be used. We will call

the mapping φ : Rd 7→H . This makes a linear classification in the new space H equiv-

alent to a non-linear classification in the original space Rd. This generalization is

simple since the classification function depends only on the dot product between the

data (xi · xj), and it consists of simply replacing every dot product xi · xj by a dot

product in H , φ(xi) · φ(xj).

We would like to avoid the expensive computation of φ(xi) ·φ(xj) due to the high-

dimensionality of H . We can accomplish this by using Mercer’s theorem, which finds

a kernel function K(xi, xj) = φ(xi) · φ(xj) [Vap95]. Now we can only use K without

the need to know φ. The non-linear classification function becomes:

f(x) =
N∑
i=0

αiyiK(xi, xj) + b (2.7)
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2.2.2 The multi-class SVM

The most popular approach to build a multi-class SVM, is to combine multiple bi-

nary SVMs. In this work we use the One-Against-All (OAA) scheme, which consists

of building one SVM for each class [HL02]. Given M classes of data, we construct

M binary SVMs where the ith SVM separates class i (labeled positive) from the rest

M − 1 classes (labeled negative), where i = 1, . . . ,M . The resulting M classification

functions, fi(x), are then combined by a max rule to form one global classification

function. Given the labeling assumed, a data point x is assigned to the class corre-

sponding to the largest classification function:

Class(x) = arg max
i
fi(x) (2.8)

1

2

3

Figure 2.2: Three-class SVM.
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2.3 Haralick Features for texture extraction

Different types of trees do not only differ in color but also in texture. For texture

extraction, we investigated the use of the popular Haralick features [Har79], which

are based on the gray level co-occurence matrix (GLCM). The GLCM represents the

distribution of repeated values at a given offset (∆x,∆y)1, in an image (or a window

of an image) [Har79].

Mathematically, for anAxB window, I , of an image withG gray levels, the GLCM

C is a GxG matrix defined by:

C(i, j) =
A∑
i=0

B∑
j=0

 1, I(i, j) = i , I(i + ∆x, j + ∆y) = j

0, otherwise
(2.9)

To get a normalized distribution p, we normalize C

p(i, j) =
C∑G

i=0

∑G
j=0 C(i, j)

(2.10)

Haralick defined 13 features in [Har79]. In this work, we chose to study four of

them (energy, contrast, entropy, homogeneity):

Energy =
G∑
i=0

G∑
j=0

p2(i, j) (2.11)

Contrast =
G∑
i=0

G∑
j=0

(i− j)2p(i, j) (2.12)

Entropy = −
G∑
i=0

G∑
j=0

p(i, j) log p(i, j) (2.13)

Homogeneity =
G∑
i=0

G∑
j=0

p(i, j)

1 + |i− j|
(2.14)

In addition to the Haralick features, we studied the use of the mean, the standard

deviation and the normalized difference vegetation index (NDV I). The NDV I =

1∆x is in the horizontal direction, and ∆y in the vertical direction
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(NIR−red)
(NIR+red)

, is computed from the spectral values of each pixel, and reflects the vegeta-

tion density for the pixel [ZDZ07]. Finally, we chose G to be 32.

2.4 Experiments and Results

In this section, we discuss the choices we made for the different parameters of the

system, and we show the results obtained on one color infrared (CIR) aerial image,

provided by the French National Forest Inventory (IFN) (Figure 2.3). The image has

three spectral bands (NIR, red and green), and contains two types of trees (coniferous,

and leafy). Our goal is to classify each pixel, to check if it belongs to the first type of

trees, the second type, or neither. Thus we have a three-class classification problem,

where we call the classes coniferous, leafy, and other. The other class contains the

non-vegetation, the very young regeneration, and the shadows.

Figure 2.3: The test CIR image. c©IFN.

As mentioned above, we have a total of 7 features, which we compute for each pixel
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of the image. All of them, except the NDV I , are computed over a window centered at

the pixel. We tested different window sizes: 5x5, 7x7, 11x11, 15x15, 17x17, 21x21 and

25x25, and we chose the 17x17 as it showed better distinguishability of textures than

the other sizes. A lot of work could be done for more rigorous window size selection,

but this was out of the scope of the current work. We have plans to study it more

carefully in the future.

After the study of the 7 features, we decided to only use the NDVI, the mean, the

standard deviation, and the entropy. The other features did not seem to discriminate

well between the different classes. In addition to that, we used the spectral bands

(NIR, red, and green). In summary, vectors of the form (NDVI, NIR, red, green, mean,

standard deviation, entropy) were the inputs to the multi-class SVM.

For the SVM, we used the Gaussian kernel K(xi, xj) = exp
(
− ||xi−xj ||

2

σ2

)
. The

choice of the SVM parameters (σ, and C) was done by running a series of simulations

over a range of values, on the training set. We chose the ones that resulted in the

best classification of the data set. We did not have a ground truth for evaluating the

classification, and the evaluation was done visually. The parameters will work well for

the same type of images with the same resolution. We tested the same parameters on

different images of the same type of trees, but with different resolutions and the results

were not so good. The parameters needed to be changed to get a better classification

on the other image.

The classification result is shown in Figure 2.4, where blue represents coniferous,

green represents leafy, and white represents other. This result was obtained for

σ = 0.1, and C = 1. This result shows an improvement over the IFN map shown

in Fig. 2.5. The closed forests were very well classified; the three classes were clearly

distinguished even in the overlapped regions. In the open forests, the classification

problems were due on the one hand to the shadow, and on the other to the fact that the
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Figure 2.4: The classification result. Blue for coniferous, green for leafy and white for

other.

Figure 2.5: The current IFN map. c©IFN.
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young regeneration has a similar reflectance and texture as the trees. However, in the

open forest our result shows a noticeable difference between the regions where the re-

generation was cleared (look at the thin white lines in Fig. 2.3), and the ones where the

clearing was not done. This differentiation is very important for forest management.

We are working on removing the artifacts and making the classification smoother.

2.5 Conclusion and Future Work

In this chapter, we presented a method for tree type classification based on texture fea-

tures and support vector machines. We used the Haralick features for texture extrac-

tion, and the one-against-all multi-class support vector machine for the classification.

The result was encouraging for more investigation of the methods used, as it shows

a big improvement over the IFN map. The goal of the chapter was to show that the

technique we used, works well for the type of images and the desired objective of IFN.

A parameter learning phase is sought to be done in the future. Other directions are

automatic feature selection, and automatic training set selection.
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CHAPTER 3

Monitoring Workspace Activities Using Accelerometers

This chapter presents collaborative work with PhD student Chieh Chien in the electri-

cal engineering department at UCLA, Professors Gregory Pottie and William Kaiser in

the electrical engineering department at UCLA, and four summer interns in the Center

of Embedded Networked Sensing (CENS) at UCLA Natali Ruchansky, Claire Lochner,

Elizabeth Do and Tremaine Rawls. This work was first published at the IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2011

[RLD11].

3.1 Introduction

Physical activity monitoring (PAM) systems comprised of on the-body accelerometers

are effective tools for monitoring physical activity with medical, athletic training, and

general health applications. For this work we used a PAM system for monitoring peo-

ple at their workplace.Accelerometer systems have already proven their effectiveness

for the physical activity classification necessary for health monitoring, successfully

classifying basic physical activities including walking, jogging, and going upstairs and

downstairs [LCB05a]. In this chapter we demonstrate that our PAM system is capable

of utilizing a personalized training set easily acquired by the user in a clinical setting.

We also investigated the effect of training set duration on overall classification accu-

racy. Previous research has used pressure sensors embedded in a worker’s chair for
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seated posture classification [TSP01] [MP03], and video surveillance has been used

to classify standing, sitting and lying down postures [CGP05]. However, there has

been little research concentrated on workspace activity and seated posture classifica-

tion with accelerometers. These sensors are less costly for mass production than chairs

equipped with embedded sensors and less invasive than video surveillance. Workplace

activities that are of interest for classification in our system include walking, standing,

sitting, sitting posture, and seated movements such as shaking one’s leg or twisting

in a chair. Studies have shown that too much sedentary behavior, such as sitting at

a computer during the work day, is detrimental to health so much so that it leads to

increased risks of cardiovascular disease, despite regular participation in moderate to

intense exercise [BGG94]. It has also been shown that bad workplace posture can re-

sult in widespread physical pain [Rei93]. Fidgeting and restlessness, such as shaking

ones leg and twisting in a chair, are both symptoms of anxiety, and thus the monitor-

ing of such activities could potentially provide insight into the stress level of workers

[BHG91] [BGG94]. With the tri-axial accelerometers used in this work, employers

and employees will be able to monitor exactly how much time they are spending in

sedentary positions, whether or not they have proper posture when sitting, and to what

extent they are exhibiting anxious physical behaviors. This data will be able to be used

as a guideline for altering their behaviors for the preservation and improvement of their

health.

3.2 System Architecture

3.2.1 System Components

Our system consists of tri-axial wireless and wearable Gulf Coast Data Concept X6-

2mini accelerometer sensors. The sensors continually collect data in the X, Y, and Z
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directions once removed from a USB port, at a selected rate of 160Hz.

3.2.2 Training Data Collection

Sensors are placed on the user in specified locations (knees, chest). When collecting

a training set, an easily recognizable signature (such as jumping or leaning back and

forth five times) is performed before each activity. Each activity is performed for the

same amount of time and its occurrence and duration is recorded, facilitating the ease

of labeling the data. The orientation and location of each sensor is also recorded in

order to remain consistent between data collection sessions. The workspace activities

performed are walking, standing, sitting, sitting with the back reclined 85-95 degrees,

sitting with the back reclined 115-125 degrees, sitting while slouching, shaking one

leg while sitting, crossing one leg while sitting, swiveling in a chair, and sliding in a

chair away from and towards a desk.

3.2.3 Testing Data Collection

Sensors are placed in the same locations and with the same orientations as they are

in training data collection. The same activities are performed but in a natural, un-

planned manner. An observer (or the user) records the activities that the user performs

so that the data can be labeled appropriately, creating ground truth for classification.

In a deployed system, this recording would not be necessary as we would rely on the

classifications, presuming they yield sufficiently accurate statistics.

3.2.4 Data Analysis

For the classification, we used a Naive Bayes classifier [Lew98] over a feature space.

The features were calculated over a window of 4 seconds. The features were: mean,
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maximum value, and frequency energy. This was done on several levels first by clas-

sifying sitting, walking, and standing, and then within sitting, classifying the postures

and movements.

3.2.5 Statistical Classification

Statistical classification refers to the problem of identifying the category (or class), an

object of interest (or data point) belongs to. The object could be a document, an image,

a pixel, a time window of acceleration data, etc. This is done by building a rule, called

a classifier, that maps data points to categories or classes. A classifier takes the data

point as an input, and outputs a label.

3.2.6 Naive Bayes Classifier

The naive Bayes classifier is one of the most simple and most used classifiers. It is a

supervised probabilistic classifier, that models each class with a Gaussian probability

distribution. Given a set S = {C1, C2, · · · , CM} of M classes, the naive Bayes classi-

fier determines the probabilities that a new observation Di belongs to each of class Ci

in the set S.

3.3 Experiments and Results

The activities classification performed were structured into three levels. The first clas-

sification level comprised of walking, sitting, and standing, the second of seated pos-

ture, and the third of seated movements: twisting in the chair, shaking the leg, sliding to

and from the desk, and crossing legs. From these data the frequency, max, min, mean,

and standard deviation values were extracted on the three levels of classification. Split-

ting the classification into several levels has advantages for (1) producing a model that
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Figure 3.1: Walking, sitting, and standing classification statistics.
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Figure 3.2: Walking, sitting, and standing classification statistics.

is physically understandable, and thus leading to information that is more useful in

advising subjects on how to change their behavior (e.g., degree of slouch, take more

breaks, etc.), and (2) reducing training time, since each decision is low-dimensional.

We chose the Naive Bayes classifier [Lew98] because it is simple and it worked well.

On the first level (walking, sitting, and standing) an accuracy of 99.5% was achieved

as seen in Figure 6.1. For the posture, where the angle of the back was measured,

the accuracy was 99.6%, as seen in Figure 6.3. On this level, two types of proper

posture [Lab] were classified; reclined at 120 degrees, and upright at 105 degrees and

many types of slouching were classified as improper. For the various movements while

sitting, an accuracy of 96.5% was obtained, as seen in shown in Figure 3.3.
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Figure 3.3: Walking, sitting, and standing classification statistics.

3.3.1 Training Set Duration

An integral part of our PAM system is the training data set, the set of data that the clas-

sifier bases its classifications on. In order to determine the optimum amount of time

for which each activity should be performed in the training data set, a single set of data

was broken up into subsets of time intervals. One time interval was dedicated as the

testing data set, while the other time interval’s length was varied and dedicated as the

training data sets. The same testing data set was tested against each of these training

data sets, and the overall accuracy for each training data set length was recorded. For

walking, standing, and sitting classification, it was found that 2 minutes was an ade-

quate training interval, as seen in Figure 3.4. For seated posture classification it was

found to be 2 minutes, as seen in Figure 3.5. For seated motions it was found to be 15

seconds, as seen in Figure 3.6.

3.4 Conclusion

In this chapter we present a system that can accurately classify daily life activities in

the work place. The systematic and simple method of training that has been developed

is key. The procedures developed and results obtained allow, with research on basic

activities as a foundation, for the monitoring of work place physical activity. Subjects
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Figure 3.4: Walking, sitting, and standing classification statistics.
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Figure 3.5: Walking, sitting, and standing classification statistics.
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Figure 3.6: Walking, sitting, and standing classification statistics.

who have expressed pain or discomfort in their body would be enabled with such a

system to track their daily movement and posture without any disruption to their daily

life. Further work in two main areas is desired, expanding on posture and feature se-

lection. We have only studied the posture of the back; whether the subject is sitting at

a proper angle or slouching. However, there are many aspects to posture and proper

physical motion in the workplace, such as how long subjects stare at a computer mon-

itor, the angle of the knees, whether the subject’s feet are flat on the floor, the level

of the arm rest, etc. With more data collected in these areas, the applications of the

system would be even greater. Another interest is in feature selection. There are many

possible features to compute, and many possible sensor positions. Further analysis on

the best features and combination of features is needed. There are also more feature

selection algorithms that could be investigated, such as giving features weights that

reflect their ability to differentiate between activities. In the future, we would like to

test this system on various subjects for longer periods of time.
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CHAPTER 4

Feature Selection Based on Mutual Information for

Human Activity Recognition

This chapter presents collaborative work with PhD student Chieh Chien in the elec-

trical engineering department at UCLA, Professor Gregory Pottie in the electrical en-

gineering department at UCLA, and two summer interns in the Center of Embedded

Networked Sensing (CENS) at UCLA Benjamin Fish and Ammar Khan. This work

will be published at the IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), 2012 [RLD11].

4.1 Introduction

Human activity recognition is central to many fields such as neurological rehabilitation

[WWD07], context-aware computing, and athletic training [IMC06]. For example, in

neurological rehabilitation, doctors are interested in monitoring their stroke patients’

activities at home and in the community. Traditional methods of motion monitoring

are based on tedious manual techniques such as self-monitoring or constant monitor-

ing by an observer. These techniques are prone to error due to forgetfulness and other

kinds of misreporting. Recent advances in low-power and compact sensor technology

made the automation of activity monitoring, using a body sensor network, feasible and

low cost. In [LCB05b], multi-modal sensor systems were used to classify basic phys-
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Ref. No. Activities No. Sensors No. Subjects Accuracy

[BI04] 20 5 20 84%

[ZCL11] 5 1 10 85%

[ALK10] 5 groups 6 11 N/A

[ARB99] 5 2 5 89 %

[LCB06] 8 7 12 90%

[KSS] 8 12 1 65% - 95%

[JWC08] 8 1 7 95%

[LCB05b] 10 7 2 95%

Ours 14 14 8 96 %

Table 4.1: Summary of previous research

ical activities, including walking, jogging, and going up and down stairs. In [BI04]

and [RLD11], sensor systems using only accelerometers were used for activity classi-

fication; [BI04] used biaxial accelerometers to monitor both ambulatory and sedentary

motions, while [RLD11] used tri-axial accelerometers to monitor workspace activi-

ties. Smart phone-based accelerometers were also used for activity recognition as in

[ZCL11]. A representative sampling of previous research is presented in Table (4.1).

In our work, we aim at capturing the motions of all the parts of the body for a thor-

ough study of the activity recognition problem. We over-instrument the subjects with

14 tri-axial accelerometers placed on various parts of the body, and we consider the

classification of 14 common daily activities. We take a supervised learning approach,

using a binary decision-tree with a naı̈ve Bayes classifier at every internal node and

a large feature set of 31 features per accelerometer (total of 434 features). This is a

high-dimensional problem where brute force is not possible, and a feature selection

algorithm is needed to find the best features for every naı̈ve Bayes classifier (present

at every internal node). Feature selection is a problem that has been studied many

times before in other contexts. Different types include margin-based algorithms such
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Figure 4.1: Location of the 14 accelerometers on the body.

as RELIEF [KR92] and mutual information-based algorithms such as MIFS [Bat94].

We use a mutual information-based algorithm because it is computationally capable of

handling the large amount of data captured by 14 accelerometers. Our contribution is

that we describe an activity classification system that can handle a large set of activities

(14 activities) representative of the common daily activities, and achieves a very high

recognition accuracy. The system was tested on 8 different subjects.

4.2 Methodology

4.2.1 Training Data Collection

Accelerometers are placed on an individual at fourteen locations, as shown in figure

4.1. The accelerometers we used were tri-axial wireless Gulf Coast Data Concept X6-

2mini accelerometers (± 6g) [htt], which continually collected data at a rate of 160Hz.

Fourteen different activities are performed, as described in table 4.2. To collect labels
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for ground truth, we used an Android phone application. The application has a list of

the activities to choose from and a start/stop button to record the time the subject started

the activity, and the time he/she stopped. Eight different data sets were collected from

eight different healthy individuals for a length of five minutes per activity.

Active Stationary

Slow walk Stand

Fast walk Sit (upright)

Walk (up-slope) Sit(hunch)

Walk (down-slope) Sit (slouch)

Walk (up stairs) Lie down (on back)

Walk (down stairs) Lie down (on stomach)

Run Lie down (on side)

Table 4.2: The 14 activities that were classified

4.2.2 Features Computation

Features were computed on 4 second windows of acceleration data with 3 second

overlapping between consecutive windows. We compute 31 different features for each

sensor, shown in table 4.3. Since we used 14 different sensors, this meant a total of

434 features from which to choose.

4.2.3 Classification

We used the binary decision tree shown in figure 4.2, with a naı̈ve Bayes classifier at

each node. The naı̈ve Bayes classifier is a probabilistic method given by the function
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Features

Standard deviation of x,y,z axes and m

Mean of x,y,z axes and m

Absolute mean of x,y,z axes and m

Energy ratio of x,y,z axes and m

Ratio of DC to sidelobe of x,y,z axes

First sidelobe location of x,y,z axes

Max value of x,y,z axes and m

Short time energy in x,y,z axes and m

Correlation between x and y axes

Table 4.3: Features used. (m refers to the magnitude of the 3D acceleration vector.)

(4.1), where C is the set of classes and F is the set of features.

maxC∈C{p(C)
∏
f∈F

p(f |C)} (4.1)

This classification was performed offline. A tree was used so that the classifier would

not have to distinguish between all 14 of the classes using the same set of features.

Instead, classifiers are used to partition the data into smaller and smaller categories of

classes until the categories consist of a single class, at which point the data is fully

classified. In the probability calculations (given by Bayes’ rule), the features were as-

sumed to be independent with a Gaussian distribution, as required by the naı̈ve Bayes

classifier. For every subject, the naı̈ve Bayes classifiers (at the internal nodes of the

tree) were trained on his/her training data; this is often called user-dependent proce-

dure. The feature selection was also personalized to every subject.
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Figure 4.2: Decision tree used.

4.2.4 Feature Selection Algorithm

The high-dimensionality of the problem requires a good feature selection algorithm

to find the best features for the naı̈ve Bayes classifier at every internal node. In or-

der to minimize computational complexity while maximizing accuracy, this algorithm

employs a filter solution first, and then a wrapper. The algorithm works as follows:

1. We determine the Gaussianity of each feature by calculating the negentropy of

each feature given each class using the approximation given in equation (4.2),

where J is the negentropy, x is a random variable, E is the expected value,

and kurt is the kurtosis, the fourth central moment of the distribution [RE01]

[CT06].

J(x) ≈ 1

12
E{x3}2 +

1

48
kurt(x)2 (4.2)

We remove all features with negentropy values that are higher than an a priori

threshhold.

2. Using the mRMR algorithm, we ranked the features. [PLD05] The term this
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algorithm wishes to maximize is given by formula (4.3).

I(C; fi)−
1

|S|
∑
fs∈S

I(fs; fi) (4.3)

I is the mutual information, C is the class variable, fi is the feature under con-

sideration, and S is the set of features already selected and ranked. Calculating

mutual information requires calculating the entropy of a feature or set of fea-

tures, a computationally expensive process because each feature is a mixture of

Gaussians. Hence a Taylor series approximation of the entropy was employed

[HBD08].

3. By now, there are a few parameters that can be changed: the threshhold for

the negentropy values and the degree of the Taylor series approximation. In

addition, there are really two different possible algorithms, using only the first

term of (4.3) (Max-Relevance), or both (Max-Relevance and Min-Redundancy)

[PLD05]. Instead of choosing one algorithm, or just one set of parameters, a

range of parameters is used over both algorithms, and the sets of features re-

turned by these algorithms are captured. Because we wish to minimize the num-

ber of features, we use the first k features in each ranking, where k ranges from

1 to the full set.

4. This gives us a list of feature sets. We pick the feature set that minimizes the

training error1.

5. The above steps are repeated for each node in the tree. Then for each node, the

highest ranking set of features are chosen, and the total number of sensors used

so far is updated.

1This corresponds to choosing the feature set that gives the highest discrimination between the two
branches of the tree at the corresponding node. Training error is the percentage of misclassified training
data
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Activity Percent Correct

Run 100%

Walk (up stairs) 97.67 %

Walk (down stairs) 94.54 %

Slow Walk 92.77 %

Walk (up-slope) 95.95 %

Fast Walk 96.81 %

Walk (down-slope) 95.32 %

Stand 99.41 %

Sit (upright) 89.90 %

Sit (slouch) 94.62 %

Sit (hunch) 99.24 %

Lie down (on side) 100 %

Lie down (on back) 94.83 %

Lie down (on stomach) 99.66 %

Table 4.4: Average accuracy for each of the activities. The last

4.3 Results

We collected sets of data from eight different individuals where the participant did five

minutes of each of the 14 activities while wearing all 14 accelerometers. For every

subject, we build a personalized classifier; we trained on half the data, 2.5 minutes per

activity, and tested on the other half, a time suggested by [RLD11]. We got an average

overall accuracy of 96.5%, as seen in table (4.5). These results show that a high activity

recognition rate is achievable for a large set of activities. Table (4.5) shows that a large

number of sensors was used for every subject. This is due to the fact that the feature

selection algorithm does not take into consideration from which sensor the features

were selected. It would be interesting to change the feature selection algorithm to a
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Subject Random Features Our algorithm No. of Sensors

1 51 % 93 % 10

2 64 % 98 % 12

3 71 % 96 % 9

4 86 % 97 % 10

5 70 % 98 % 12

6 83 % 99 % 10

7 83 % 96 % 13

8 74 % 95 % 11

Average 72.75 % 96.5 % 10.875

Table 4.5: Average accuracy for each of the test subjects. We compare our algorithm

to an algorithm that selects 14 random features at every internal node. The last column

shows the number of sensors used by our algorithm.

sensor selection algorithm, while maintaining a relatively high accuracy. This could be

done by adding a term to favor features from the same sensors. It is also worth noting

that for different subjects, different features were selected. This is due to the variation

in the acceleration data belonging to different subjects (e.g. different subjects walk

differently, sit differently, and lie differently.).

4.4 Conclusion

This chapter presents a combination of a tree-based classification and a feature selec-

tion algorithm for human activity recognition, and shows that a high activity recog-

nition rate is achievable for a large set of common daily activities. More than just a

specific algorithm, this paper presents a framework that maximizes the accuracy that

can be garnered from the results of specific algorithms, like the mRMR algorithm that

we used. This work shows that different sensors (at different locations on the body) are
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the best for discriminating between subset of the activities. The algorithm presented

could be changed to minimize for the number of sensor used. This is a step forward

towards understanding human activities and towards finding the best placements of

sensors on the body for the recognition of a large set of activities.
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CHAPTER 5

Stumble Detection using Accclerometers

This chapter presents collaborative work with Professor Fabio Ramos in the Australian

center of field robotics at the University of Sydney, Professor Gregory Pottie in the

electrical engineering department at UCLA, and two summer interns in the Center of

Embedded Networked Sensing (CENS) at UCLA, Pinar Osirik and James Gomez.

5.1 Introduction

Falls pose a major health problem in the elderly population, and they account for a sig-

nificant portion of their injury and death. Injuries resulting from falls can be not only

physically, but mentally detrimental [NFR07], resulting in the reduction or loss of

one’s independence [GLS96]. A recent study by the center for disease control and pre-

vention (CDC) shows that one in every three adults (age 65 and older) falls each year.

For example, in 2008 more than 19,700 adults (65 or older) died from unintentional

fall injuries. In 2009, 2.2 million injuries were treated in emergency departments, and

more than 581,000 were hospitalized. The injuries included: hip fractures, spine frac-

tures, leg fractures, and head traumas. In the same year more than $19 billion were

spent on fall related injuries 1.

Due to these reasons, understanding falls and their precursors became a major topic

in medicine and public health. In fact, in 2009 the institute of medicine (IOM) listed

1http://www.cdc.gov/HomeandRecreationalSafety/Falls/adultfalls.html
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research on falls and their prevention among older adults, in their first quartile of pri-

orities [REW09]. The current methods of fall prevention and predictions consist of

exercise and balance training. But as engineers, we can imagine a system of a body

sensor network, monitoring individuals, assessing the risk of falls, and predicting the

likelihood of a future fall. This system would alert the user in case of a high risk of

falling, and suggest what precaution they should take (e.g. resting, minimal activities,

checking with a doctor, etc.). Statistically, the two leading causes of unintentional falls

are loss of balance and stumbling [NDA10].

Much of the effort in the research community focused on monitoring gait and loss

of balance to assess the risk of falls [NDA10], but the relationship between stumbles

and falls is still not well understood. In other words, the following question is not yet

answered: Are frequent stumbles an indicator of high risk of falling?

In the study of stumbles, it was established that there are two general strategies of

recovery from stumbling: elevating and lowering. The elevating strategy occurs as a

response to a perturbation during the early swing phase of gait, whereas the lowering

strategy occurs during the late swing phase of gait [SWM00] [CKH04]. It was estab-

lished that one’s ability to perform such recovery methods after a stumble could be

determined by one’s ability to perform quick steps [CKH04]. Weakening of the ner-

vous system in the elderly may seriously restrict their ability to perform these quick

steps during recovery, which may lead to a fall.

To date, the most common form of stumble reporting continues to be self-report.

This method is obviously flawed and not reliable since it relies entirely on the ability to

remember and report stumble events. In this work, we design a system that will help in

answering the question above, and in studying the relationship between stumbles and

falls. We present a methodology for simulating stumbles, collecting activity data from

body-mounted accelerometers, and a method for detecting stumbles.
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5.2 Related Work

Most of the related work we found in the engineering literature focuses on fall detec-

tion and fast reporting to doctors. Other related work focused on gait analysis and

monitoring, such as balance, gait symmetry, and gait speed. Very few papers consid-

ered the problem of stumble detection, and no work was found on relating stumbles

and falls. Related work in the medical literature focused on understanding the biome-

chanics and muscle behavior of the stumbles. We divide our related work section into

three parts, fall detection, gait analysis, and stumble detection.

5.2.1 Fall Detection

Fall detection is related to our work because our main purpose of stumble detection is

to relate the frequency of stumbles to the risk of falling. Much of the work in fall detec-

tion has included the use of deployable body-mounted sensors, such as accelerometers,

and data thresholding techniques [NFR07] [BOL07] [WSG10]. In fact, it has been

shown that a single tri-axial accelerometer mounted on the trunk provides sufficient

data for reliably distinguishing falls and near falls from normal gait patterns when ap-

propriate threshholding is applied [WSG10]. One study was even able to achieve 100%

detection of all simulated fall events by applying such methods [BOL07]. Other work

has included the use of machine learning, which involves the training of neural net-

works using distinct data [NFR07]. Once trained, these neural networks can be used

for the automatic classification of trained activities. Some more elaborate methods

have included the use of image processing techniques of video data and even the use

of pressure-sensitive floor tile arrays to detect fall events [NFR07]. Narayanan et al.

were able to incorporate body-mounted sensors with onboard, real-time fall detection

capabilities into a distributed detection and reporting system [NLB07]. When a fall is
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detected, the wearable sensor signals a separate unit to dial an emergency number and

establish an audio channel between the user of the system and emergency respondents.

In addition to immediate responses, long-term logging was achieved via daily upload-

ing of activity acceleration data to a remote server. This allows for a more detailed

analysis and evaluation of user activity patterns. Interested parties such as physicians

can view the status of users and prescribe appropriate treatment or preventative care

for at risk users. Our work differs in that it would be used to prevent falls, and we

focus on detecting stumbles which could be precursors to falls.

5.2.2 Gait Analysis

There are two types of gait analysis. The first type consists of analyzing the periodic

parameters of gait, such as balance, symmetry, speed, etc. These parameters are char-

acteristics of every walk stride. The second type consists of detecting anomalies and

rare events such as stumbling, tripping, slipping, etc. These parameters are character-

istics of only a few walk strides. We differentiate these two types because the methods

of monitoring and inferring the parameters of these two types of analysis are different.

In [NDA10], the authors build a system for human instability and balance moni-

toring based on a smart shoes with embedded pressure sensors, accelerometers, and

gyroscopes. The system monitors walking behavior and assesses the fall risk based

on the instability or balance of the walk. The instability analysis is based on the step

length, the step time, the cadence, the stride length, the gait speed, and other fea-

tures. All of these features can be inferred from a periodic analysis of every stride

or step. They also use a risk of fall parameter computed from the features above. In

[XBK11], the authors build a system to monitor the gait speed and argue that it is an

indicator of the rehabilitation progress for patients who suffer from problems in their

gait. The system uses accelerometers worn on the ankles, and was evaluated on 6
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subjects. There are many papers that study different aspects of gait analysis based on

the periodic parameters of the gait. It is worth to mention that the problem of mod-

eling and monitoring the periodic parameters of gait is easier than rare events, due to

the simple fact that collecting data sets and reliably labeling them is easier in the first

case. In monitoring and detecting rare events, the validation of the system requires a

realistic data set containing the reliably labeled rare event. This is a great challenge,

and our work contributes to this part of the big problem of gait analysis and fall pre-

diction/prevention. We build a stumble detection system and validate it on a big and

representative data set containing 100 stumbles, with reliable ground truth.

5.2.3 Stumble Detection

There has been a good amount of research in the medical and human biomechanics

field, to understand stumbles, their causes, and their recovery strategies. The objective

was not about detecting stumbles, but rather about understanding the muscle and body

behavior when a stumble happens. It was established that a fall occurs when the per-

son is not quick enough to recover from a stumble and prevent the fall. The human

response to stumbling has been well characterized [SWD96] [CKH04]. Two recovery

strategies were identified: elevating, and lowering. The elevating strategy occurs as a

response to a perturbation during the early swing phase of gait, whereas the lowering

strategy occurs during the late swing phase of gait. The related aspect to our research

is in the simulation of stumbles. We found out that there are two major categories in

simulating stumbles: treadmill-based, and terrain-based. In [SWD96], an experiment

was designed based on a treadmill; subjects were asked to walk on a treadmill, and

obstacles were dropped during early swing. It was found that the knee is bent more

extensively in order to lift the foot over the obstacle during stumbling. In [CKH04],

a treadmill-based experiment was also performed and the authors found that not only
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the lower limb motions, but also the control of the trunk is necessary to understand the

recovery process. A mechanical model for recovery is also developed and used to ana-

lyze a series of experiments. It is shown that the position of the front foot is crucial in

keeping the trunk upright. This result bolsters the hypothesis that the response speed,

as in step speed, is important for recovery. If the step is too low, the hip can’t be moved

extensively enough to compensate the forward trunk movement. Hence, smaller steps

become necessary, suggesting that the capacity to perform quick steps determines the

strategy chosen for recovery.

Surprisingly, there has been a very little amount of research on systems for stumble

detection. We only found two papers that considered a version of the stumble detection

problem. Both papers were motivated by the design of an intelligent and active lower

limb prothesis. The objective is to build an intelligent prothesis that can detect a stum-

ble when it occurs and have an active recovery response to prevent the subject from

falling. In [LVS10], the stumble detection and active recovery are based on accelerom-

eters mounted on the prothetic limb. To simulate stumbles, a walkway is constructed

with hidden obstacles that appear as subjects walk through it. They collected their

data from 10 healthy subjects who were instrumented with three accelerometers on

the left leg (foot, shank, and thigh). They only collected 19 stumbles and 34 normal

walk strides from 10 subjects. They report 100% detection accuracy, and they don’t

report any false alarm rate or precision-recall results. This data set is unfortunately too

small and not representative. In [ZDN11], the detection is based on accelerometers

and EMG sensors that measure the muscle activity of the hip. They collected two sets

of data, the first set is from 7 subjects with transfemoral amputations. Five of these

subjects were asked to walk on a treadmill where sudden accelerations or decelera-

tions of the treadmill were used to simulate stumbles; for each subject ten trials with

sudden treadmill acceleration and then trials with sudden treadmill deceleration were

tested. The speed, accelerations and decelerations were fixed and were the same for
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all 5 subjects. The other two were asked to walk on an obstacle course. A total of 15

trials were tested for each subject, and each trial was for 5 minutes. The total number

of stumbles is not reported, but they report 100% stumble detection, and between 0%

and 0.0009% false alarm rate (depending on the subject). They also report that the

EMG sensors were necessary to achieve this very small false alarm rate. We think

that a treadmill-based data set is far from being realistic. The main difference in our

work is that we collect a bigger and more realistic data set, and that we achieve very

good results with a much simpler system of only one accelerometer. Our data set is

collected on an outdoor terrain, and contains a total of 100 stumbles, and over one hour

of normal walk for 9 subjects.

5.3 Stumble Detection Methodology

5.3.1 Background and Notation

Before we formulate the the problem, we introduce and define the mathematical terms

we are going to use. We borrow some of the definitions from [MKZ09], and extend

them to our problem.

Definition 1: A 1-D Time Series of lengthm is a sequenceD = {dt1 , dt1+1, · · · , dtm}

of an ordered set of m real valued numbers, with time indices ti, i = 1, · · · ,m.

Definition 2: A 3-D Time Series is a sequence D = {dt1 , dt1+1, · · · , dtm} of an

ordered set of m real valued column vectors dti , with time indices ti, i = 1, · · · ,m.

Definition 3: A 3-D subsequence of length T of a 3-D time series D, is a 3-D time

series Dti:ti+T = {dti , dti+1, · · · , dti+T}.

We can represent the 1-D time series D by a (2xm) matrix where the first row is

the time indices ti, and the second row has the corresponding values dti . We represent

41



the 3-D Time Series D by a (4xm) matrix where the first row is the time indices ti, and

the second to fourth rows correspond to the column vectors dti . We see now that the

matrix corresponding to a 3-D subsequence of a time series D, is a sub-matrix of the

matrix corresponding to D.

5.3.2 Problem Formulation

We consider the problem of human stumble detection using one acceleration sensor

worn on the body, and we would like to test the effectiveness of different body loca-

tions. The accelerometer measures the [X, Y, Z]-components of the acceleration at the

body location where it is mounted. The sensor could be worn on L different parts of

the body. We would like to instrument the user for a long period of time (e.g. a day, a

week, a month), and detect how many stumbles they had during that time. We model

the acceleration data of each sensor as a 3-D time series of lengthm (m corresponds to

the time period of interest, e.g. day, week, month, etc.), Dl = {dl,ti , dl,ti+1, · · · , dl,tm},

where Dl is the acceleration data indexed by the body location l ∈ {1, . . . L} between

the times t1 and tm, and dl,ti is the three dimensional vector of acceleration at location l

and time ti. To detect and count the number of stumble in a 3-D time series Dl, we de-

tect the occurrence of a stumble in every 3-D subsequences of Dl,ti:ti+T . We associate

a variable Sti:ti+T ∈ {0, 1} with every subsequence Dl,ti:ti+T to represent thestumble,

where Sti:ti+T = 1 if a stumble occurs, and Sti:ti+T = 0 otherwise. We assume that a

single stumble could happen between ti and ti + T . We use a probabilistic approach,

and define the following probabilities:

P (Dl,ti:ti+T |Sti:ti+T = 0) = Probability that Dl,ti:ti+T is a normal walk pattern,

P (Dl,ti:ti+T |Sti:ti+T = 1) = Probability that Dl,ti:ti+T is a stumble walk pattern.

The stumble detection problem now becomes a likelihood test comparing
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P (Dl,ti:ti+T |Sti:ti+T = 0), and P (Dl,ti:ti+T |Sti:ti+T = 1):

P (Dl,ti:ti+T |Sti:ti+T = 1)

P (Dl,ti:ti+T |Sti:ti+T = 0)
≥ τ, (5.1)

i.e. a stumble is detected in Dl,ti:ti+T when the likelihood ratio exceeds a threshold τ .

Again in this problem, we move to the feature space and we compute features from the

raw acceleration Dl,ti:ti+T , and compute the likelihood test in the feature space. We

compute a feature vector fl,ti:ti+T , and get the following likelihood test:

P (fl,ti:ti+T |Sti:ti+T = 1)

P (fl,ti:ti+T |Sti:ti+T = 0)
≥ τ. (5.2)

5.3.3 Feature Extraction

The main objective of feature extraction is to reduce the dimensionality of the data.

In this work the sensors are measuring the accelerations at 160hz, which creates (3 x

160 xT ) samples in every 3-D subsequence. Feature extraction summarizes the infor-

mation in every 3-D subsequence, and results in a compact representation of the 3-D

subsequence Dl,ti:ti+T . Figure 5.1 shows a 13 seconds window of walking containing

a stumble around the 6.5 seconds mark.

The first challenge is that the accelerometer measurements depend on the orienta-

tion of the accelerometers. Moreover, the accelerometers pick the gravity acceleration

on the vertical axis which changes depending on the orientation of the sensor. There-

fore, we first remove the gravity component by subtracting the decaying average from

each dimension of the raw accelerometer data [FOC11], and then compute orientation

invariant features. The decaying average is given by

Dl,ti =
Dl,ti

L
+
L− 1

L
Dl,ti−1, (5.3)

where L is the decay factor. The important characteristic of the decaying average is

that it adapts quickly to the orientation of the accelerometer, and removes the gravity
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Figure 5.1: A 13 seconds window of walking containing a stumble at 6.5, seen from

different locations on the body. The x-axis is in seconds, and the y-axis is in g.

component from all of the axes. Figure 5.2 shows a 13 seconds 3-D time series, the

upper figure shows the raw data where gravity is picked up by red axis. The lower

figure shows the acceleration data after subtracting out the decaying average, the grav-

ity component is gone. Note that the decaying average was subtracted from all three

axes. After removing gravity, we extracted orientation-invariant features. In fact, we

extracted features from the magnitude (the euclidean norm) of the [X, Y, Z] accelera-

tion vector,m = ‖X2 + Y 2 + Z2‖, which is orientation-invariant. For the detection of

stumbles in a 3-D time series Dl, we compute the features for the 3-D subsequences,
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Figure 5.2: A 13 seconds acceleration time series. The upper figure shows the raw ac-

celeration, the red axis is at −1g picking up the gravity acceleration. The lower figure

show the acceleration after removing gravity by subtracting the decaying average. The

x-axis is in seconds, and the y-axis is in g.

Dl,ti:ti+T . The features we used in this work are listed in Table 5.1.

5.3.4 Stumbles as Anomalies

We now describe our approach to detect stumbles from the acceleration data, using

anomaly detection techniques. Anomaly detection refers to the problem of finding

patterns in the data that do not follow a normal or expected behavior. These abnor-

mal patterns are called anomalies or outliers. In our problem, a normal walk pattern

represents the normal behavior in the data, and a stumble pattern corresponds to the

45



Features

Maximum value of m

Non Linear Energy Operator of m

FFT of m

Table 5.1: Features used.

anomaly. The key idea to our approach is that since the stumbles are rare events, and

it is hard to collect training data to model them. Therefore we use a semi-supervised

anomaly detection approach where we only train a model for the normal walk patterns,

and we detect stumble patterns as deviations from this model [CBK09]. Mathemati-

cally, we need to estimate the density P (fl,ti:ti+T |Sti:ti+T = 0) from training data, and

detect stumbles if P (fl,ti:ti+T |Sti:ti+T = 0) is low when Sti:ti+T = 1. The stumble

detection will be based on P (fl,ti:ti+T |Sti:ti+T = 0) as follows:

P (fl,ti:ti+T |Sti:ti+T = 0) ≤ τl, (5.4)

for some sensor specific threshold τl.

5.3.5 Estimating P (fl,ti:ti+T |Sti:ti+T = 0)

Density estimation is one of the fundamental problems in statistics and machine learn-

ing. There are two general ways of doing it: parametric and non-parametric density

estimation. Parametric density estimation assumes that the density belongs to some

parametric family of distributions φ(θ), and the goal is then to estimate the parameters

θ from the training data set. Non-parametric density estimation drops the parametric

assumption, and estimates the density directly from the training data (histograms are

the most common non-parametric density estimation). In this work, we use a paramet-

ric approach and we estimate P (fl,ti:ti+T |Sti:ti+T = 0) by a Gaussian distribution:

P (fl,ti:ti+T |Sti:ti+T = 0) = (2π)−
k
2 |Σ|−

12 e−
1
2

(f−µ)
′
Σ−1(f−µ) (5.5)
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where the parameters are the mean µ and the covariance matrix Σ. k is the dimension

of the feature vector f , i.e. the number of features used. We estimate µ and Σ from

training data.

5.3.6 Setting the threshold τl

After estimating P (fl,ti:ti+T |Sti:ti+T = 0), we need to set the threshold τl. Again, τl is

the threshold that corresponds to each location l ∈ {1, . . . L}. We choose τl in order to

control the false alarm rate of the stumble detector. Since the stumbles are rare events,

there is a high probability that a lot of the detected stumbles are actually normal walk

patterns. Thus, we would like to control the false alarm rate, and we choose to set τl

in order to achieve a desired false alarm rate FARl. Note that FARl also depends on

the sensor location on the body.

5.3.7 Choosing T

T is the time length used in parsing the 3-D time series Dl, or in other words T is

the time length of the 3-D subsequences Dl,ti:ti+T . The choice of T depends on the

application of the stumble detection. For example, in [LVS10] and [ZDN11] a stumble

detection system was built for people with prothstetic legs, and the goal was to detect

stumbles in real time and right when they happen to actively move the leg accordingly,

and prevent the fall from happening. In their application, T needs to be in the order

of milliseconds, since the leg had to be moved quickly to help with the recovery from

the stumble and prevent the fall. T was chosen to be 100ms in [LVS10], and as low

as 10ms in [ZDN11]. In other applications, doctors could be interested in monitoring

their patients not in real time, and statistics of stumbles calculated at the end of the day,

or the week. In these applications, the stumble detection is done in post processing of

the data, and a larger T could be used (now in the order of seconds). In our work, we
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chose T = 4seconds.

Another parameter that is associated with T is the step size used in parsing Dl,

to get the corresponding subsequences Dl,ti:ti+T . We choose non-overlapping subse-

quences, and choose the step size to be 4 seconds.

5.4 Experiments

5.4.1 Data Collection

Our system consists of Gulf Coast Data Concept X6-2 mini tri-axial accelerometer

sensors [htt]. A total of 7 accelerometers were placed on various parts of the subjects’

bodies; they were placed on the left and right wrist, the middle of the chest, left and

right pocket, and left and right ankle (figure 5.4). The sensors were set to collect data

at a rate of 160 Hz with a 16-bit data resolution and ±6g acceleration range.

In order to simulate stumbles, we used a simple platform consisting of a 1 x 8 x 30

inch wooden base plank attached to two stacked 2 x 4 x 30 inch wooden studs (Figure

5.3), which created a low vertical barrier for test subjects during gait. Test subjects

were blindfolded and listened to music through headphones so that they do not see

or hear the person setting the obstacle in front of them, and to provide distraction.

The volunteers were then told to walk in a straight line. The obstacle was placed in

front of them at random times but no less than ten seconds after the start of a walk

interval, whereupon the subject would come into the vicinity of the obstacle and either

stumble and recover or walk over the obstacle and continue walking. After the stumble,

subjects would continue walking for one minute or more. The process was repeated

about twenty times per test subject. Stumbling was followed by a long walking interval

(about 5 minutes) in order to more sufficiently train the classifier for walks. Two

individuals walked with the test subject to secure their safety, and prevent them from

48



Figure 5.3: Obstacle used

Figure 5.4: Sensor positions

falling. The experiments took place on an open grassy court, and a video was recorded

for ground truth. The data was collected from 9 test subjects (7 Males and 2 Females).

We got a total of 100 stumbles, and table 5.2 shows the number of stumbles for each

subject.
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Subject Number of Stumbles

1 7

2 10

3 12

4 11

5 11

6 12

7 14

8 10

9 13

Total 100

Table 5.2: Number of stumbles for each subject.

5.4.2 Limitations of the experiments

A main obstacle in designing activity monitoring systems is the validation process

of the system. The system needs to be validated on people in realistic situations, as

close as possible to every day life. A data set should be collected and labeled for

the real stumbles, and this procedure should be done for many people. This is very

challenging and we thought that a reasonable first step towards this goal, is to collect

data in a controlled environment and simulate stumbles which are easy to be labeled.

Our experiments and data sets suffer from the following limitation:

1. One type of stumbles: We only simulate one type of stumble; stumbling on a

fixed obstacle. Other stumbling types we didn’t consider: stumbling on a cord,

stumbling on a moving object, and slipping.

2. Controlled environment: The data sets are collected in a controlled environment.
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We realize that the experiments we have done have certain limitations, but nonethe-

less we think that they are more representative than other experiments used in the liter-

ature. The two research papers we found in the stumble detection literature, [LVS10]

and [ZDN11], use also a controlled environment, but use a treadmill where they can

control the speed to produce stumbles. The subjects were asked to walk on the tread-

mill, and stumbles were created with unexpected sudden changes in the treadmill’s

speed.

5.5 Results

In this work we build a stumbling detection system based on one accelerometer worn

on the body, and we test 7 different locations. As described in Section 5.3, we use a

semi-supervised anomaly detection in the feature space, by estimating

P (fl,ti:ti+T |Sti:ti+T = 0) from the data. In this section, we present the stumbling

detection results for our system, on the data described in Section . We used half of the

data for training the stumbling detector, and half of it to test it.

In rare event detection, it is not enough to look at accuracy and probability of mis-

detection since the events we are trying to detect are rare, and therefore the accuracy

and probability of misdetection would be dominated by the non-rare events. These is-

sues arise in classification problems when one class has far fewer points than the other

classes. To resolve these issues we use the following quantities:

FAR =
Number of normal subsequences detected as stumbles

Total number of stumbles
(5.6)

Precision =
Number of stumble subsequences detected as stumbles

Number of all subsequences detected as stumbles
(5.7)
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Figure 5.5: ROC curve. The chest achieves a detection of 99% with a false alarm of

0.5%.

Recall =
Number of stumble subsequences detected as stumbles

Number of subsequences detected as stumbles
(5.8)

In Figure 5.5, we present the performance of our system as a ROC curve, which is

probability of detection versus false alarm rate. We evaluate each of the 7 locations,

and show each as a curve. We see that the chest performs better than all the other

locations; its ROC curve is higher and to the left of all other locations. With one chest

sensor we could achieve a stumble detection of 99%, with a false alarm rate of 0.5%.

In figure 5.6, we show the precision-recall plots for our stumble detection system. We

also see that the chest outperforms the other locations for the accelerometer.

There are two main reasons why the chest performs better than all the other loca-
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Figure 5.6: Precision Recall Curve. The chest achieves a precision of 99% precision

with a recall 94% (The end point of the chest curve).

tions. The first one is that the chest is the highest location from the ground, thus the

shocks produced by walking get absorbed by the body and diluted by the time they

reach the chest. We can see this phenomenon in Figure 5.1, the walk peaks are smaller

in the acceleration measured at the chest and the stumble pattern stands out more. The

second reason is that the chest sensor is placed in the middle of the body, whereas all

the other locations is either on the left or on the right of the body. We noticed that if a

stumble happens to the left leg, the right side of the body might not pick up the stumble

acceleration pattern, and vice versa. The only limitation of placing the accelerometer

on the chest is that it could be hard to mount it on the chest, it is more feasible to place

it in one of the pockets or clip it to the belt at the waist. With the method used, the

pockets were not good locations to detect the stumbles, but we plan to extend this work
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and use more powerful methods to be able to detect the stumbles more reliably at the

pockets and the waist.

5.6 Conclusion

In this chapter we studied the problem of detecting stumbles using one accelerometer

worn on the body. We evaluated seven locations and found that the chest is the best

location to detect stumbles. Our approach learns a statistical model to characterize

normal walking, and detects stumbles as anomalies or deviations from this model. Our

approach guarantees a certain false alarm rate, and we show that stumbles could be

detected with a 99% accuracy and 0.5% false alarm rate with one sensor worn on the

chest. Our system is personalized where we build a detector for each user tailored

to their normal and stumble walking patterns. We also provided a big data set for 9

people, containing a total of 100 stumbles and more than one hour of normal walking.

This is a much bigger data set than all other works in the literature. In fact [LVS10]

evaluated their system on 19 stumbles and 34 normal walking strides collected from

10 people on a treadmill, and [ZDN11] collected their data for 7 people on a treadmill,

and for only 2 people on a realistic terrains. [ZDN11] did not report the total number

of stumbles they collected. Moreover, they used EMG and acceleration sensors in

their system. We strongly believe that accelerometers are enough for the detection of

stumbles. A main limitation of treadmill data, is that the acceleration is controlled and

the speed of the walking is fixed. Our dataset is more realistic and takes the research on

stumble detection a step further towards the goal of realistic stumble detection systems,

and towards understanding the relationship between stumbles and falls.

For future work, we plan to take this study in three directions. The first direction is

to collect more realistic data, containing more types of stumbles. The second direction

is to collect data for elderly patients who have a high risk of falling. We plan to mon-
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itor them over a long period of time and use our current detector based on controlled

experiments, to help with the labeling of the real life data set. We believe that running

our current detector on the real life data set, would detect potential stumbles that could

be combined with the information from the subject to reliably label the real stumbles.

The third direction is more technical, and consists of developing more powerful detec-

tion techniques that could be used to detect stumbles from more plausible placements

of the accelerometers, such as pockets.
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CHAPTER 6

Active Learning for Model Selection

This chapter presents collaborative work with Professor Gregory Pottie, and was trig-

gered by some discussions with Professor Mark Hansen in the statistics department at

UCLA.

6.1 Introduction

Sensor networks have proved to be useful for learning about natural phenomena (e.g.

temperature, humidity, light, etc.) over spatial and temporal fields [BRY04] [TPS05].

Statistical models are widely used to make sense of the collected measurements and

to answer questions regarding these phenomena such as the estimation of the phenom-

ena, the prediction of the phenomena changes over time or space, the effects of some

phenomena on other phenomena, or any sort of inference [BRY04] [KGG06].

One can randomly place sensors, collect measurements and make inferences about

the phenomenon in question. This work instead focuses on the problem of directing

the placement of sensors and the collection of measurements, depending on the appli-

cation and the desired final inferences. The use or choice of certain statistical models,

combined with the desired inferences, leads us to formulate methods which direct sen-

sor placement for high quality inference results.

In this work we focus on the model selection problem. We assume that we have

a set of plausible models and we want to select the correct one, i.e. the set of models
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contains the correct model. We intend to develop methods (or algorithms) that directs

the collection of measurements to optimize the selection of the model structure, from

the set of plausible model structures.

Our philosophy is to minimize the probability of error in the selection of the correct

model structure. We show in Section 6.3, that in the fundamental selection problem

the probability of error depends on the data considered. And we can formulate opti-

mization problems to select the data that minimize the probability of error.

We will focus on the linear regression framework, but we will argue in Section 6.4.1

that the developed methods work for other types of models (e.g. Gaussian processes,

splines, kernel-based models).

The remainder of the chapter is divided into two sections, the first one is about the

work and results done so far while the second one is about the suggested problems for

future work. Furthermore, each section contains some literature review done on the

problem considered.

We will start with a small introduction about regression models since they are used

throughout the chapter.

6.2 The Regression Framework

In this work, we shall be concerned with the linear regression framework where the

measurements are given by:

yi = h(xi, a) + ei, i = 1, . . . ,m (6.1)

where xi is a vector corresponding to the ith measurement location, yi is the measure-

ment at xi, ei is the measurement noise at xi, a is the vector of unknown parameters

and m is the number of measurements. The range over which we collect measurement
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is called Z. The linearity of the model h(xi, a) is with respect to a i.e. h(xi, a) = xTi a.

If we collect yi in an m-dimensional vector y we get:

y = XTa+ e, (6.2)

whereX is the matrix whose columns are the xi vectors. X is called the design matrix.

We assume that e ∼ N (0, Ce) where Ce is known.

Given a set of measurements, the parameter a can be found by solving the follow-

ing least-squares problem [HTF01]

min
a
‖(y −XTa)TC−1

e (y −XTa)‖2
2 (6.3)

The solution is given by:

â = (XC−1
e XT )−1XC−1

e y (6.4)

6.3 Sampling Designs for Model Selection

In this section, we look at the situation when the field is one of two competing regres-

sion models and we want to design a strategy to determine which of the models is true.

A common method is to randomly place sensors, collect measurements, estimate the

models and use a model selection criterion to pick the model given the measurements

collected. In this section we show how to find placements and collect measurements

to optimize the model selection. This falls into the fundamental experimental proce-

dure where one has a prior set of plausible models for the field and resorts to guided

measurement collection to pick the model, from the set, that best describes the field. It

turns out that the measurement collection should be done in iterations with the estima-

tion of the parameters of the regression models. Assume that the two competing linear
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regression models are:

h1(x, a) = XT
1 a

h2(x, b) = XT
2 b.

(6.5)

where X1 and X2 are the corresponding design matrices.

If m measurements are collected at locations x1, . . . , xm then

y = h(x) + e, (6.6)

where the phenomenon h(x) is the true model and e ∼ N (0, Ce) is the measurement

noise. We shall assume, without loss of generality, that C−1
e = σ2I .

The parameters a and b are estimated, as in (6.4), by

â = (X1C
−1
e XT

1 )−1C−1
e X1y (6.7)

b̂ = (X2C
−1
e XT

2 )−1C−1
e X2y. (6.8)

6.4 The fundamental model selection problem

This section is organized as follows. In section 6.4.1, we review the related work. In

Section 6.4.2, we formulate the problem mathematically for the maximum likelihood

criterion (MLC), Akaike’ information criterion (AIC) and Bayes’ information crite-

rion (BIC) frameworks and we present the algorithms that define a strategy for the

measurement collection. Section 6.4.4 shows the performance of the algorithms along

with discussions on the results obtained.

6.4.1 Related Work

The problem considered here is how to select training data in the modeling process.

This type of problem has been called experiment design in the statistics literature

[AF75] [Puk93], active learning in the machine learning literature [CWN05] [CGJ96]
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[Mac92], and sensor placement or adaptive sampling in the sensor networks litera-

ture [KGG06]. The work in [KGG06] is based on the Gaussian process framework to

model the spatial field. In this framework a Gaussian random variable is associated

with the phenomenon at each location and for any set of locations a Gaussian random

vector is used to model the phenomenon at these locations. Given measurements at

certain locations, the field value at these locations can be estimated using the ML cri-

terion with an error covariance matrix which depends on the covariance matrix of the

Gaussian process. In [KGG06], a pilot deployment is used to collect data and estimate

the covariance matrix of the Gaussian process using a kernel function. The work in

this chapter could be used in the estimation of the covariance matrix structure. Instead

of assuming one certain structure, one can use the work in this chapter to optimize the

selection of a structure for the matrix from a set of plausible structures.

The work in [RHK05] considers the sensor placement for maximal coverage in the

design space without any knowledge about the model of the field. Mobile sensors are

used to travel and collect measurements at these placements. The travel time is taken

into consideration in finding the placements. Here we assume that the model is one of

many defined models.

The work in active learning [CWN05] and [CGJ96] considers the problem for the

regression and neural networks respectively. They assume one class of models and

perform active training data selection to learn the model.

The difference in this work is the consideration of the uncertainty in the structure

of the statistical model used. Instead of assuming one structure (one class) for the

model, we devise algorithms for optimizing the selection of the structure of the model.

We do experiment design, active learning or sensor placement for the model selection

problem.

The work of [AF75] is the closest to the work presented here. It considers the ML
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selection criterion where the solution (measurement locations) is called T -optimum de-

sign. Here we extend the work of [AF75] to consider the AIC [Aka74] and BIC[HTF01]

criteria as well. Moreover we present error rates for the algorithms and the improve-

ment over random designs.

6.4.2 Maximum Likelihood Framework

The maximum likelihood framework is widely used for model selection and it is based

on the likelihood test. The performance measure used in this framework is the proba-

bility of error in the selection. The sensor placement would be designed to minimize

the probability of error. We do the following in this order: we derive the likelihood

test then we formulate the sensor placement problem for optimizing the likelihood test

and finally we present the algorithm that solves the optimization problem.

The likelihood test is to compare the likelihoods of h1(x, â) and h2(x, b̂), Ph1|y

and P (h2|y) respectively, and pick the one with the largest value. The log-likelihood

test is

max
i

log (f(y|hi)) (6.9)

where f(y|hi) ∼ N (hi, σ
2I). This is a binary hypothesis testing problem and the

probability of error, P e, in selecting the model is [Poo98]

P e = Q


√
‖h1(x, â)− h2(x, b̂‖2

2

2σ

 (6.10)

where Q(x) =
∫∞
x

1√
(2π)

exp
(
− s2

2

)
To optimize the selection we choose to minimize the probability of error (6.10).

Since the function Q is strictly decreasing we find the sensor placements by maximiz-

ing the argument of Q(.) in (6.10). We discretize the range and introduce a weight
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vector w to get the following problem

max
w

‖diag(w)
(
h1(x, â)− h2(x, b̂)

)
‖2

2

where â = argmina ‖diag(w) (y − h1(x, a)) ‖2
2 (6.11)

b̂ = argminb ‖diag(w) (y − h2(x, b)) ‖2
2

The weight vector w reflects how many times each location was selected. An non-

zero wi means the location xi was selected. This problem (6.11) is similar to the

problem derived in [AF75] where the solution ŵ was called the T -optimum design.

The derivation of (6.11) here is different than the one in [AF75] and follows from the

minimization of the probability of error in the likelihood test.

We see from (6.11) that we need to know â and b̂ to find the weights ŵ and we need

to know ŵ to estimate â and b̂, i.e. on the one hand we need to know the parameters

of the models to find the optimal sensor placement and on the other hand we need to

collect measurements at certain locations to estimate the parameters of the models. The

solution ŵ of (6.11) was also given in [AF75] by the following sequential algorithm,

Algorithm (1):

1. Given a design w(j) and a number of measurements N find:

âj = argmina ‖
(
yj − h1(x, a)

)
‖2

2

b̂j = argminb ‖
(
yj − h2(x, b)

)
‖2

2

2. Add to the design the location zj+1 such that:

zj+1 = argmaxz∈Z

(
h1(z, âj)− h2(z, b̂j)

)2

3. Make a measurement s at zj+1 and update

w(j + 1) = (1− 1
N+1

)w(j) + 1
N+1

δ(zj+1)

4. Go back to 1
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where δ(zj+1) is a vector with all entries equal to zero except the entry correspond-

ing to zj+1 is equal to 1. In each iteration the algorithm estimates the parameters, â

and b̂, from the available measurements, picks the point that maximizes the difference

between the models, makes a measurement there and updates the weights associated

with locations by adding 1
N+1

weight to the point selected and rescaling so that the

weights add up to 1. Details on the convergence of the algorithm to the solution of

(6.11) are available in [AF75]. Finally, given the measurements collected, a likelihood

test is used to select the model.

The initial locations are found by theD-optimum design [Puk93]. TheD-optimum

design consists of the locations that minimize the variance of the error in the estimation

of the models parameters. This initial design is also used in [AF75].

We would like to note that in the case where the two models are nested, for example

h1(xi, vi) = a0 + a1xi, i = 1, . . . ,m

h2(xi, vi) = b0 + b1xi + b2x
2
i , i = 1, . . . ,m,

(6.12)

the space of the second model includes the space of the first model. In this case one

would be interested in the structure of the model and would add the constraint b2 ≥ 1

in the estimation of the parameters (step 1 of the algorithm) [AF75].

6.4.3 Akaike’s and Bayes’ Information Criteria

In this section we consider the Akaike’s Information Criterion AIC [Aka74] and

Bayes’ Information Criterion BIC [HTF01] frameworks for the model selection. In

these frameworks the information criterion of a model h, IC(h) is given by:

IC(h) = (−2)log(ML(h)) + kh, (6.13)

where ML(h) is the maximum likelihood of h, and kh is a term penalizing for the

degree of the model. For AIC, kh = 2d where d is the number of free parameters in
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the model h. For BIC, kh = (logm)d where m is the number of measurements. The

model having the smallest IC is selected. The difference from MLC is the addition

of the kh term reflecting the model complexity, so a low complexity model is favored

over a high complexity one. Note that if the two models have the same complexity,

both AIC and BIC reduce to maximum likelihood.

As in the previous section, we are interested in a measurement collection strat-

egy to minimize the probability of error in the model selection when there are two

competing models. The probability of error analysis is similar to the analysis in the

maximum likelihood framework. Given some measurements, the probability of error

in using AIC or BIC can be shown to be:

P e = 0.5Q
(

(k2−k1)σ2+‖h1(x,â)−h2(x,b̂)‖22
2σ‖h1(x,â)−h2(x,b̂)‖2

)

+ 0.5Q
(

(k1−k2)σ2+‖h1(x,â)−h2(x,b̂)‖22
2σ‖h1(x,â)−h2(x,b̂)‖2

) (6.14)

We see that the probability of error P e is a function of the selected locations. To

optimize the model selection in these frameworks, the algorithm developed is similar

to algorithm (1) with the modification of step 2 to

zj+1 = argmin
z∈Z

P e. (6.15)

Examination of (6.14) shows that (6.14) is decreasing in the distance between the

models. Thus we can in performing the minimization (6.15) simplify it to the maxi-

mization of the distance between the models. The AIC and BIC will thus select the

same locations and samples as ML, but will produce different model selections due to

the selection criteria. Different model selection criteria can result in different samples

being selected.

These conclusions are the consequence of the use of the probability of error expres-

sion in (6.14) which averages the missed detection and the false alarm probabilities.
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However, we found that this choice led to better performance than for example mini-

mizing only the missed detection probability.

6.4.4 Evaluation and Discussion

In this section we present an example that shows the performance of the algorithm,

presented above, in terms of the improvement in the correct model selection over us-

ing a collection of measurements at randomly selected locations. We show plots of

the error rate as well as plots of the behavior of the algorithms versus the number of

iterations. The example used in the simulations is described in the following. The two

competing models are:

h1(xi; a) = a0 + a1xi, i = 1, . . . ,m

h2(xi; b) = b0 + b1e
x
i + b2e

−xi , i = 1, . . . ,m
(6.16)

We define a Difference Power to Noise Ratio (DPNR):

DPNR =
‖
(
h(x)− h2(x, b̂)

∥∥∥
σ

(6.17)

where h2(x, b̂) is obtained by fitting h2 to the truth over the whole range considered.

This measure reflects the minimum distance between the truth and the space of the

second model, normalized by the noise standard deviation. We show it in the plots

since SNR (which is the truth power to noise ratio) does not reflect the closeness of the

models, i.e. a high SNR could correspond to a low DPNR depending on the competing

models.

The algorithm was tested in two scenarios. The first one is when the truth was

h(x) = 4.5 − 0.6ex − 1.3e−x over the range Z = [−1.5; 1.5]. The number of realiza-

tions was 100, 000. The error rate was computed as the ratio of the number of wrong

selections to the number of realizations. The performances of the ML, AIC and BIC
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are shown in Fig.6.1. We can see that there is a significant improvement, around 3dB,

over the random collection of measurements. As expected the ML selection performs

better than both AIC and BIC. This is due to the properties of ML, AIC and BIC: both

AIC and BIC would favor the lower complexity class while the true model lies in the

higher complexity one. Moreover the reason that the AIC selection is better than the

BIC one is that, over a finite number of measurements, BIC has a heavier penalty on

complexity than AIC since it includes a term related to the number of measurements

[HTF01]. Fig.6.2 shows that the error rate decreases with increasing numbers of it-

erations (samples). The group of dashed lines shows the error rate when DPNR =

-0.56dB and the group of solid lines shows the error rate when DPNR = 4.29dB. The

sequential method has a much steeper slope for the three error rates than the ones for

random methods for all model selection criteria. The higher the DPNR, the greater the

difference between the sequential method and the random method. When the DPNR

is very low, the error rate decreases slowly. For the random design, we only showed

the behavior of BIC since all of them behave similarily.

In the second scenario, the truth was h(x) = 2+5x over the range Z = [−1.5; 1.5].

Fig.6.3 shows the performances of the ML, AIC and BIC. Again we gain over 3dB over

the random collection of measurements. In this scenario BIC and AIC perform better

than ML since the truth lies in the lower complexity class. The performances of AIC

and BIC are very similar. Fig.6.4 shows that the error rate decreases with increasing

numbers of iterations. The group of dashed lines shows the error rate when DPNR

= -0.31dB and the group of solid lines shows the error rate when DPNR = 4.54dB.

As in the first example, The higher the DPNR, the greater the difference between the

sequential method and the random method. When the DPNR is very low, the error rate

decreases slowly and ML’s performance is close to the random design performance in

the beginning but gets better with increasing the number of iterations. For the random

design, we only showed the behavior of BIC.
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Figure 6.1: Error Rate versus DPNR. The solid lines correspond to the sequential

design and the dashed lines correspond to the random design

We also checked the locations selected by the sequential algorithm; around 7 loca-

tions over the whole range. In the random method, the selected points are distributed

uniformly everywhere within the range. This agrees with the intuition behind the se-

quential algorithm; it is picking the most informative points in terms of the discrimina-

tion between the models. Collecting measurements at these points is highly beneficial

for the selection.

6.5 Path Planning

In the prior section, we considered the problem of finding the sampling points to op-

timize the model selection. This can be viewed as probing sensors, or placing static

ones. The cost of deployment and sampling was ignored and the purpose was to find

the most informative points (for selecting the correct model). The study of this prob-
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Figure 6.2: Error Rate behavior over iterations. The solid line corresponds to a

DPNR=4.29dB and the dashed line corresponds to a DPNR=-0.56dB.
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Figure 6.3: Error Rate versus DPNR. The solid lines correspond to the sequential

design and the dashed lines correspond to the random design
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Figure 6.4: Error Rate behavior over iterations. The solid line corresponds to a

DPNR=4.54dB and the dashed line corresponds to a DPNR=-0.31dB.

lem is very interesting for the theoretical limits of identifying the correct model. But

practically, in many applications, the cost of deployment and sampling is high. In this

section, we intend to take these costs into consideration through one example: the use

of mobile sensors to sample the field. Now, the cost of mobility is included in the

optimization of selecting the sampling points, and the problem becomes a path plan-

ning problem for the mobile sensors to optimize the selection of the correct model.

Since the mobile sensors have finite energy to spend, we want to optimize the model

selection with a constraint on the energy spent. It is easy to see that if we did not have

an energy constraint, the mobile sensors should sample at the points selected by the

algorithm above. But these points could be far from each other, and the cost of visiting

them would be high and above the energy budget allowed. In this case, the cost of

sampling is directly related to the distance traveled by the mobile sensors.

Moreover, in some applications, the cost of deployment is very high and mobility
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is needed to achieve the required task. For example, in aquatic applications [ZS07],

such as estimating some environmental process for a lake or a river, deploying (static)

sensors is costly. So using the algorithm presented above requires us to deploy static

sensors iteratively, to move existing ones, or to densely deploy sensors and probe them

according to the algorithm. All these three options seem difficult and costly, while

using mobile sensors makes the whole sampling design much easier and cheaper. That

is, instead of iteratively deploying static sensors, moving existing ones, or densely

deploying sensors and probing them, we use mobile sensors that can move and sample

at the desired locations. Now the sampling problem becomes a path planning problem

for the mobile sensors. For now, we looked at the problem of a single mobile sensor.

6.5.1 Related Work

The path planning problem has been studied extensively and many algorithms already

exist. Many papers have been written in the context of sensor networks. To our knowl-

edge all the work that has been done, was directed to the field estimation using different

statistical models for the field. Adaptive path planning algorithms were developed to

refine the estimation. The work of Zhang et al. [ZS07], considered linear local regres-

sion and minimized the Integrated Minimum Squared Error (IMSE) of the estimate. In

[SBS07], the authors used Gaussian processes and maximized the mutual information

between the path and the field. In [UK99], the authors used a distributed dynamic sys-

tem and minimized the Frobenius condition number for the Hessian of the least squares

in estimating the parameters of the dynamic system. In [Raf86], a distributed dynamic

system was used as well, but the optimization was to minimize the determinant of the

Hessian matrix. In all these papers, a single model was assumed and the paths of the

mobile sensors were found to optimize the estimation of the model assumed. In our

work, as said above, we consider the model selection problem. In other words, we are
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adding one layer of uncertainty in incorporating uncertainties in models.

6.5.2 Our Path Planning Algorithm

The path planning algorithm we developed, is an extension of Algorithm− 1, where

the only change is in the selection of the next point in step3. We added a distance

penalization term, and we found the point that maximizes the discrimination plus a

penalty term corresponding to the distance traveled:

zj+1 = argmax
z∈Z

(
h1(z, âj)− h2(z, b̂j)

)2

− c(z − zj)2 (6.18)

The parameter c controls how much we are penalizing for the distance traveled.

We ran three simulations for three values of c and the results are showed in Fig.6.5.

Fig.6.5 shows three graphs corresponding to three values of c.

The algorithm presented is a greedy algorithm that optimizes the selection at each

iteration and it is not clear yet what is happening globally. Nevertheless, it was just

a preliminary algorithm for the bigger goal of formulating and solving the following

problem:

max Disrimination (6.19)

s.t. Energy < Budget (6.20)

In this work, we use a combination of static and mobile sensors. As we saw in the

section above, the algorithm used needed an initialization phase where initial estimates

of the models are computed. The static sensors in this section, are used to compute the

initial estimates of the models, and the mobile one is used to optimize the selection.

The initialization phase is done without any collection of measurements, so it is done
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Figure 6.5: Error Rate versus distance traveled. DPNR=1.8dB

prior to any deployment and that is why we are using static sensors. The mobile sensors

are used for the rest of the algorithm.

6.6 Conclusion

In this chapter, we presented two novel active learning algorithms for model selection

in spatial modeling problems. In section 6.4.2, we present the first algorithm where

we consider the discrimination between two linear regression models. The algorithm

collects measurements sequentially to optimize the discrimination between the two

models. This algorithm could be seen as an extension of the maximum likelihood

framework where we don’t only find the maximum likelihood model given the data,

but we also find the data points that result in the best likelihood test by minimizing

the probability of error in the model selection. In section 6.5, we present the second

algorithm which is the path planning version of the first one. We add a term to account
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for the cost of acquiring a measurement by mobile sensor, and we find the data points

that result in the best likelihood test given a cost constraint. For example, the optimal

data points could be far from each other such that a mobile sensor would need to

travel long distances to collect the optimal measurements. Instead our path planning

algorithm finds the points that result in a sub-optimal discrimination to satisfy the cost

constraint. This work could be extended and applied to any sort of measurement cost,

especially when there is model that relates the cost to the measurements.

Finally, this work finds its applications in the situations where the measurement ac-

quisition is complicated or expensive, and where we need to find the minimum number

of measurements to achieve a certain fidelity in modeling a spatial process. An exam-

ple is under-water field modeling using a sensor network where the cost and effort in

obtaining measurements are high, and we would like to find the minimum number of

measurements required to find the correct model of the field.
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CHAPTER 7

Conclusion

7.1 Conclusions

Present advances in technology are enabling us to monitor our life and the world

around us. We now have tools to observe our environment on a large scale, moni-

tor our health, and study our social interactions.

The work in this dissertation is motivated by these recent advances, and consid-

ers problems in environmental monitoring and activity recognition. In chapter 2, we

presented a method to automate the creation of forest maps. We used a classification

method for the vegetation type, based on texture analysis of color and infra red (CIR)

aerial images. The problem was motivated by the need of the French national forest

inventory (IFN) to update their forest maps. Our result show a great improvement over

the current IFN maps, as shown in Figure 2.4 and Figure 2.5. In this problem we used

the help of Mr. Jean-Guy Boureau from IFN, an expert on forests and vegetation types,

to validate our results.

In chapter 3, we developed a system to recognize and classify the work place ac-

tivities for people who work at a desk using two wearable accelerometers. This system

classifies the activity into three categories common at the work place; walking, stand-

ing and sitting. It then monitors the sitting habits, and tracks the seated posture and

movements that a worker might do at their desk. The system uses a multi-level super-

vised classifier using a naı̈ve Bayes classifier at each level. We evaluate our system on
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two subjects performing their daily activities at their desks.

In chapter 4, we extended the work of chapter 3 and built a system to recognize

14 common daily activities (shown in Table 4.2) using 14 sensors worn on the body

(Figure 4.1). We used a tree-based classifier with a naı̈ve Bayes classifier on each

node, and we developed a feature selection algorithm to select the best features to use

at each node. This time we collected a large data set from 8 people performing the 14

activities, and we labeled the data using an android application on a smartphone. We

used a 2-fold cross validation, and got an average classification accuracy of 96%.

In chapter 5, we developed a system for the detection of stumbles using one ac-

celerometer, that could be used by doctors for fall risk assessment. We used anomaly

detection methods, and evaluated the system on large data set containing 100 stum-

bles and more than 45 minutes of walking collected from subjects. Our result shows

that the chest is the best location for the accelerometer, and achieves a 99% detection

accuracy with a 0.5% false alarm rate.

Finally in chapter 6, we presented a more theoretical result, where we developed

active learning algorithms to optimize the model selection in the maximum likelihood

framework.

Our final conclusion is that the design of large data-based classification systems is

creating a new challenge; the validation on large data sets representative of the desired

application. The validation process includes designing and conducting data collection

campaigns, as well as labeling the data to create ground truth. We believe that the

realization of these systems depends on the development of scalable and cost-sensitive

methods for the validation process.
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7.2 Future Work

In this section, we discuss the ideas we have for extending the work we presented in

the previous chapters.

The first step in extending the work of chapters 3, 4, 5, is to conduct more exper-

iments in uncontrolled environments and validate our systems on larger data sets. As

mentioned throughout the dissertation, collecting testing data sets is challenging since

it is hard to have a scalable procedure for labeling the datasets. We plan to investigate

the use of semi-supervised learning where we use the classifiers obtained from the con-

trolled experiments to create and label the larger scale and uncontrolled experiments.

This requires an understanding of how the uncontrolled experiments are different from

the control ones. This idea can be thought of as a multi-level approach where the con-

trol experiments are used to create an initial model and an initial classifier that can be

used on part of the data from the uncontrolled experiments for the purpose of labeling

it. This labeled part will then be used to update the models and classifiers and adapt

them to the uncontrolled environment.

For the work of chapter 4, we plan to investigate the sensor selection problem, that

is finding the best sensor placements on the body to achieve a desired classification

accuracy. We believe that the feature selection algorithm we have can be extended to

a sensor selection algorithm. Since our feature selection algorithm adds more features

when we go from one level of the decision tree to another, we can add weights to the

sensors to favor the features from an already selected sensor over the features from a

non-selected sensor. This problem becomes about minimizing the number of sensors

required for the activity classification.

For the work of chapter 5, a direct extension is to conduct more experiments and

simulate more types of stumbles. We plan to collect data from patients who are suffer-
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ing from gait problems, since they are the ones who have a high risk of falling. We also

plan to use more powerful algorithms for the stumble detection, especially to make the

pockets better placements in terms of the detection accuracy, since they are the easiest

placements for accelerometers.

The work of chapter 6 can be extended by rigorously formulating the problem pre-

sented in equation 6.20. Another extension is to investigate the use of the algorithms of

chapter 6 with the activity classification systems, in finding the features that optimize

the discrimination between the activity classes.
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