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Abstract of the Dissertation

On Optimal Transmissions in Interference

Networks

by

Yue Zhao

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2011

Professor Gregory J. Pottie, Chair

An interference network is a general model of many wireline and wireless com-

munication networks. Depending on the problem models, the complexities of

maximizing the achievable rates in interference networks vary greatly. In this

thesis, two types of coding - decoding assumptions on how interference is treated

are considered: i) users treat interference as noise, and ii) users apply superposi-

tion coding and successive decoding. Under the former assumption, finding the

optimal transmission schemes is an NP complete non-convex problem. The lat-

ter assumption complicates the problem even further to an information theoretic

level.

Assuming that interference is treated as noise, we study continuous frequency

spectrum management in K-user interference networks. A simple pairwise chan-

nel condition for FDMA schemes to achieve all Pareto optimal points of the rate

region is derived. Furthermore, a convex optimization formulation is established

for this classic non-convex optimization, and the main computational complex-

ity lies in computing convex hull functions based on channel parameters. We

then study the NP hard discrete frequency spectrum management, and provide

xi



a provably optimal decomposition of the problem into channel allocation (CA)

and power allocation (PA). We show that, given the optimal CA, the globally

optimal PA can be solved by a convex optimization. This suggests that finding

a near optimal CA is the key problem, and its combinatorial complexity is what

carries the NP hardness.

Next, we investigate approaching the optimal channel allocation in large-scale

wireless cellular interference networks. We develop a very low-complexity algo-

rithm that achieves the globally optimal uplink CA in one dimensional cellular

networks with flat frequency fading. The algorithm is based on local signal scale

interference alignment. For networks of much more general settings, we develop

a low-complexity iterative distributed CA algorithm, based on decomposed local

optimizations formulated as assignment problems. The algorithm approaches the

global optimum very closely.

Finally, we study the two-user Gaussian interference channel with Gaussian

superposition coding and successive decoding. We first examine an approxi-

mate deterministic formulation of the problem, and show that the constrained

sum-capacity oscillates as a function of the cross link gain parameters between

the information theoretic sum-capacity and the sum-capacity with interference

treated as noise. Furthermore, we show that if the number of messages of ei-

ther user is fewer than the minimum number required to achieve the constrained

sum-capacity, the maximum achievable sum-rate drops to that with interference

treated as noise. By translating the optimal schemes in the deterministic channel

model to the Gaussian channel model, we show that the constrained sum-capacity

in the Gaussian channels oscillates between the sum-capacity with Gaussian Han-

Kobayashi schemes and that with single message schemes.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Interference is one of the defining features of communication networks. Whenever

there are multiple users sharing resources, coping with mutual interference arises

as a fundamental problem. In wireless systems, interference may come from

nearby users’ signal propagation. In wireline systems, interference may come

from electromagnetic coupling between bundled lines. For users transmitting

independent messages, interference among the signals is in general detrimental as

opposed to helpful. Thus, designing and optimizing communication schemes and

systems to mitigate the undesirable effect of interference has been a long-standing

quest in communications, optimization, and information theory communities.

Along with the development of large-scale communication networks through-

out the past several decades, many interference mitigation methods have emerged

both in practice and in theory. The general ideas include interference avoidance,

interference averaging, interference cancellation and interference alignment.

Interference Avoidance

The idea of interference avoidance is to let physically interfering users use

orthogonal resources. Typical ways of implementing this idea include Frequency

Division Multiple Access (FDMA), Time Division Multiple Access (TDMA). In
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theory, all kinds of orthogonal resources are equivalent, and can be thought of

as degrees of freedom, or dimensions. (In practice, however, different ways of

implementation entail different practical constraints including synchronization

requirement, peak to average power ratio, etc.) Optimal orthogonal resource al-

location is in essence a scheduling problem, or channel allocation problem, which

is in general NP hard in interference networks. In spite of the NP hardness, with-

out optimality guarantee, many dynamic channel (frequency or time) allocation

heuristics have been developed [KN96].

Interference Averaging

The idea of interference averaging is to pool interference from different inter-

ferers together, and average over them using, e.g., spread spectrum techniques.

As a result of interference averaging, the effective interference strength that dif-

ferent users see become similar, and hence the necessity of scheduling largely

disappears. Power control, or power allocation, is thus the central task in opti-

mizing interference averaging schemes [HT99]. Power allocation has been studied

in many different scenarios, including multiple access channel, interference chan-

nel, cellular networks, ad hoc networks, etc. In interference networks (which

embody all of the previously listed scenarios,) the problem of power allocation is

in general a non-convex optimization due to interference coupling [LZ08]. In spite

of the non-convexity in general, there has been a rich literature in studying spe-

cialized and simpler formulation (e.g., [KG06]), as well as the general non-convex

optimization of power allocation (e.g., [LZ08]).

Interference Cancellation

The idea of interference cancellation is to let users not only decode its own

message, but also decode part of the received interference from other users, and
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hence remove it. In general, the implementation complexity of interference can-

cellation is higher than treating interference as noise, and lower than joint de-

coding schemes. In practice, interference cancellation has long been studied in

many different forms, e.g., with CDMA transceivers, with multiple antennas, in

cellular uplink and downlink transmissions [And05]. Information theoretically, it

has been shown to achieve the capacity region in both multiple access channels

and general classes of broadcast channels [CT91]. In interference networks where

users transmit independent messages without transmitter or receiver cooperation,

however, the maximum achievable rate region using interference cancellation with

arbitrary message splitting is unknown even for the two-user case.

Interference Alignment

The idea of interference alignment is to control interference from different in-

terferers such that they reside in fewer signal dimensions at the desired receiver.

As a novel and general philosophy of interference mitigation, interference align-

ment have been recently studied in two particular forms: signal vector interference

alignment, and signal scale interference alignment [CJ09]. In the literature, both

forms of interference alignment have been mainly focused on achieving the max-

imum sum degrees of freedom in interference networks, which has been shown

to be in general an NP hard problem [RSL10]. Low complexity iterative algo-

rithms on signal vector interference alignment have been devised to approach the

maximum sum degrees of freedom, in finite dimensional and finite SINR scenarios

[GCJ08].

Combination of the above four techniques can be used in interference mitiga-

tion and increasing network capacity. However, finding optimal schemes with the

above four ideas are in general NP hard in the number of users, and thus cannot

3



be efficiently solved in large-scale networks.

In addressing the fundamental difficulties of these interference mitigation

ideas, it is crucial to note that there are different problem model assumptions

underlying the above ideas. In the literature, there have been in general two

types of problem models considered:

1. The model in which each user treats the interference it receives from other

users as noise.

2. The information theoretic model.

The model with interference treated as noise is a baseline model which is in prac-

tice easier to satisfy, whereas the information theoretic model is more general but

in practice has a higher implementation complexity. For the model with inter-

ference treated as noise, many optimization problems (including sum-rate max-

imization) have been shown to be NP complete in the number of users [LZ08],

which prevents us from pursuing the optimal solution for large-scale networks.

Although many practical heuristics with polynomial computational complexity

have been developed in the literature, they cannot provide theoretical guaran-

tees on optimality (or approximate optimality). With the information theoretic

model, even the capacity region for the two-user interference channel remains

open, for which significant progress have recently been made on approximate

characterizations of this capacity region [ADT11]. It has been extremely hard to

analyze any networks with a size larger than two users (except for some networks

with simplified and special structures) with the information theoretic model.

This thesis studies optimal transmission schemes in interference networks, and

how to approach them in practice:

1. For the model with interference treated as noise, we seek to close the gap

4



between the theoretical optimality and practical algorithms in interference

network optimization. We investigate complexity reduction methods in

approaching the optimal transmission schemes in general interference net-

works, and low-complexity distributed algorithms that closely approach the

optimal performance and apply to large-scale wireless cellular interference

networks.

2. We study the optimal transmission schemes for the model with Gaussian

superposition coding and successive decoding, which bridges the complexity

of the model with interference treated as noise and the information theoretic

model. We seek to understand in what situations and how much perfor-

mance gain we can get, as compared to the implementation complexity and

the associated overhead by using such techniques.

1.2 Model

A general network model that characterizes the interference among a set of users is

the interference channel model. As depicted in Figure 1.1, there are K users each

consisting of a pair of transmitter and receiver. xi and yi denote the transmitted

signal from transmitter i and the received signal at receiver i respectively. hij

represents the cross channel function through which the signal from transmitter

i is received at receiver j. zi represents the noise signal at receiver i, superposed

on the other signals that receiver i sees. Interference network, as the underlying

network model for many wireless/wireline communication networks, incorporates

the highly non-trivial interference channel nature into communication network

optimization. In this thesis, we consider bandlimited Additive Gaussian interfer-

5
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Figure 1.1: K-user interference channel.

ence networks,

yi(f) = hii(f)xi(f) +
∑

j 6=i

hji(f)xj(f) + zi(f), i = 1, . . . , K, ∀f. (1.1)

1.3 Outline of the Thesis

In Chapter 2, we consider the model with interference treated as noise, and

study optimal spectrum and power allocation for Gaussian interference channels

(cf. Figure 1.1). The main difficulty of this problem is that it is a non-convex

optimization1 due to the interference coupling. As a result, it has been proven

that most optimization problems in interference networks are NP hard [LZ08].

We first study the continuous frequency model. Intuitively, when the cross

interference channel gain is sufficiently strong, it is beneficial to have users occupy

orthogonal channels. We prove that, without loss of any Pareto optimality, every

pair (among all) of the users can independently decide whether or not it should

be orthogonalized by checking whether the cross channel gains between them

satisfy a “strong coupling condition”. We present the weakest, and hence the

1Non-convex optimization is in general not guaranteed to have efficient algorithm that solves
for its globally optimal solution, whereas convex optimization in general has algorithms that
run in polynomial time that solve for its globally optimal solution [BV04]
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most general “strong coupling condition” for this purpose. This is an example of

distributed decision making with optimality guarantees. For finding the general

optimal spectrum management solution in all channel conditions, we provide a

primal domain convex formulation of this classic non-convex optimization, and

have a complete characterization of the optimal solution by computing the convex

hull of the non-convex objective functions.

For the NP hard discrete frequency problem with K users and M channels, we

provide a provably optimal decomposition of the problem into channel allocation

(CA) and power allocation (PA). At first glance, neither of these decomposed

problems is easy, as CA is a hard combinatorial optimization, and PA is again

hard from its non-convexity. However, we show that given the optimal CA, an

approximate optimal PA can be solved by a convex optimization, such that the

achievable objective is within a constant gap from the global optimum. The

problem is then “vertically” decomposed into CA and PA, and all the hard-

ness lies only in CA. We further show that, via Lagrange dual decomposition

[BV04, CYM06], the problem scale of the CA problem can be reduced to just a

single channel, and the overall computational complexity of solving the Lagrange

dual problem of optimal spectrum management is O(M2K). The vertical decom-

position of CA and PA suggests that finding a near optimal CA is the central

problem, and the combinatorial problem of finding the optimal CA is what carries

the NP hardness.

In Chapter 3, we develop low complexity near optimal channel allocation

algorithms for large-scale wireless cellular interference networks. We first show

that optimizing CA is essentially a signal scale interference alignment procedure.

Although this insight does not solve the NP hard combinatorial optimization

of CA, by assuming perfect interference alignment, an efficient upper bound on

7



the global maximum can be computed. To develop near global optimal CA

algorithms, we exploit the interference as a double edged sword: while interference

coupling is the defining feature of wireless networks, resulting in non-convexity

and NP hardness, it also has a natural locality due to propagations losses. We

establish an algorithmic framework that fully respects the effect of interference,

and yet “horizontally” decomposes the optimization of CA to local assignment

problems [BDM09]. The respect of interference ensures that the algorithm is

“context-aware” (i.e., not over-simplifying the network physical layer), achieving

very close to global optimal performance. The horizontal decomposition makes

the algorithm distributed. It can be applied to arbitrarily large networks with

low complexity.

In Chapter 4, dropping the assumption of treating interference as noise, we

study the model with Gaussian superposition coding and successive decoding,

and investigate the benefit from applying this more complicated scheme versus

its overhead. An approximate modeling that simplifies the problem and yet cap-

tures its essence — the deterministic channel model — proves to be crucial and

powerful. With the deterministic channel model, we introduce the complemen-

tarity conditions on the bit levels that capture the use of Gaussian coding and

successive decoding in the Gaussian model. In the deterministic channel prob-

lem, we show that the constrained sum-capacity oscillates as a function of the

cross link gain parameters between the information theoretic sum-capacity and

the sum-capacity with interference treated as noise. Furthermore, we show that if

the number of messages of either user is fewer than the minimum number required

to achieve the constrained sum-capacity, the maximum achievable sum-rate drops

to that with interference treated as noise. We translate the optimal schemes in

the deterministic channel model to the Gaussian channel model, and also derive

two upper bounds on the constrained sum-capacity. Numerical evaluations show

8



that the constrained sum-capacity in the Gaussian channels oscillates between

the sum-capacity with Gaussian Han-Kobayashi schemes [HK81] and that with

single message schemes. In sum, the power of good approximate modeling is that

it crystallizes the intuition of the problem, removes technical cumbersomeness as

much as possible, and enables us to attack the central hardness efficiently.

Chapter 5 summarizes the main points of the thesis and suggests directions

for future research.

Parts of this thesis are published in [ZP09b, ZP09a, ZP10, ZP11a, ZTA11a,

ZP11b, ZTA11b]
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CHAPTER 2

Spectrum Management in Gaussian Interference

Channels

In this chapter, we consider Gaussian frequency selective interference channels

(cf. Figure 4.4) in which K(≥ 2) users share a common frequency bandwidth

I. We make the assumption that interference is treated as noise at each re-

ceiver. This is in practice the simplest decoding constraint to satisfy, and is thus

employed in most commercial multi-carrier communication networks. With this

assumption, the two fundamental resources to allocate for each user are power

and bandwidth. The optimization of multi-user power and bandwidth allocation

in Gaussian interference channels is known in the literature as the spectrum man-

agement or the spectrum balancing problem. Depending on the constraints on

power allocation, there are two different models for spectrum management prob-

lems: the continuous frequency model and the discrete frequency model. In this

chapter, we mainly focus on the continuous frequency model (Section 2.1). Some

key results on the discrete frequency model are provided at the end (Section 2.2)

which motivate further discussions in the next chapter.

Continuous Frequency Model

In the continuous frequency model, the channel frequency responses, the noise

spectral densities, and the transmit power spectral densities (PSD) can be arbi-

10



trary bounded piecewise continuous functions1 of frequency within the bandwidth

of interest. Thus, in this model, there is practically no constraint on the form of

the transmit PSD of each user. As a result, the transmit PSD pi(f), f ∈ I cor-

responds to an uncountably infinite number of optimization variables, for which

describing the complexity of solving the optimal spectrum management in gen-

eral is pointless. However, from analyzing the continuous frequency optimization

problem, there are still significant insights that can be incorporated into algo-

rithm designs in practice.

There are essentially two strategies for multiple users to co-exist: Frequency

Division Multiple Access (FDMA) and frequency sharing (overlapping). As the

cross coupling varies from being extremely strong to extremely weak, the prefer-

able co-existence strategies intuitively shift from complete avoidance (FDMA) to

pure frequency sharing. We start from the strong coupling scenario, and inves-

tigate the weakest interference condition under which FDMA is still guaranteed

to be optimal, regardless of the power constraints. In the literature, a relatively

strong pairwise coupling condition for FDMA to achieve all Pareto optimal points

of the rate region is derived [EPT07]. By pairwise we mean that whether two

users should be orthogonalized in frequency only depends on the interference con-

dition between those two users. For sum-rate maximization, the required coupling

strengths for FDMA to be optimal are further lowered, approaching roughly the

weakest possible [HL09]. However, this condition is derived in a group-wise form,

requiring the couplings between all users to be sufficiently strong.

In this chapter, the weakest possible pairwise condition for FDMA to achieve

all Pareto optimal points of the rate region is proved: for any two (among all of

the K) users, as long as the two normalized cross channel gains between them are

1More generally, Lebesgue integrable functions can be considered [LZ08].
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both larger than or equal to 1/2, an FDMA allocation between these two users

benefits every one of the K users. When the cross channel gain is less than 1/2

in symmetric channels, we precisely characterize the non-empty power constraint

region within which frequency sharing between two users leads to a higher rate

than an FDMA allocation between them.

For the general spectrum management problem, a variety of commonly used

objective functions (including weighted sum-rate maximization) lead to non-

convex optimization, constituting the main difficulty in spectrum management.

To attack this difficulty, we develop a new method that transforms the problem

in the primal domain into an equivalent convex optimization with the continuous

frequency model.

1. We begin with sum-rate maximization in two-user symmetric flat channels.

We show that the optimal spectrum management can be solved by comput-

ing a convex hull function. As a result, the optimal spectrum management

always consists of one sub-band of flat frequency sharing and one sub-band

of flat FDMA. The optimal solution for the sum-rate maximization was

also independently derived in [SZB08] for two-user asymmetric flat chan-

nels, and in [BHB10] for K-user (K ≥ 2) symmetric flat channels.

2. We first generalize our results to two-user symmetric frequency selective

channels, and show that a convex relaxation of the original non-concave

objective actually leads to the same optimal value as the original problem.

Next, we generalize our results to K-user asymmetric flat channels for arbi-

trary weighted sum-rate maximization, and show that the optimal solution

can be found by computing a convex hull function. Finally, we combine the

ideas of these generalizations, and establish the equivalent primal domain

convex optimization for the spectrum management problem in its general
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form, i.e., arbitrary weighted sum-rate maximization for K-user (K ≥ 2)

asymmetric frequency selective channels.

Discrete Frequency Model

In the discrete frequency model, piecewise constant channel frequency re-

sponses and the noise spectral densities are considered. As a result, the entire

bandwidth becomes a set of frequency flat sub-channels (I =)I1∪I2∪. . .∪IM . The

key constraint that makes the discrete frequency model different from the con-

tinuous one is that the transmit PSD must be constant in each flat sub-channel.

Accordingly, the optimization variables are {pi(m), i = 1, . . . , K,m = 1, . . . ,M},

where pi(m) is user i’s constant PSD in sub-channel m.

In the literature, the discrete frequency model has attracted enormous re-

search effort in the past decade. With the commonly used non-concave objective

function, the spectrum management problem with the discrete frequency model

has been shown to be NP complete in the number of users even for the sin-

gle carrier case [LZ08]. For the single carrier sum-rate maximization problem,

two special cases have been solved: the two-user case of all channel parameters

[EMK06, GGO06], and the K-user (K ≥ 2) case of fully symmetric channels

[BHB10].

For the multi-carrier weighted sum-rate maximization problem, dual decom-

position methods have been widely applied to decompose the problem in fre-

quency [CHC07, CYM06, YL06]. While these methods effectively reduced the

scale of the problem to solve, two remaining issues are as follows.

• While the dual master problem is a convex optimization (which can be

solved by e.g. subgradient method [YL06],) the single carrier sub-problem

is still an NP-complete non-convex optimization.
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• The dual optimal solution does not necessarily give a primal optimal solu-

tion.

Addressing the second issue, a significant result is that the duality gap of the

spectrum management problem goes to zero as the number of sub-channels goes

to infinity, under mild technical conditions [YL06, LZ08].

In the literature, convexifications of the weighted sum-rate objective have been

proposed so that the problem is approximated as convex optimizations [Chi05a].

However, the gap between the optimum of the convex approximation and the

original problem can be unbounded. Addressing this problem, we decompose the

spectrum management problem into two steps: channel allocation and power allo-

cation. We show that provided with the optimal channel allocation, the solution

of a convex approximation of the power allocation problem can be guaranteed

to be within a constant gap from the global optimum of the original problem.

This suggests that it is finding the optimal channel allocation that carries the NP

hardness of the overall spectrum management problem.

2.1 Continuous Frequency Spectrum Management

2.1.1 Problem Model and Two Basic Co-existence Strategies

2.1.1.1 Channel Model and Rate Density Function

As depicted in Figure 4.4, a K-user Gaussian interference channel is modeled

by (1.1). WLOG, we assume that the channel is over a unit bandwidth fre-

quency band [0, 1]. The results derived directly generalize to frequency bands

with arbitrary bandwidths. The channel frequency selectivity is characterized by

the channel gain functions {hij(f), 1 ≤ i, j ≤ K} and the noise spectral density
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{σi(f), 1 ≤ i ≤ K}. Denote the transmit PSD of user i by pi(f), and define

p(f) , [p1(f), p2(f), . . . , pK(f)]
T , ∀f ∈ [0, 1]. (2.1)

We assume that {hij(f), 1 ≤ i, j ≤ K}, {σi(f), pi(f), 1 ≤ i ≤ K} are all piecewise

bounded continuous functions over the band f ∈ [0, 1], with a finite number of

discontinuities.

We assume that every user uses a random Gaussian codebook, and only de-

codes the signal from its own transmitter, treating interference from other trans-

mitters as noise. Employing the Shannon capacity formula for Gaussian channels,

we have the following achievable rate for user i:

Ri =

∫ 1

0

log

(

1 +
pi(f)|hii(f)|2

σi(f) +
∑

j 6=i pj(f)|hji(f)|2

)

df

=

∫ 1

0

log

(

1 +
pi(f)

ni(f) +
∑

j 6=i pj(f)αji(f)

)

df, (2.2)

where αji(f) , |hji(f)

hii(f)
|2, ni(f) ,

σi(f)
|hii(f)|2

are the cross channel gains and the

noise power normalized by the direct channel gains. We further make a technical

assumption that

∃nǫ > 0, s.t. ∀f ∈ [0, 1], ni(f) ≥ nǫ, ∀i = 1, . . . , K. (2.3)

which naturally holds in all physical channels. As we consider the continuous

frequency model, we define the rate density function as follows:

Definition 1. ∀f ∈ [0, 1], with P = [P1, P2, . . . , PK]
T ,

ri(P, f) , log

(

1 +
Pi

ni(f) +
∑

j 6=i Pjαji(f)

)

. (2.4)

The rate density function of user i at frequency f is

ri(p(f), f) , log

(

1 +
pi(f)

ni(f) +
∑

j 6=i pj(f)αji(f)

)

, (2.5)

and r(p(f), f) , [r1(p(f), f), r2(p(f), f), rK(p(f), f)]
T .
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Accordingly, the rate of user i can be re-written as

Ri =

∫ 1

0

ri(p(f), f)df, i = 1, . . . , K. (2.6)

2.1.1.2 Piecewise Continuous Functions as Limits of Piecewise Flat

Functions

We consider the channel responses and power allocations as piecewise bounded

continuous functions of frequency. Intuitively, one may approximate continuous

functions by piecewise constant functions, by subdividing the support (frequency)

to a sufficiently large number of small pieces. We make use of this idea in this

chapter, and provide a technical lemma for this purpose.

Lemma 1 (Approximation Lemma). Given {pi(f)}, {αji(f)}, {ni(f)}, f ∈ [0, 1]

all piecewise bounded continuous, for any utility function U(p, α,n) that is a

uniformly continuous function of {pi, αji, ni, 1 ≤ i, j ≤ K}, ∀ǫ > 0, there exists

a set of piecewise flat power allocation functions and channel responses,

p̄(f) = [p̄1(f), . . . , p̄K(f)]
T , {ᾱji(f)}, {n̄i(f)}, f ∈ [0, 1],

for which the band is divided into M(<∞) intervals I1, . . . , IM , Im = [fm−1, fm],

with f0 = 0, fM = 1, fm−1 < fm, and

∀m, ∀f ∈ Im, p̄(f) = P(m), ᾱji(f) = αji(m), n̄i(f) = ni(m), ∀i, j, (2.7)

where P(m) = [P1(m), . . . , PK(m)]T , {αji(m), ni(m)} are constants that only de-

pend on the interval index m, such that the following three properties hold:

P1. ∀f ∈ [0, 1], p̄i(f) ≤ pi(f), ∀i = 1, . . . , K;

P2. ∀f ∈ [0, 1], ᾱji(f) ≥ αji(f), ∀i 6= j, n̄i(f) ≥ ni(f), ∀i;

P3. ∀f ∈ [0, 1], |U(p̄(f), ᾱ(f), n̄(f))− U(p(f), α(f),n(f))| < ǫ.
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From now on, we name the p̄(f), {ᾱji(f)} and {n̄(f)} found in Lemma 1 a

“piecewise flat ǫ-approximation”.

Remark 1. Property P1 ensures that the approximate piecewise flat power allo-

cations consume less power than the original ones. Property P2 ensures that the

approximate piecewise flat channel responses are “worse” than the original ones

(as the cross channel gains and the noise power are all stronger, and interference

is treated as noise.) Nonetheless, property P3 ensures that under these “adverse”

conditions, these approximations can still achieve the original utility U arbitrarily

closely.

We note that with finite power constraints and non-degenerate channel pa-

rameters (2.3), most utility functions considered in practice (e.g. a weighted

sum-rate) satisfy the uniform continuity condition of U(p, α,n).

2.1.1.3 Two Basic Co-existence Strategies and One Basic Transfor-

mation

There are essentially two co-existence strategies for users to reside in a common

band: frequency sharing and FDMA. We introduce two basic forms of these two

strategies: Flat Frequency Sharing and Flat FDMA, both defined in flat channels.

We will see that these two basic strategies are the building blocks of general non-

flat co-existence strategies in frequency selective channels. Consider a two-user

flat channel:

∀f ∈ [0, 1], n1(f) = n1, n2(f) = n2, α21(f) = α21, α12(f) = α12. (2.8)

Definition 2. A flat frequency sharing scheme of two users is any power alloca-

tion in the form of

∃p1, p2, ∀f ∈ [0, 1], p1(f) = p1, p2(f) = p2. (2.9)
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Figure 2.1: Power allocations of flat frequency sharing and flat FDMA, also an

illustration of flat FDMA re-allocation.

Definition 3. A flat FDMA scheme of two users is any power allocation in the

form of

∃p, ∀f ∈ [0, 1], p1(f)p2(f) = 0, p1(f) + p2(f) = p. (2.10)

Definition 4. A flat FDMA reallocation is the following power invariant trans-

form that reallocates the power of the two users from a flat frequency sharing

scheme to a flat FDMA scheme:

User 1 and user 2 reallocate their power within sub-bands of bandwidths p1
p1+p2

and p2
p1+p2

respectively, both with a flat PSD of p′1 = p′2 = p1 + p2.

Illustrations of the power allocations of the two basic co-existence strategies

before and after a flat FDMA re-allocation are depicted in Figure 2.1. Clearly,

the total power of each user does not change after a re-allocation. Similarly, flat

frequency sharing schemes, flat FDMA schemes, and flat FDMA re-allocation

can be defined for any k(= 1, 2, . . .) users. (k = 1 is the degraded case in which

flat frequency sharing is the same as flat FDMA.)

Remark 2. A flat FDMA scheme is mathematically the same as multiple dis-
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joint bands each seeing a flat frequency sharing of only one user. Thus, it is ac-

tually sufficient to only define flat frequency sharing schemes of any k(= 1, 2, . . .)

users, without introducing the definition of flat FDMA schemes. This alternative

approach is used later in Section 2.1.4 for the general optimization in K-user

frequency selective channels. Here, flat FDMA and flat FDMA re-allocation are

explicitly defined, because they offer clear intuitions for optimizing spectrum man-

agement as will be shown in the following sections.

2.1.2 The Conditions for the Optimality of FDMA

We investigate the conditions under which the optimal spectrum and power al-

location takes the form of FDMA. We show that our results apply to all Pareto

optimal points of the achievable rate region, by proving the following simple

pairwise condition:

For any two of the K users, as long as the normalized cross channel gains

between them are both larger than or equal to 1/2, every one of the K users will

benefit from an FDMA allocation between these two users.

We arrive at this result by two steps:

1. We show the coupling condition under which FDMA achieves all Pareto

optimal rate tuples within a group of strongly coupled users.

2. For the users outside a strongly coupled group, we show that they always

benefit from an FDMA allocation within the strongly coupled group.

2.1.2.1 The Optimality of FDMA within Strongly Coupled Users

We now give a sufficient condition for K-user interference channels under which

FDMA among all users can achieve any Pareto optimal rate tuple. This condition
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requires that between every pair of users, the normalized cross channel gains must

be stronger than 1
2
. We begin with two-user flat channels, and extend the results

to K-user frequency selective channels.

Theorem 1. Consider a two-user flat interference channel (2.8). Suppose the

two users co-exist in a flat frequency sharing manner (2.9). If α12 ≥
1
2
and

α21 ≥
1
2
, then with a flat FDMA power re-allocation, both users’ rates will be

higher (or unchanged.)

Theorem 1 can be generalized to the K-user case as follows.

Corollary 1. Consider a K-user flat interference channel, αji(f) = αji, ni(f) =

ni. Suppose the K users co-exist in a flat frequency sharing manner: pi(f) =

pi, ∀f ∈ [0, 1]. If ∀j 6= i, αji ≥
1
2
, then with a flat FDMA power re-allocation, all

users’ rates will be higher or unchanged.

Generalization to frequency selective channels also immediately follows.

Corollary 2. Consider a K-user frequency selective interference channel. Sup-

pose we have an arbitrary spectrum and power allocation scheme p(f) with some

frequency sharing (overlapping) in the band. If αji(f) ≥
1
2
, ∀j 6= i, ∀f ∈ [0, 1], we

can always find an FDMA power re-allocation scheme p̃(f), satisfying
∫ 1

0
p̃i(f)df =

∫ 1

0
pi(f)df, i = 1, . . . , K, with which all users’ rates are higher or unchanged.

We summarize the above results as follows: Pick any sub-band [f1, f2], as

long as all the users are strongly coupled by ∀j 6= i, ∀f ∈ [f1, f2], αji(f) ≥
1
2
,

then for any power allocation scheme having frequency sharing used anywhere

within [f1, f2], there always exists an FDMA power re-allocation scheme (with

every user’s total power unchanged) that leads to a rate higher than or equal to

the original sharing scheme for every user.

20



α10p1

α20p2

p0

n0

0 1

PSD

f

α10p1' α20p2'

p0

n0

0 1

PSD

f

Before re-allocation After re-allocation

Figure 2.2: PSD compositions at receiver 0 before and after a flat FDMA re-al-

location of user 1 and user 2.

2.1.2.2 FDMA Within a Subset of Users Benefits All Other Users

We have seen that by properly separating a group of strongly coupled users to

orthogonal channels, every user among them will have a rate higher than or equal

to the rate of any frequency sharing (overlapping) scheme. In this section, we

show that an FDMA allocation among a group of users also benefits all other

users outside this group. This result completes the fundamental fact that, all K-

user Pareto optimal rate tuples can be achieved by all the strongly coupled users

(among all the users) separated into disjoint frequency bands. We begin with

the two-interferer flat channels, and extend the results to K-interferer frequency

selective channels.

Lemma 2. Consider a three-user (one user + two interferers) flat channel:

∀i, j, αji(f) = αji, ni(f) = ni. Suppose the three users co-exist in a flat frequency

sharing manner pi(f) = pi, ∀f ∈ [0, 1], i = 0, 1, 2: From user 0’s perspective, a

flat FDMA power re-allocation of its two interferers, namely user 1 and user 2,

always leads to a rate higher than or equal to the original rate for user 0.

Proof. At the receiver of user 0, the received PSDs before and after the flat
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FDMA power re-allocation of its interferers are depicted in Figure 2.2. User 0’s

rates before and after the re-allocation are

R0 = log

(

1 +
p0

α10p1 + α20p2 + n0

)

,

R′
0 =

p1
p1 + p2

log

(

1 +
p0

α10(p1 + p+ 2)

)

+
p2

p1 + p2
log

(

1 +
p0

α20(p1 + p2) + n0

)

.

(2.11)

With straightforward calculations, one can verify that the function log(1 + P
I+N

)

is convex in I. Therefore, By Jensen’s Inequality, R′
0 > R0, ∀p1, p2 ≥ 0.

Lemma 2 can be generalized to an arbitrary number of users as in the following

corollary.

Corollary 3. Consider a K + 1-user (one user + K interferers) flat channel:

∀i, j, αji(f) = αji, ni(f) = ni. Suppose the K+1 users co-exist in a flat frequency

sharing manner: ∀f ∈ [0, 1],p(f) = p. From user 0’s perspective, a flat FDMA

power re-allocation of its K interferers, namely user 1, 2, . . . , K, always leads to

a rate higher than or equal to the original rate for user 0.

Finally, the benefits of an FDMA within a subset of users to the other users

can be generalized to frequency selective channels.

Corollary 4. Consider a K + 1-user (one user + K interferers) frequency se-

lective channel. Suppose we have an arbitrary spectrum and power allocation

scheme pi(f), i = 0, 1, . . . , K, in which user 1, . . . , K are not completely FDMA.

Then, from user 0’s perspective, there is always a corresponding FDMA power

re-allocation of its K interferers, namely user 1, . . . , K, that leads to a rate higher

than or equal to the original rate for user 0.
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Proof. ∀ǫ > 0, by Lemma 1, take a piecewise flat ǫ-approximation p̄(f), {ᾱji(f)},

{n̄i(f)}, such that

|R̄0 − R0| < ǫ,

where R̄0 is user 0’s rate computed with p̄(f), {ᾱji(f)}, {n̄i(f)}. If p̄1(f), . . . , p̄K(f)

is not completely FDMA yet, do a flat FDMA reallocation to p̄1(f), . . . , p̄K(f) in

every flat sub-channel that has a flat frequency sharing of any subset of the K in-

terferers. By Corollary 3, the resulting rate of user 0 R̄′
0 satisfies R̄

′
0 ≥ R̄0 > R0−ǫ.

Finally, let ǫ→ 0.

2.1.2.3 Pairwise Condition for the Optimality of FDMA

Combining Theorem 1 and Lemma 2.2, we arrive at the following conclusion:

Theorem 2. For any two users i and j (among all the K users), for any fre-

quency band [f1, f2], if the normalized cross channel gains αji(f) ≥
1
2
, αij(f) ≥

1
2
, ∀f ∈ [f1, f2], then no matter from which user’s point of view, an FDMA of

user i and user j within this band is always preferred.

Proof. Suppose the spectrum and power allocation for user i and j are not FDMA,

take a piecewise flat ǫ-approximation p̄(f), {ᾱji(f)}, {n̄i(f)} such that |R̄k −

Rk| < ǫ, k = 1, . . . , K. As in the proof of Corollary 2.2, with a flat FDMA

reallocation of p̄i(f) and p̄j(f) in every flat sub-channel in [f1, f2] that has a flat

frequency sharing of user i and j,

• Theorem 1 implies that user i and j’s rates are increased or unchanged;

• Lemma 2.2 implies that every one of the other K−2 users’ rate is increased

or unchanged.

Finally, let ǫ→ 0.
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The pairwise condition αji ≥
1
2
, αij ≥

1
2
makes determining whether any two

users should be orthogonally channelized depend only on the coupling conditions

between the two of them. Furthermore, since this condition guarantees that an

FDMA allocation between user i and user j benefits every one of the K users, un-

der this condition, all the Pareto optimal points of the rate region can be achieved

with these two users having an FDMA allocation. Thus, this pairwise condition

is an example of distributed decision making (on whether to orthogonalize any

pair of users) with optimality guarantees.

2.1.3 Optimal Spectrum Management in Two-user Symmetric Chan-

nels

In this section, we start to investigate solving the complete optimal spectrum

management scheme, and provide a complete solution of two-user (potentially

frequency selective) symmetric Gaussian interference channels, defined as follows:

α12(f) = α21(f), n1(f) = n2(f), ∀f ∈ [0, 1]. (2.12)

Generalizations are provided later in Section 2.1.4.

We consider the objective of sum-rate maximization. We assume an equal

power constraint, or equivalently, a sum-power constraint:

max
p1(f),p2(f)

R1 +R2 ⇔ max
p1(f),p2(f)

R1 +R2

s.t.

∫ 1

0

pi(f)df ≤ p/2, i = 1, 2 s.t.

∫ 1

0

(p1(f) + p2(f))df ≤ p (2.13)

(Equivalency is shown later in this section.)

We begin with flat channels, and solve the optimal spectrum and power allo-

cation by computing a convex hull. Based on this result, we show that finding the

spectrum and power allocation that maximizes the non-concave sum-rate objec-
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tive in symmetric frequency selective channels can be equivalently transformed

into a convex optimization in the primal domain.

2.1.3.1 Optimal Solutions for Flat Channels

Consider a two-user symmetric flat Gaussian interference channel model:

α12(f) = α21(f) = α <
1

2
, n1(f) = n2(f) = n, ∀f ∈ [0, 1]. (2.14)

Remark 3. For the case of α12(f) = α21(f) ≥
1
2
, ∀f ∈ [0, 1], from Theorem 1,

the optimal solution is an FDMA allocation in which each user uses half of the

total bandwidth and a uniform PSD therein.

WLOG, we can normalize the power and their constraints by the noise:

pi(f)←
pi(f)
n

, p← p

n
, and assume n = 1.

Definition 5. Define ro(p) to be maximum achievable sum-rate with a sum-power

constraint p:

ro(p) ,max
p(f)

∫ 1

0

r1(p(f), f) + r2(p(f), f)df (2.15)

s.t.

∫ 1

0

(p1(f) + p2(f)) df ≤ p, pi(f) ≥ 0, i = 1, 2, ∀f ∈ [0, 1],

r1(p(f), f) = log

(

1 +
p1(f)

αp2(f)

)

, r2(p(f), f) = log

(

1 +
p2(f)

αp1(f)

)

.

(2.16)

Firstly, we have the following theorem on the condition under which a flat

FDMA scheme is better than a flat frequency sharing scheme. Denote by pi the

PSD of user i in a flat frequency sharing scheme.

Lemma 3. For any flat frequency sharing power allocation, a flat FDMA power

re-allocation (Figure 2.1) leads to a higher or unchanged sum-rate if and only if

p1 + p2 ≥ 2

(

1

2α2
−

1

α

)

. (2.17)
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Figure 2.3: The power region in which flat FDMA has higher sum-rate than flat

frequency sharing.

Given the cross channel gains α, Lemma 3 provides us a power region PFDMA

within which flat FDMA has a higher sum-rate than flat frequency sharing, de-

picted as the shaded area in Figure 2.3 (with the complement region P̄FMDA also

depicted). Clearly, if and only if α ≥ 1
2
, PFDMA contains the entire non-negative

quadrant. This provides a “weak” converse argument on the necessity of the

1
2
coupling condition derived in Section 2.1.2, for FDMA to be always optimal

regardless of the power budget.

Next, we derive the optimal flat frequency sharing scheme and the optimal

flat FDMA scheme.

Denote the sum-rate of a flat frequency sharing by

f(p1, p2) = log(1 +
p1

1 + αp2
) + log(1 +

p2
1 + αp1

). (2.18)

The maximum achievable sum-rate with flat frequency sharing with a sum-power

constraint, denoted by f ∗(p), is defined as the optimal value of the following

optimization problem:
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Definition 6.

f ∗(p) , max
p1≥0,p2≥0

f(p1, p2)

s.t. p1 + p2 ≤ p. (2.19)

We have the following lemma on the form and the concavity of f ∗(p) in the

region of PFDMA.

Lemma 4. When 0 < p ≤ 2
(

1
2α2 −

1
α

)

,

f ∗(p) = 2 log

(

1 +
p/2

1 + αp/2

)

(2.20)

is a concave function of the constraint p. The optimal flat frequency sharing

scheme is p1 = p2 =
p

2
.

In comparison, we compute the maximum achievable sum-rate with a sum-

power constraint for FDMA schemes, denoted by h∗(p):

Definition 7.

h∗(p) , max
p1(f)≥0,p2(f)≥0

R1 +R2 (2.21)

s.t.

∫ 1

0

(p1(f) + p2(f))df ≤ p, p1(f)p2(f) = 0, ∀f ∈ [0, 1],

R1 =

∫ 1

0

(1 + p1(f))df, R2 =

∫ 1

0

(1 + p2(f))df. (2.22)

From the FDMA and the symmetry assumption of the channel, the sum-rate

of both users is equivalent to the rate of a single user with a power constraint

of p. From the water-filling principle, h∗(p) is achieved when the PSD over the

whole band is flat. In other words, both users’ powers are allocated mutually

non-overlapped and collectively filling the whole band uniformly. Accordingly,

we have the following lemma.
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Lemma 5. The maximum achievable sum-rate with FDMA is

h∗(p) = log(1 + p). (2.23)

Define the critical point p0 , 2
(

1
2α2 −

1
α

)

. From Lemma 3, it can be verified

that f ∗(p0) = h∗(p0). As f
∗(p), h∗(p) are both increasing and concave, the upper

envelope of f ∗(p) and h∗(p) is given by

r(p) , max f ∗(p), h∗(p) =







f ∗(p), p ∈ [0, p0]

h∗(p), p ∈ (p0,∞]
. (2.24)

Furthermore, as 0 < α < 1
2
,

d

dp
f ∗(p)|p=p0 =

4α3

1− α
<

α2

(1− α)2
=

d

dp
h∗(p)|p=p0, (2.25)

and the upper envelope r(p) is non-concave in [0,∞).

Definition 8. r∗(p) is defined to be the unique convex hull of r(p):

r∗(p) , convp(r(p)). (2.26)

A typical plot of f ∗(p), h∗(p), r∗(p) is given in Figure 2.4. Since f ∗(p) and

h∗(p) are themselves concave, the convex hull of the upper envelope is found by

computing their common tangent line. For example, In Figure 2.4, α is chosen

to be 0.1. f ∗(p), h∗(p) intersect at p0 = 80. The two points of tangency are

pf = 54.391, ph = 115.938.

In order to find the common tangent line of f ∗(p), h∗(p), the two points of

tangency pf , ph are determined by

d

dp
f ∗(p)|p=pf =

d

dp
h∗(p)|p=ph =

h∗(ph)− f ∗(pf)

ph − pf
,

which simplifies to finding pf by solving

pf(α(1 + α)pf + 4α− 2)

(αpf + 2)((1 + α)pf + 2)
= log

(

(αpf + 2)3

4((1 + α)pf + 2)

)

(2.27)
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Figure 2.4: The maximum achievable rate as the convex hull of the rates of flat

FDMA and flat frequency sharing.

and computing ph by

ph =
1

4
pf(α(1 + α)pf + 4α+ 2). (2.28)

pf , ph can be obtained by solving the closed form equation (2.27) where various

numerical methods can be applied. From many numerical examples, we observed

that (2.27) always has one valid fix point solution.

Next, we provide the main theorem of this section.

Theorem 3.

ro(p) = r∗(p), ∀p ≥ 0. (2.29)

While the proof of the achievability of r∗(p) is fairly straightforward, the proof

of the converse follows from Jensen’s inequality, as we recognize that all allocation

schemes p(f) are pointwise either flat frequency sharing or flat FDMA.

Proof of Theorem 3.

i) r∗(p) ≤ ro(p) (Achievability of r∗(p)).
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Figure 2.5: The optimal spectrum and power allocation as a mixture of flat

FDMA and flat frequency sharing.

The achievability of r∗(p) when 0 ≤ p ≤ pf or p ≥ ph is immediate.

When pf ≤ p ≤ ph,

r∗(p) = f ∗(pf ) + λ(h∗(ph)− f ∗(pf)), (2.30)

where λ =
p−pf
ph−pf

, and r∗(p) is achievable by the following scheme as depicted

in Figure 2.5. The whole band is split into two orthogonal channels: C1 with

bandwidth 1− λ and C2 with bandwidth λ. In C1, a flat frequency sharing with

a PSD of
pf
2
for each user is applied, achieving a sum-rate of f ∗

C1
= (1−λ)f ∗(pf).

In C2, a flat FDMA with a PSD of ph for each user is applied, achieving a sum-

rate of h∗
C2

= λh∗(ph). Note that the sum-power constraint is satisfied by such

a combination of flat frequency sharing and flat FDMA: (1 − λ)pf + λph = p.

Therefore, the sum-rate

f ∗
C1

+ h∗
C2

= (1− λ)f ∗(pf ) + λh∗(ph) = r∗(p) (2.31)

can be achieved in the original problem (2.15).

ii) ro(p) ≤ r∗(p) (Converse) For any given p, let {po1(f), p
o
2(f)} be an optimal
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scheme that achieves ro(p). Define the sum-rate density

rop(f) , log

(

1 +
po1(f)

1 + αpo2(f)

)

+ log

(

1 +
po2(f)

1 + αpo1(f)

)

,

and sum-PSD po(f) = po1(f) + po2(f). Clearly, r
o(p) =

∫ 1

0
rop(f)df .

From Lemmas 2.3, 4, 5,

when po(f) ≤ 2

(

1 −
1

2α(f)2
−

1

α(f)

)

, rop(f) ≤ f ∗(po(f)).

when po(f) > 2

(

1 −
1

2α(f)2
−

1

α(f)

)

, rop(f) ≤ h∗(po(f)).

Thus,

rop(p) ≤ max (f ∗(po(f)), h∗(po(f))) ≤ r∗(po(f))

⇒ro(p) =

∫ 1

0

rop(f)df ≤

∫ 1

0

r∗(po(f))df ≤ r∗
(
∫ 1

0

po(f)df

)

≤ r∗(p). (2.32)

The second inequality arises from the concavity of r∗(p) and Jensen’s inequality,

and the last inequality arises from the sum-power constraint and the fact that

r∗(p) is an increasing function.

The mixture of a flat frequency sharing and a flat FDMA shown in Figure

2.5 represents the general form of the optimal spectrum and power allocation

achieving r∗(p). The computation of the optimal spectrum management scheme

is summarized in Procedure 1. Note that there always exists an optimal spec-

trum and power allocation with two users each using the same total power of p

2
.

Therefore, the above optimal solution with a sum-power constraint directly leads

to the optimal solution with equal individual power constraints:

Corollary 5. The maximum sum-rate with equal individual power constraints

max
p(f)

∫ 1

0

r1(p(f), f) + r2(p(f), f)df

s.t.

∫ 1

0

pi(f)df ≤
p

2
, pi(f) ≥ 0, i = 1, 2, ∀f ∈ [0, 1] (2.33)
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is r∗(p).

Proof. On the one hand, the equal power constraints imply the sum-power con-

straint. On the other hand, the optimal value with the sum-power constraint can

be achieved with the equal power constraints.

Procedure 1: Computing the optimal spectrum management

for two-user symmetric flat channels.

Step 1: Solve the two points of tangency pf , ph on r∗(p).

a. Solve (2.27) numerically to find pf :

b. Compute ph by (2.28).

Step 2: Compute the maximum achievable sum-rate r∗(p):

If p ≤ pf , r∗(p) = f ∗(p). Allocate p1(f) = p2(f) =
p

2
, ∀f .

If p ≥ ph, r∗(p) = h∗(p). Allocate p1(f), p2(f) such that

p1(f)p2(f) = 0, p1(f) + p2(f) = p, ∀f

If pf < p < ph, r
∗(p) = f ∗(p) +

h∗(ph)−f∗(pf )

ph−pf
(p− pf ).

a. Compute λ =
p−pf
ph−pf

.

b. Separate [0, 1] into two disjoint channels:

C1 with bandwidth 1− λ, C2 with bandwidth λ.

c. Allocate power as follows (Figure 2.5):

∀f ∈ C1, p1(f) = p2(f) =
pf
2
;

∀f ∈ C2, p1(f)p2(f) = 0, p1(f) + p2(f) = ph.
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2.1.3.2 Generalizations to Frequency Selective Channels

We now extend the sum-rate maximization problem to the symmetric frequency

selective Gaussian interference channel:

α12(f) = α21(f) = α(f), n1(f) = n2(f) = n(f), ∀f ∈ [0, 1]. (2.34)

With

r1(p(f), f) = log

(

1 +
p1(f)

n(f) + p2(f)α(f)

)

,

r2(p(f), f) = log

(

1 +
p2(f)

n(f) + p1(f)α(f)

)

,

define ro to be the maximum achievable sum-rate with a sum-power constraint

as follows:

Definition 9.

ro , max
p(f)≥0

∫ 1

0

r1(p(f), f) + r2(p(f), f)df (2.35)

s.t.

∫ 1

0

p1(f) + p2(f)df ≤ p.

Note that the objective function is separable in f . (The whole problem is,

of course, not immediately separable in f because of the total power constraint

across the whole band.)

Remark 4. Because for every fixed f ∈ [0, 1], r1(p(f), f) + r2(p(f), f) is non-

concave in {p1(f), p2(f)}, the above infinite dimensional problem is a non-convex

optimization.

Next, we derive a primal domain convex relaxation of (2.35). We first nor-

malize the PSD and the sum-PSD by n(f):

∀f ∈ [0, 1], p̃1(f) ,
p1(f)

n(f)
, p̃2(f) ,

p2(f)

n(f)
, p̃(f) , p̃1(f) + p̃2(f). (2.36)
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Definition 10. ∀f ∈ [0, 1], in the same form of (2.20) and (2.23) with α(f)

instead of α:

f ∗(p, f) , 2 log

(

1 +
p/2

1 + α(f)p/2

)

, h∗(p, f) , log(1 + p),

r∗(p, f) , convp (max(f ∗(p, f), h∗(p, f))) . (2.37)

Note that the convex hull operation is done along the power dimension for

every fixed f , (not along the frequency dimension.) ∀f ∈ [0, 1], pf(f), ph(f), and

r∗(p, f), p ≥ 0 are computed in the same way as in Procedure 1 with α(f) instead

of α.

Now, in the (separable) objective function of (2.35), at every frequency f ,

we replace the non-concave r1(p(f), f)+ r2(p(f), f) with the concave r∗(p̃(f), f)

(concave in the first variable p̃(f)), and define r∗ to be the corresponding maxi-

mum achievable value as follows:

Definition 11.

r∗ , max
p̃(f)≥0

∫ 1

0

r∗(p̃(f), f)df (2.38)

s.t.

∫ 1

0

p̃(f)n(f)df ≤ p, ∀f ∈ [0, 1].

Remark 5. For every fixed f , r∗(p̃(f), f) is concave in p̃(f). The constraint

is linear in p̃(f), ∀f . Thus, the above infinite dimensional problem is a convex

optimization.

Now, we have the following theorem:

Theorem 4.

ro = r∗. (2.39)
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The proof of the converse is similar to that in Theorem 3. For the proof of

the achievability of r∗, as the channel is frequency selective, we need to introduce

a piecewise flat ǫ-approximation, and the remaining proof exactly follows that in

Theorem 3.

Proof of Theorem 4.

i) ro ≤ r∗ (Converse).

It is sufficient to prove the inequality between the integrands in (2.35) and

(2.38). As in the proof of Theorem 3, from Lemmas 2.3, 4, 5,

r1(p(f), f) + r2(p(f), f) = log

(

1 +
p̃1(f)

p̃2(f)α(f)

)

+ log

(

1 +
p̃2(f)

p̃1(f)α(f)

)

≤max (f ∗(p̃(f), f), h∗(p̃(f), f)) ≤ r∗(p̃(f), f).

ii) r∗ ≤ ro (Achievability). Let sum-PSD p̃∗(f) be an optimal solution of

(2.38) such that
∫ 1

0
r∗(p̃∗(f), f)df = r∗. Then, ∀ǫ > 0:

By Lemma 1, based on p̃∗(f) and {αji(f)}, take a piecewise flat ǫ-approximation

p̄∗(f) and {ᾱji(f)}, s.t.

∣

∣

∫ 1

0

r̄∗(p̄∗(f), f)df − r∗
∣

∣ < ǫ, (2.40)

where p̄∗(f) is a piecewise flat sum-PSD, and r̄∗(p̄∗(f), f) is computed with

{ᾱji(f)}. (Note that, since the noise PSD is already normalized to 1 as in (2.36),

no further piecewise flat approximation of the noise is needed.)

Based on the piecewise flat ǫ-approximation, in every flat sub-channel with

a flat p̄∗(f), as in the proof of Theorem 3, r̄∗(p̄∗(f), f) can be achieved by

further dividing this flat sub-channel into two sub-bands, applying a flat fre-

quency sharing and a flat FDMA respectively (cf. Figure 2.5). Removing the

normalization by multiplying by n(f), denote the resulting allocation scheme by
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po(f) = [po1(f), p
o
1(f)]

T , achieving the same sum-rate

∫ 1

0

r̄1(p
o(f), f) + r̄2(p

o(f), f)df =

∫ 1

0

r̄∗(p̄∗(f), f),

where r̄1(p
o(f), f) and r̄1(p

o(f), f) are computed with the piecewise flat approx-

imate channel responses {ᾱji(f)}. Then,

ro ≥

∫ 1

0

r1(p
o(f), f) + r2(p

o(f), f)df ≥

∫ 1

0

r̄1(p
o(f), f) + r̄2(p

o(f), f)df

=

∫ 1

0

r̄∗(p̄∗(f), f) > r∗ − ǫ, (2.41)

where the first inequality occurs because po(f) is a feasible solution of (2.35); the

second inequality arises because (by P2 from Lemma 1) ᾱji(f) ≥ αji(f), ∀i, j, ∀f ∈

[0, 1], i.e. the ǫ-approximation worsens the channel responses, resulting in lower

rates.

Finally, let ǫ→ 0.

Therefore, although the integrand in (2.38) is a direct convex relaxation of

that in (2.35), the optimal objective value of the problem does not change, and

the original non-convex optimization (2.35) is equivalently transformed to the

convex optimization (2.38). Finally, for the same reasons as in section 2.1.3.1,

the optimal solution with equal individual power constraints is the same as that

with a corresponding sum-power constraint.

Remark 6. Throughout section 2.1.3, we have worked with a sum-power con-

straint to gain brevity in derivations of the results for the fully symmetric cases.

One may also derive the results directly with equal individual power constraints.

In Section 2.1.4, as we consider potentially asymmetric channels, we will directly

work with individual power constraints.
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2.1.4 Optimal Spectrum Management in the General Cases

In Section 2.1.3, we solved the sum-rate maximization problem in two-user sym-

metric frequency selective channels with equal power (or sum-power) constraints.

In this section, we make the following generalizations:

• Two-user → K-user,

• Equal power constraints → arbitrary individual power constraints,

• Symmetric channel → arbitrary asymmetric channel,

• Sum-rate → arbitrary weighted sum-rate.

The general optimization problem is thus the following:

max
p(f)≥0

∫ 1

0

K
∑

i=1

wiri(p(f), f)df (2.42)

s.t.

∫ 1

0

p(f)df ≤ p, ri(p(f), f) = log

(

1 +
pi(f)

ni(f) +
∑

j 6=i pj(f)αji(f)

)

.

Next, we analyze this general problem in parallel with the analysis in Section 2.5,

and show that the same basic ideas therein generalize here.

2.1.4.1 Optimal Solutions for Flat Channels

Consider a K-user (potentially asymmetric) flat channel:

αji(f) = αji, ni(f) = ni, ∀f ∈ [0, 1], ∀i, j.

First, consider the weighted sum-rate achieved with flat power allocations p(f) =

P, ∀f ∈ [0, 1], defined as

R(P) ,

K
∑

i=1

wi log

(

1 +
Pi

ni +
∑

j 6=i Pjαji

)

. (2.43)
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Denote its K dimensional convex hull function by

R∗(P) , convP(R(P)). (2.44)

The original problem (2.42) in flat channels can be rewritten as

Definition 12.

Ro(p) , max
p(f)≥0

∫ 1

0

R(p(f))df (2.45)

s.t.

∫ 1

0

p(f)df ≤ p.

Now, we have the following theorem,

Theorem 5.

Ro(p) = R∗(p),

and the optimal spectrum and power allocation po(f) consists of K+1 sub-bands,

with po(f) flat in each of the sub-bands.

Proof. The proof is in parallel with that of Theorem 3.

1. R∗(p) ≤ Ro(p) (Achievability).

As R∗(P) , convP(R(P)), by Carathéodory’s theorem,

∃c(k) ≥ 0, k =1, . . . , K + 1,
K+1
∑

k=1

c(k) = 1,
K+1
∑

k=1

c(k)p(k) = p, s.t.

R∗(p) =

K+1
∑

k=1

c(k)R(p(k)).

Accordingly, we can divide the band [0, 1] into K + 1 sub-bands, each with a

bandwidth of c(k) and uses the flat power levels of p(k) = [p
(k)
1 , . . . , p

(k)
K ]T for the

K users.

2. Ro(p) ≤ R∗(p) (Converse).
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For any feasible allocation scheme p(f), f ∈ [0, 1].

∫ 1

0

R(p(f)) ≤

∫ 1

0

R∗(p(f))df ≤ R∗

(
∫ 1

0

p(f)df

)

≤ R∗(p), (2.46)

where the first inequality is from (2.44), the second inequality arises from Jensen’s

inequality, and the third inequality arises from the fact that R∗(P) is increasing

in P.

Remark 7. In the literature, it was first shown that allocation schemes consisting

of 2K sub-bands of flat allocations are sufficient to achieve any Pareto optimality

[EPT07], and this sufficient number of sub-bands was later refined to K + 1

[SZB08]. From Theorem 5, the sufficiency of K+1 sub-bands is also immediately

implied by the fact that the optimal value and solution are obtained by nothing

more than computing the convex hull (2.44) of a non-concave function (2.43).

2.1.4.2 Generalizations to Frequency Selective Channels

In frequency selective channels, define the weighted sum-rate density function as

R(p, f) ,
K
∑

i=1

wiri(P, f), (2.47)

where ri(P, f) is defined in (2.4). Problem (2.42) can then be rewritten as:

Definition 13.

Ro , max
p(f)≥0

∫ 1

0

R(p(f), f)df (2.48)

s.t.

∫ 1

0

p(f)df ≤ p.

Clearly, for every fixed f ∈ [0, 1], R(p(f), f) is non-concave in p(f), and

(2.48) is an infinite dimensional non-convex optimization.
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At every frequency f ∈ [0, 1], define

R∗(P, f) , convPR(P, f), (2.49)

i.e., the convex hull of R∗(P, f) along the K dimensions of power P. Note that

the convex hull operation is not taken along the frequency dimension f . (R∗(P, f)

is concave in P for every fixed f , but not necessarily jointly concave in P, f .)

Next, we derive the following primal domain convex relaxation of (2.48):

At every frequency f , we replace the non-concave R(p(f), f) with the concave

R∗(p(f), f) (concave in the first variable p(f)), and define R∗ to be the corre-

sponding maximum achievable value as follows:

Definition 14.

R∗ , max
p(f)≥0

∫ 1

0

R∗(p(f), f)df (2.50)

s.t.

∫ 1

0

p(f)df ≤ p.

Clearly, (2.50) is an infinite dimensional convex optimization, because

• ∀f ∈ [0, 1], the integrand is a concave function of the variables p(f);

• The constraint is linear in {p(f), f ∈ [0, 1]}.

Finally, we have the following theorem

Theorem 6.

Ro = R∗. (2.51)

Therefore, the optimal value for the non-convex optimization (2.48) equals

that of its convex relaxation (2.50).
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2.1.5 Discussion

2.1.5.1 On the Complexity of Solving the General Continuous Fre-

quency Problem

To avoid an uncountably infinite number of dimensions, consider any channel

response in the form of a piecewise flat functions of frequency. Denote the cor-

responding flat sub-channels by I1, I2, . . . , IM , each with bandwidth bm. (Note

that the channels {Im} are viewed as given, and their bandwidths {bm} are not

variables to optimize.) We now recall that the key difference between the contin-

uous frequency model and the discrete frequency model lies in the assumption of

power allocations:

• Continuous frequency: p(f) is piecewise bounded continuous.

• Discrete frequency: p(f) must be flat in every flat sub-channel Im.

For example, consider a single flat band. It makes a fundamental difference

whether we allow a user to subdivide this flat band and use different PSD in

different sub-bands. If so, the problem model is still continuous frequency. Oth-

erwise, the problem model is discrete frequency.

It has been proven that finding the optimal solution with the discrete fre-

quency model is NP hard [LZ08]. This is not inconsistent with the convex formu-

lations for the continuous frequency model in this section, because the assump-

tions made on power allocation are different. Next, we discuss the complexity

of solving the continuous frequency optimal spectrum management in piecewise

flat channels. From Theorem 6, it is sufficient to solve the convex optimization

(2.50), which consists of two general steps:
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• Step 1: Compute the convex hull function R∗(P, f) at every frequency

f ∈ [0, 1].

• Step 2: Optimize p(f) with the objective
∫ 1

0
R∗(p(f), f)df .

In Step 1, given the channel parameters for each flat sub-channel Im, m = 1, . . . ,M ,

a convex hull function R∗
m(P)

(

, R∗(P, f), f ∈ Im

)

, ∀P ≥ 0 is computed. Nu-

merically and approximately computing a convex hull is itself a broad and impor-

tant topic (see e.g. [Cha96]). This computational issue is not further discussed

here, and is left for future work. We note that it remains unclear whether this

computational issue is easier to deal with than the NP hardness in the discrete

frequency model.

In Step 2, given the convex hull functions for all the flat sub-channels, as the

number of sub-channels M is finite, problem (2.50) becomes finite dimensional,

with an increasing concave utility function R∗
m(p(f)) in each sub-channel Im.

Now, because each Im is a flat channel and R∗
m(P) is increasing concave, by

Jensen’s inequality, the optimal solution must satisfy that p(f) is flat in each

sub-channel Im, i.e., ∀m = 1, . . . ,M, ∃p(m) ≥ 0, s.t. p(f) = p(m), ∀f ∈ Im.

Problem (2.50) then becomes

max
p(m)

M
∑

m=1

bmR
∗(p(m)) (2.52)

s.t.

M
∑

m=1

bmp(m) ≤ p,p(m) ≥ 0, ∀m = 1, 2, . . . ,M.

(Recall that bm (m = 1, . . . ,M) is the bandwidth of sub-channel Im, and is not an

optimization variable). Problem (2.52) is a convex optimization that has efficient

polynomial time algorithms to solve the globally optimal solution. (For example,

a dual decomposition algorithm works, see e.g. [Chi05b] among many others.)
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In summary, the critical complexity in solving the general problem (2.48)

based on Theorem 6 lies in computing approximate convex hull functions. While

computing convex hull functions given channel parameters may be computation-

ally costly, this two-step method does have the following advantage:

Corollary 6. Once the channel parameters are given, the M convex hull func-

tions R∗
m(P), m = 1, . . . ,M are computed for one time. Then, no matter how the

power constraints may vary due to problem needs, the additional complexity cost

of solving the optimal solution (Step 2) is only polynomial time.

This separation of the complexity in dealing with channel responses and power

constraints does not appear in the discrete frequency model, due to the funda-

mental difference between the power allocation assumption of the continuous

frequency model and that of the discrete frequency model. For the discrete fre-

quency model, the constraint that a user must use a flat PSD within every (flat)

sub-channel leads to the well known NP hardness. In contrast, for the continuous

frequency model, the main complexity is from computing convex hull functions.

2.1.5.2 On the Zero Duality Gap

It has been proved that the continuous frequency non-convex optimization (2.48)

has an exact zero duality gap [LZ08]. It is pointed out that the zero duality

gap comes from a time sharing condition [YL06]. It is also proved using the

nonatomic property of the Lebesgue measure [LZ08]. We show that this is also

immediately implied by Theorem 6.

Definition 15. For problem (2.48), its Lagrange dual is defined as

L(p(f), λ) ,

∫ 1

0

R(P(f), f)df − λT

(
∫ 1

0

p(f)df − p

)

.
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Its dual objective and dual optimal value are defined as

g(λ) , sup
p(f)≥0

L(p(f), λ), and Do , min
λ≥0

g(λ).

Similarly, for problem (2.50), its Lagrange dual, dual objective, and dual optimal

value are defined as

L̂(p(f), λ) ,

∫ 1

0

R∗(P(f), f)df − λT

(
∫ 1

0

p(f)df − p

)

.

ĝ(λ) , sup
p(f)≥0

L̂(p(f), λ), and D∗ , min
λ≥0

ĝ(λ).

Corollary 7. The non-convex optimization (2.48) has a zero duality gap.

Proof. Since R∗(P, f) ≥ R(P, f), ∀P, ∀f , we have

L̂(p(f), λ) ≥ L(p(f), λ)⇒ ĝ(λ) ≥ g(λ), λ ≥ 0

⇒ D∗ ≥ Do.

Therefore,

R∗ = D∗ ≥ Do ≥ Ro = R∗ ⇒ Do = Ro,

where the first equality occurs because problem (2.50) is a convex optimization

and has strong duality [BV04]; the second inequality is from the weak duality of

the non-convex optimization (2.48); the key step is the second equality Ro = R∗

from Theorem 6.

Furthermore, it has been shown that, under mild technical conditions, the

non-convex optimization for the discrete frequency model has an asymptotically

zero duality gap as the number of sub-channels goes to infinity [YL06]. The

result is rigorously generalized to include Lebesgue integrable PSDs in [LZ08].

Indeed, for a piecewise bounded continuous frequency channel, as it is divided into

more and finer/flatter sub-channels, the difference between the power allocation
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assumption of discrete frequency model and that of continuous frequency model

vanishes. The intuition is that we can bundle a large number of similar flat

sub-channels, treat them as one combined flat channel, compute the continuous

frequency power allocation, and accordingly distribute the power within these

roughly identical sub-channels (as a discrete approximation of the continuous

allocation.)

2.2 Discrete Frequency Spectrum Management

In this section, we turn our attention to the discrete frequency model with M

parallel channels each having a unit bandwidth. Consider a weighted sum-rate

maximization problem

max
Pm
i ≥0,1≤i≤K
1≤m≤M

K
∑

i=1

M
∑

m=1

wi log(1 + SINR
m
i ) (2.53)

s.t. SINR
m
i =

gmii P
m
i

∑

j 6=i g
m
jiP

m
j +Nm

i

,
M
∑

m=1

Pm
i ≤ pi, ∀i = 1, . . . , K,

where Pm
i , SINRm

i are the transmit power and the signal to interference plus noise

ratio of user i in channel m, gmij = |hij |2 is the channel gain from transmitter i

to receiver j in channel m, Nm
i is the noise power at receiver i in channel m. It

has been shown that this problem is NP complete in both the number of users

K and the number of channels M [LZ08].

In the literature, an approximation of the objective that yields a convex op-

timization formulation is the following [Chi05a]:

log(1 + SINR
m
i ) ≈ log(SINRm

i ) = log

(

gmii P
m
i

∑

j 6=i g
m
jiP

m
j +Nm

i

)

, (2.54)
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The convexified maximization problem is thus

max
Pm
i ≥0,1≤i≤K
1≤m≤M

K
∑

i=1

M
∑

m=1

wi log(SINR
m
i ) (2.55)

s.t.
M
∑

m=1

Pm
i ≤ pi, ∀i = 1, . . . , K.

The convexity can be seen by a change of variables: with P̃m
i , log(Pm

i ),

log

(

gmii P
m
i

∑

j 6=i g
m
jiP

m
j +Nm

i

)

= log(gmii e
P̃m
i )− log(

∑

j 6=i

gmjie
P̃m
j +Nm

i ). (2.56)

Note that the first term is linear in P̃m
i , and the second term is concave in

P̃m
i because the log of a sum of exponentials is a convex function. The power

constraints are transformed to the following convex constraints

M
∑

m=1

eP̃
m
i ≤ pi, ∀i = 1, . . . , K. (2.57)

The convex approximation (2.54) is a good approximation if SINRm
i ≫ 0. To

understand its implications in approaching the optimum of the original problem

(2.53) by solving (2.55), we examine a sum-rate maximization problem, i.e., w1 =

. . . = wK = 1:

First, if the optimal solution of (2.53) satisfies that all users have high SINR in

all channels, we can expect getting a close approximation of it by solving (2.55).

However, if the optimal solution of (2.53) does require some users having low

SINR in some channels, solving (2.55) will not be able to find such a solution.

This is because maximization with log(SINR) imposes extremely high penalty on

low SINR. In particular, if the optimal solution of (2.53) requires user i not to

use channel m at all, i.e., Pm
i = 0, it will cause log(SINRm

i ) = −∞. As a result,

such a solution will be avoided by solving the convex approximation (2.55).
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Moreover, because log(1 + SINR) − log(SINR) → ∞ as SINR → 0 (−∞dB),

for a fixed number of users and channels, the gap between the optimal value of

(2.53) and that of (2.55) can be arbitrarily large.

To address the above issues of using log(SINR) in the objective, we consider

the use of log(SINR)+ , max (0, log(SINR)), and solving the following problem

max
Pm
i ≥0,1≤i≤K
1≤m≤M

K
∑

i=1

M
∑

m=1

wi log(SINR
m
i )

+ (2.58)

s.t.

M
∑

m=1

Pm
i ≤ pi, ∀i = 1, . . . , K.

The inclusion of the zero floor simply disallows any negative rate from computing

log(SINR). It is immediate to verify that

max
SINR∈R

| log(1 + SINR)− log(SINR)+| = log 2 = 1 bit, (2.59)

and the maximum discrepancy is reached at SINR = 1 (0dB). We then have the

following lemma:

Lemma 6. The difference between the optimal value of (2.53) and that of (2.58)

is no greater than KM bits.

In other words, the per user per channel rate difference between solving (2.53)

and (2.58) is at most one bit.

Although the use of log(SINR)+ leads to this bounded gap property, (2.58)

is no longer a convex optimization. In what follows, we analyze the computa-

tional complexity of solving (2.58), and show that the main complexity lies in

the problem of channel allocation.
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2.2.1 Channel Assignment and Power Allocation: a Vertical Decom-

position

We provide an alternative form of the bounded gap approximation (2.58) by

characterizing the channel assignment decision explicitly:

Definition 16. Define a K ×M channel assignment matrix A:

Aim =







1, if log(SINRm
i ) ≥ 0

0, otherwise.
, i = 1, . . . , K,m = 1, . . . ,M. (2.60)

In other words, if user i has a positive dB SINR in channel m, Aim = 1, and

we say that channel m is assigned to user i. One channel can be assigned to

multiple users, and one user can have multiple channels assigned to it. Clearly,

log(SINRm
i )

+ = Aim log(SINR). (2.61)

Define A∗ to be the optimal channel assignment matrix derived from the

optimal solution of (2.58). We then have the following theorem:

Theorem 7. Given the optimal channel assignment matrix A∗,

max
Pm
i ≥0,1≤i≤K
1≤m≤M

K
∑

i=1

M
∑

m=1

wiA
∗
im log(SINRm

i ) (2.62)

s.t.
M
∑

m=1

Pm
i ≤ pi, ∀i = 1, . . . , K

has the same optimal value as (2.58).

Proof. (2.62) ≤ (2.58) is immediate because A∗
im log(SINRm

i ) ≤ log(SINRm
i )

+ al-

ways.

In order to show (2.58) ≤ (2.62), note that (2.58) is achieved by its optimal

solution with which A∗ is derived; by applying the same solution in (2.62) where

A∗ is applied, the same optimal value is achieved.
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Note that, with A∗ given, (2.62) is a convex optimization for the same reason

as in (2.55), and solving this convex optimization gives the optimal solution of

(2.58). We thus have the following conclusion:

Corollary 8 (Decomposition of Channel Assignment (CA) and Power Allocation

(PA)). Solving the bounded gap approximation (2.58) of the optimal spectrum

management problem (2.53) can be decomposed into two steps:

1. Channel Assignment (a combinatorial problem): finding the optimal chan-

nel assignment matrix A = A∗.

2. Power Allocation (a convex optimization): given a channel assignment ma-

trix A, solving the convex approximation (2.62) to determine the transmit

powers {Pm
i }.

As there are in total 2KM channel assignment matrices, a traversal of all

of them (each followed by a convex optimization of power allocation) has a pro-

hibitively high computational complexity. However, as we show next, with a dual

decomposition method, the above CA-PA decomposition is used in each channel

independently, and the overall computational complexity is reduced from 2KM to

M2K .

2.2.2 Complexity Reduction via Dual Decomposition

We consider the Lagrange dual problem [BV04] of (2.58):

min
λ≥0

M
∑

m=1

gm(λ) +

K
∑

i=1

λipi (2.63)

where λ = [λ1, . . . , λK ]
T , and ∀m = 1, . . . ,M,

gm(λ) = sup
Pm
i ≥0,

i=1,...,K

K
∑

i=1

(

wi log(SINR
m
i )

+ − λiP
m
i

)

. (2.64)
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We make the following observations:

• The dual master problem (2.63) is a convex optimization [BV04].

• In each outer iteration of updating λ while solving the dual master prob-

lem, we need to solve M sub-problems (2.64) which are still non-convex

optimizations because of the use of log(SINR)+.

Note that, however, the objective function of the sub-problem (2.64) is just a

single-channel case (with some additional linear terms) of the objective function

(2.58). Therefore, Theorem 7 can be applied to each one of the sub-problems.

Similarly to Definition 16, define A∗
m to be the optimal K × 1 (0, 1) channel

assignment vector of the mth channel: based on the optimal solution of the mth

sub-problem (2.64), A∗
m(i) = 1 iff user i has a positive dB SINR in channel m.

We then have the following corollary of Theorem 7:

Corollary 9. Given the optimal channel assignment vector A∗
m,

max
Pm
i ≥0,i=1,...,K

K
∑

i=1

(wiA
∗
m(i) log(SINR

m
i )− λiP

m
i ) (2.65)

has the same optimal value as that of the sub-problem (2.64).

Remark 8 (Decomposition in Channel). While solving the dual sub-problems

(2.64) (2.65), each sub-problem corresponds to one channel. The optimal solution

in each channel does not depend on solutions of other channels2. The channels

are only coupled through λ in the dual master problem.

For any channel m = 1, 2, . . . ,M , the total number of possible A∗
m vectors is

2K , which upper bounds the computational complexity of solving the mth sub-

problem by a traversal of all these vectors. Due to the dual decomposition in

2This desirable property has been observed and exploited in the literature for spectrum man-
agement (see [CYM06] among others.)
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channel, there are M sub-problems independently solved in each outer iteration

of solving the dual master problem. Thus, we arrive at the following result in

complexity reduction.

Corollary 10. As a function of M,K, the computational complexity of solving

the Lagrange dual problem (2.63) grows no greater than M2K .

Now, the remaining issue is that solving the dual optimal solution does not

in general give the primal optimal solution. This is because the bounded gap

approximation (2.58) is non-convex, and does not guarantee strong duality. How-

ever, for the same reasons as in the previous analysis of the continuous frequency

model ([LZ08, YL06], and also Section 2.1,) as the number of sub-channels goes

to infinity, the duality gap of this problem (2.58) goes to zero. In other words,

the dual decomposition method is asymptotically optimal.

2.2.3 Discussion

Combining Lemma 6, Corollary 10 and the asymptotic zero duality gap, we con-

clude that the computational complexity of solving the optimal discrete spectrum

management (2.53) to within an asymptotically constant gap grows no greater

than M2K .

We have seen that the optimal spectrum management problem can be ver-

tically decomposed into two steps (Corollary 8): i) finding the optimal channel

assignment, and ii) given a channel assignment, finding the optimal power alloca-

tion. We have seen that step i) (CA) leads to the non-polynomial computational

complexity of 2K , whereas step ii) (PA) can be done in polynomial time. There-

fore, finding a good channel allocation is the essential task in approaching the

optimal spectrum management. As the combinatorial problem of CA is in gen-
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eral NP, designing good low complexity CA heuristics is crucial for practical

applications in large-scale networks.

2.3 Summary

This chapter considers weighted sum-rate maximization in interference networks

with interference treated as noise.

For continuous frequency spectrum management, we show that for any two

(among K) users, as long as the two normalized cross channel gains between

them are both larger than or equal to 1
2
, an FDMA allocation between these two

users benefits every one of the K users. Therefore, under this pairwise condition,

all Pareto optimal points of the K-user rate region can be achieved with this

pair of users using orthogonal channels. The pairwise nature of the condition

allows a completely distributed decision on whether any two users should use

orthogonal channels, without loss of any Pareto optimality. Next, we show that

the non-convex weighted sum-rate maximization in K-user asymmetric frequency

selective channels can be equivalently transformed in the primal domain to a

convex optimization, and the main computational complexity lies in computing

convex hull functions based on channel parameters.

For discrete frequency spectrum management which is NP complete in both

the number of users K and the number of channels M , we show that an ap-

proximate formulation achieving a bounded gap to the original optimum leads to

a vertical decomposition of the problem into channel allocation and power allo-

cation. Given the optimal channel allocation, the optimal power allocation can

be solved by a convex optimization. This decomposition indicates that the NP

hardness of the problem lies in the combinatorial optimization of channel allo-
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cation. Via Lagrange dual decomposition, the problem scale of the optimization

of channel allocation is further reduced to just a single channel, and the overall

computational complexity of solving the approximate formulation is O(M2K).

As it is channel allocation that carries the NP hardness of the problem, designing

good channel allocation heuristics is the fundamental task in approaching the

optimal spectrum management solution.
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CHAPTER 3

Channel Allocation in Wireless Cellular

Interference Networks

In this chapter, we consider the problem of channel allocation (CA) in discrete

frequency interference networks. As pointed out in the last chapter, finding good

channel allocation schemes is the essential task in approaching the optimal joint

power and channel allocation solution. For generic interference networks, how-

ever, finding the globally optimal channel allocation is a combinatorial problem

that consumes a worst-case computational complexity of O(2K) (where K is the

total number of users in the network).

Instead of considering arbitrary interference networks, we focus on channel

allocation in wireless cellular networks, and design low complexity algorithms for

large-scale networks. As a simple hierarchical model, the cellular model success-

fully exploits wireless propagation losses in coordinating users across large areas,

and has been widely applied in wireless communication networks.

We show that, in the simplest case of uplink channel allocation in one dimen-

sional networks, the globally optimal channel allocation can be achieved with

a complexity of O(KcellM logM) by a rippling of local signal scale interference

alignment, (where Kcell is the number of cells and M is the number of channels.)

Extending it to downlink CA or to two or more dimensional networks, however,

signal scale interference alignment does not provide polynomial time algorithms
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that achieves the globally optimal solution. In spite of this, we show that a

bound on the globally optimal value can be derived from assuming “perfect” sig-

nal scale interference alignment. From simulation results, the bound is shown to

be reasonably tight.

To develop near globally optimal CA algorithms for general cellular networks,

we exploit an important nature of wireless interference: its locality due to propa-

gations losses. We establish an algorithmic framework that fully respects the ef-

fect of inter-cell interference, and yet “horizontally” decomposes the optimization

of CA to local assignment problems, each solvable with a complexity of O(M3).

The respect of interference ensures that the algorithm is “context-aware” (i.e., not

over-simplifying the network physical layer), achieving very close to globally opti-

mal performance. The horizontal decomposition makes the algorithm distributed.

Hence, it can be applied to arbitrarily large networks with low complexity.

The rest of the chapter is organized as follows: In Section 3.1, we establish

the system model. In Section 3.2, we develop a low complexity CA algorithm

that achieves the globally optimal uplink channel allocation in one dimensional

networks. In Section 3.3, we develop a low complexity decomposition framework

based on local assignment problems for the downlink channel allocation in one

dimensional networks. In Section 3.4, we generalize the decomposition framework

to two or more dimensional cellular networks.

3.1 System Model

We make the following assumptions throughout the chapter:

1. Interference is treated as noise.

2. There are M parallel channels with unit bandwidth.
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3. Users within the same cell do not reuse the same channel.

4. A frequency reuse factor of one is applied among all the cells.

5. In every cell, all the M channels are utilized, i.e., there is no vacant channel

in any cell.

6. Every user occupies exactly one channel, which implies that the number of

users in each cell equals M , since we assume no channel is vacant.

7. Each user transmits at its own fixed power level.

Remark 9.

• From assumption 3, there is no intra-cell interference, and all co-channel

interference are inter-cell interference.

• By assumption 5, we essentially consider a crowded network environment.

• For a user occupying multiple channels, an equivalent view of it is that

there are multiple co-located users each occupying one channel. Thus, pro-

vided that the number of channels a user occupies is fixed, this equivalent

transformation to satisfy assumption 6 does not lose generality.

From assumption 7, users do not vary their selected power levels, and we focus

on the problem of channel allocation: For every channel, choose the co-channel

users in all the cells.

Furthermore, we characterize the inter-cell interference by introducing the

following definition:

Definition 17 (Interference Neighborhood). For any cell A, its interference

neighborhood N (A) is the set of cells such that, for any cell B /∈ N (A), B 6= A,
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1. The signal from cell A is negligible in cell B because of the propagation loss

from A to B.

2. The signal from cell B is negligible in cell A because of the propagation loss

from B to A.

3. A /∈ N (A).

Remark 10. Given any critical interference level below which we consider the

interference to be negligible, N (A) can be determined accordingly. Thus, by tuning

N (A), it can characterize the actual inter-cell interference within the network

arbitrarily closely.

From the definition of interference neighborhood, we immediately observe the

following:

Remark 11. B ∈ N (A) if and only if A ∈ N (B).

Notations

• For the ith user (i = 1, 2, . . . ,M) in cell A, we denote its index by Ai. In

other words, a user is assigned with two labels: the cell that it belongs to

(A), and its user index within this cell (i).

• For a cell A, we denote by A(m) the index of the user in cell A that occupies

channel m. E.g., A(m) = Ai means that in cell A, channel m is occupied

by the ith user in this cell. As each channel is occupied by one and only one

user in a cell, A(m), 1 ≤ m ≤ M is always a permutation function within

cell A.

• For user A(m), we denote by pA(m) the transmit power of this user, and

NA(m) the noise power seen by this user in channel m. We denote by gA(m)B
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the channel gain from user A(m) to the base station in cell B in channel m,

and gBA(m) the channel gain from the base station in cell B to user A(m)

in channel m.

Remark 12.

• NA(m) represents the noise level at the base station in the uplink case, and

that at the mobile in the downlink case.

• Given B, gA(m)B, gBA(m), gA(m)A, gAA(m), and NA(m) are functions of not only

the cell index A, the channel index m, but also the user index A(m). (E.g.,

A(m) = Ai and A(m) = Aj may result in different gA(m)B.)

In other words, A(m) is itself a function that specifies the user index, and

the user index is thus implicitly included in the sub-indices of gA(m)B, gBA(m),

gA(m)A, gAA(m), and NA(m).

In comparison, one may also use more elaborate notations, e.g., gAi,mB, denoting

the channel gain from user Ai to the BS of B if user Ai occupies channel m (i.e.,

A(m) = Ai). However, we find that using A(m) in the sub-indices as a compact

notation representing cell, channel and user indices all together leads to simpler

expressions, and yet better clarity. In particular, the representation of co-channel

inter-cell interference becomes simple and clear.

As a result, the rate of user A(m) has the following expressions:

Uplink: RA(m) = log

(

1 +
pA(m)gA(m)A

∑

B∈N (A) pB(m)gB(m)A +NA(m)

)

. (3.1)

Downlink: RA(m) = log

(

1 +
pA(m)gAA(m)

∑

B∈N (A) pB(m)gBA(m) +NA(m)

)

. (3.2)
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3.2 Uplink Channel Allocation in One Dimensional Net-

works: Signal Scale Interference Alignment

In this section, we study the problem of finding the uplink channel allocation

that maximizes the total throughput in one-dimensional cellular networks, (i.e.,

with BS positioned on a straight line:)

max
A(m),∀m,A

∑

A

M
∑

m=1

RA(m) (3.3)

We consider the case of frequency flat fading: for any pair of transmitter (mobile)

and receiver (BS), it sees the same channel gain and noise level in all the M

channels, further described as follows.

• gA(m)B given that A(m) = Ai is equal to gA(m′)B given that A(m′) = Ai,

∀A,B, i,m 6= m′.

Thus, specifying the user index at the transmitter and the cell indices is

sufficient to determine the channel gain, regardless of the channel index.

E.g., gAiB has an unambiguous value, denoting the channel gain from user

Ai to the BS of B.

• ∀A, NA(m) = NA regardless of A(m), denoting the frequency flat noise level

at the BS of A.

We further assume that, for any cell, interference from users not from the

immediate neighboring cells is ignored. In other words, N (A) only contains the

cells that are immediate neighbors of A.

We exploit a revenue-cost separation principle, and equivalently transform

maximizing the total throughput into minimizing the total interference cost of

all cells. The key idea in obtaining the optimal channel allocation is the alignment
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of interference signal scale. We show that with very low complexity, a complete

optimal channel allocation can be constructed by rippling along all the cells the

proposed signal scale interference alignment procedure. From analyzing the con-

sequence of the signal scale interference alignment, the superiority of the optimal

channel allocation over CDMA is justified.

3.2.1 Revenue-Cost Separation Principle

From the last chapter, we have seen that an approximation of (3.1) is

RA(m) ≈ log

(

pA(m)gA(m)A
∑

B∈N (A) pB(m)gB(m)A +NA

)

, ∀A, (3.4)

and a bounded gap approximation of (3.1) is

RA(m) ≈ log

(

pA(m)gA(m)A
∑

B∈N (A) pB(m)gB(m)A +NA

)+

, ∀A, (3.5)

Using (3.5), provided that the optimal CA maximizing (3.3) satisfies that every

user has a positive dB SINR, we can safely drop the + in (3.5), and obtain the

same optimal CA by maximizing (3.3) using (3.4) instead.

In this section, we assume that the optimal CA does lead to every user having

a positive dB SINR, and we use (3.4) as the rate expression in maximizing (3.3).

This is a reasonable assumption because every user only sees interference from

other cells. Accordingly, we have the revenue-cost separation principle:

RA(m) = log(pA(m)gA(m)A)− log(
∑

B∈N (A)

pB(m)gB(m)A +NA)

= revenueA(m) − costA(m), ∀A,m, (3.6)
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where

revenueA(m) , log(pA(m)gA(m)A), (3.7)

costA(m) , log(
∑

B∈N (A)

pB(m)gB(m)A +NA). (3.8)

From the definition (3.7), we immediately observe the following:

Lemma 7 (Revenue Invariance). The revenue of any user Ai is invariant to the

CA of A.

Proof. Suppose user Ai occupies channel m in cell A, i.e., A(m) = Ai. Then

revenueAi
= log(pAi

gA(m)A). (3.9)

Because user Ai transmits at a fixed power level pAi
, and we assume frequency

flat fading, (3.9) is a constant that does not depend on the channel index m as

long as A(m) = Ai.

Therefore, to maximize the network total throughput, it is equivalent to find

the optimal CA that has the minimum total cost incurred:

min
A(m),∀m,A

∑

A

M
∑

m=1

costA(m) (3.10)

3.2.2 Optimal Solution for the Local Problem

Consider any three consecutive cells on a line, we denote the center cell by C,

the left cell by L, and the right cell by R (Figure 3.1). By assumption we have

N (C) = {L,R}.

We now consider the local problem of minimizing the total cost that C sus-
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L C R

L4 L3 L2 L1 C1 C2 C3 C4 R1 R2 R3 R4

(BSs)

(Users)

Figure 3.1: Three consecutive cells in a uplink one dimensional network. Users

connected by lines are suggested co-channel users.

tains, generated from L and R:

min
L(m),C(m),R(m)

M
∑

m=1

costC(m)

= min
L(m),C(m),R(m)

M
∑

m=1

log(pL(m)gL(m)C + pR(m)gR(m)C +NC). (3.11)

Clearly, (3.11) does not depend on the CA of cell C itself, but depends on the

CA of L and R. Furthermore, from the symmetry provided by the flatness of the

channels, we have the following lemma:

Lemma 8. The optimal solution of (3.11) can be achieved by first determining

either L or R’s CA arbitrarily, and then optimizing the other one’s CA corre-

spondingly.

Now, consider the two cells L and C only. We have the following lemma on

the interference received by C from L.

Lemma 9. The set of (a total of M) interference strengths generated from the

users in L to the BS of C is invariant to the CA of L.

Similarly to Lemma 7, this is an immediate implication of the flat channel

assumption. In fact, for any one user Li, its interference strength seen at the
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BS of C does not depend on which channel it occupies. According to Lemma 9,

denote the set of interference strengths from L to C by

{I1L, . . . , I
m
L }, I1L ≥ I2L . . . ≥ IML . (3.12)

Due to the flat channel assumption, WLOG, we index the M channels such that

ImL is the interference from L to C in channel m. Consequently, the channel allo-

cation function L(m)(m = 1, . . . ,M) implied by such channel indexing satisfies

that ImL = pL(m)gL(m)C .

Next, we would like to optimize the CA in R, i.e., {R(m), m = 1, . . . ,M}),

such that the total cost generated from {L and R} to C is minimized (3.11).

We start with an arbitrary initial CA R(m), and compute

{ImR = gR(m)CpR(m), m = 1 . . .M}. (3.13)

With the channel allocation functions L(m) and R(m), the total cost that the

users in C sustain is

M
∑

m=1

costC(m) =

M
∑

m=1

log(ImL + ImR +NC), (3.14)

where ImL and ImR (m = 1, . . . ,M) are co-channel interferences.

For any other CA R′(m), it can be represented by a permutation function

P(m)(m = 1, . . . ,M) applied to the initial CA R(m), such that

R′(m) = R(P(m)).

In other words, channel m is assigned to the user who initially has channel P(m)

assigned to it. With L(m) and R′(m), the total cost that the users in C sustain

changes to
M
∑

m=1

cost′C(m) =

M
∑

m=1

log(ImL + I
P(m)
R +NC), (3.15)
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where ImL and I
P(m)
R (m = 1, . . . ,M) are the new co-channel interferences.

Therefore, the optimal CA problem is formulated as follows:

min
P(m)

M
∑

m=1

log(ImL + I
P(m)
R +NC). (3.16)

The key in finding the optimal P(m) (and hence the optimal CA in R) among

the M ! permutations is an idea of signal scale interference alignment. We sort

{ImR , m = 1, . . . ,M} in descending order: Im1
R ≥ Im2

R ≥ . . . ≥ ImM

R , and define

P∗(j) , mj, j = 1, . . . ,M . The following theorem can be shown:

Theorem 8 (Signal Scale Interference Alignment). Among all permutation func-

tions P(m), {P∗(m), m = 1, . . . ,M} yields the minimum total cost that the users

in C sustain.

Remark 13. From the definition of P∗(m), we have I1L ≥ I2L . . . ≥ IML and

I
P∗(1)
R ≥ I

P∗(2)
R ≥ . . . ≥ I

P∗(M)
R . What has been done in the optimal CA is that

we align the strongest interference each from L and R to co-exist in the same

channel, and so on for the 2nd strongest, . . ., all the way to aligning the weakest

interference each from L and R to co-exist in the same channel.

Proof of Theorem 8. We prove an equivalent form of the theorem: If a1 ≥ a2 ≥

. . . ≥ aM ≥ 0, b1 ≥ b2 ≥ . . . ≥ bM ≥ 0, N ≥ 0, then
∑M

m=1 log(am + bm +N) ≤
∑M

m=1 log(am + bf(m) +N), for all permutation functions f(m), m = 1, . . . ,M .

We use induction on M as follows.
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bf(1)
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b2
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aM

bM

Figure 3.2: After replacing (a1, bf(1)) and (af−1(1), b1) with (a1, b1) and

(af−1(1), bf(1)), the total cost decreases, (or remains unchanged.)

M = 1 is trivial. For M = 2, by Jensen’s inequality,

a1 − a2
a1 − a2 + b1 − b2

log(a1 + b1 +N)

+
b1 − b2

a1 − a2 + b1 − b2
log(a2 + b2 +N) ≤ log(a1 + b2 +N) (3.17)

b1 − b2
a1 − a2 + b1 − b2

log(a1 + b1 +N)

+
a1 − a2

a1 − a2 + b1 − b2
log(a2 + b2 +N) ≤ log(a2 + b1 +N) (3.18)

(3.17)+(3.18) implies the theorem for M = 2.

Suppose the theorem holds for all M ≤ k.

ForM = k+1, we first represent the problem by a bipartite graph (Figure 3.2):

it consists of upper M points a1, . . . , aM and lower M points b1, . . . , bM , and there

is an (undirected) edge between every am and bf(m). The theorem is then equiv-

alent to claiming that the graph with all “vertical” edges (am, bm), m = 1, . . . ,M

yields the minimum total cost. Proof follows:

Given a graph generated from a permutation function f(m):

i) If edge (a1, b1) is in the graph, then after removing (a1, b1), the rest of the

graph degrades to an M = k case, and applying the induction assumption proves

this case.

ii) If edge (a1, b1) is not in the graph, applying the induction assumption with
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M = 2 yields,

log(a1+bf(1) +N) + log(af−1(1) + b1 +N) ≥

log(a1 + b1 +N) + log(af−1(1) + bf(1) +N) (3.19)

In other words, after replacing the two edges (a1, bf(1)) and (af−1(1), b1) with

(a1, b1) and (af−1(1), bf(1)), the total cost decreases (or remains unchanged), and

the new bipartite graph falls into the case of i).

3.2.3 Optimal Solution in Infinite One Dimensional Networks

Now, consider a two-sided infinite one dimensional cellular network. The above

local alignment procedure can then be used in a rippling manner along the

one dimensional network to obtain the optimal CA of all cells — indexed as

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .. We show that the globally optimal CA over the

entire network can be achieved by a two-stage optimization, with each stage

optimizing half of the cells in the network.

Stage 1 We minimize the total cost sustained by cells {. . . ,−3,−1, 1, 3, . . .}:

this leads to the optimal CA in cells {. . . ,−2, 0, 2, . . .}, specified by the following

algorithm.
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Algorithm 3.1 : two-stage rippling of signal scale interference alignment

Step 0. Assign an arbitrary CA to cell 0;

Step 1a. Based on the CA in cell 0, assign the CA in cell 2 according to the the

alignment rules in Theorem 8, and the total cost that cell 1 sustains is

minimized;

Similarly,

Step 1b. CA in cell 0 ⇒ CA in cell -2: the cost in cell -1 is minimized;

Step 2a. CA in cell 2 ⇒ CA in cell 4: the cost in cell 3 is minimized;

Step 2b. CA in cell -2 ⇒ CA in cell -4: the cost in cell -3 is minimized;

And so on.

Note that in Step 0, the arbitrary CA assignment of cell 0 does not lose any

generality, and hence optimality (cf. Lemma 8).

Stage 2 Similarly to Stage 1, we minimize the total cost sustained by cells

{. . . ,−2, 0, 2, . . .} by applying the rippling procedure to cells {. . . ,−3,−1, 1, 3, . . .}.

After the above two stages of CA, we obtain a complete optimal CA that

yields the minimum total cost of all the cells. Because of the revenue invariance

property (cf. Lemma 7), it achieves the maximum total throughput.

Remark 14. Finding a complete optimal CA has a complexity of O(KcellM logM),

where Kcell is the number of cells: The term Kcell comes from the rippling pro-

cedure as above, and the term M logM comes from sorting the interference

strengths for each cell (using e.g. Heapsort.)

Remark 15. For all the users in any one cell, the ordering of their interference

strengths at the left neighboring BS could be different from that at the right neigh-
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boring BS. For example, in Figure 3.1, assuming interference strength decreases

as the transmission distance increases, user C1 (among all the users in C) creates

the strongest interference to the BS of L, but the weakest interference to the BS

of R. To guarantee that a CA is globally optimal, users within each cell must

align their interference strengths with those from both their 2nd left and 2nd right

neighboring cells, (as achieved by the proposed rippling procedure.)

3.2.4 Performance Evaluation: Optimal CA vs. CDMA

In this section, we give a typical example that numerically compare the average

spectral efficiency of the optimal CA with that of CDMA schemes. We assume

the simplified path loss model [Gol05] Pr = PtK(d0
d
)γ with d0 = 50m (outdoor

environment), and no multipath or shadow fading. The parameter K is irrelevant

to the comparison between optimal CA and CDMA, and is assumed to be 1. γ

between 2.5 and 4 will be tested below. We assume a one dimensional cellular

network with cell radius = 500m, and that there are M users equally spaced in

every cell.

In this example, we assume that all users transmit at the same power level.

We compute a completely interference limited case, i.e., noise power is ignored.

In this case, the value of the PSD is irrelevant to the comparison between optimal

CA and CDMA, and is assumed to be 1. For any three consecutive cells L, C,

R, the optimal CA derived in Section 3.2.2 yields a fully symmetric CA in L and

R such that users in L and R with the same distance to the BS of C co-exist in

the same channel (Figure 3.1). The average cost per user is

costopt.CA =
1

M

M
∑

i=1

log(2Ii) bits/sec/Hz (3.20)

where Ii (i = 1, . . . ,M) traverses the interference from all M positions of the
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users in L (and R symmetrically.)
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Figure 3.3: Superiority of optimal CA over CDMA

With CDMA, every user in a cell sustains the same amount of cost from other

cells (since interference is averaged:)

costCDMA = log(
1

M

M
∑

i=1

2Ii) bits/sec/Hz, (3.21)

From Jensen’s inequality, the superiority of the optimal CA over CDMA be-

comes evident: costCDMA ≥ costopt.CA always. We plot in Figure 3.3 the difference

costCDMA−costopt.CA as a function of M , parameterized by γ = 2.5, 3, 3.5, 4. Note

that from revenue invariance, −(costCDMA − costopt.CA) equals the throughput

difference in terms of the average spectral efficiency. We observe the following:

1. As the number of users increases and/or as γ increases, the variation in

the set of interference strengths {Ii} increases. Thus the gap from Jensen’s

inequality, and hence the cost difference, increases.

2. As one numerical rule of thumb in this particular example, with γ = 4,

the superiority in throughput of optimal CA over CDMA reaches above 1

bits/sec/Hz when the number of users reaches 25 per cell.
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3.3 Downlink Channel Allocation in One Dimensional Net-

works: Decomposition and Assignment Problem

In this section, we turn our focus to downlink channel allocation. We assume the

same network and channel settings as in the last section: one dimensional cellular

networks with N (A), ∀A containing the immediate neighboring cells of A, and

frequency flat fading. We again assume that the optimal CA leads to every user

having a positive dB SINR. In addition, we also assume an interference limited

condition: in every cell, the noise level is ignored compared to the interference.

Similarly to the uplink case, we use the following approximate rate expression

with a revenue-cost separation principle in the downlink case:

RA(m) = log(pA(m)gAA(m))− log(
∑

B∈N (A)

pB(m)gBA(m))

= revenueA(m) − costA(m), ∀A,m, (3.22)

where

revenueA(m) , log(pA(m)gAA(m)), (3.23)

costA(m) , log(
∑

B∈N (A)

pB(m)gBA(m)). (3.24)

Similarly to the last section, we again have the revenue invariance property, i.e.,

Lemma 7 holds in the downlink case. Thus, the network total throughput maxi-

mization problem is equivalently transformed to network total cost minimization

problem:

min
A(m),∀m,A

∑

A

M
∑

m=1

costA(m) (3.25)

Intractability of the Local Problems
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Figure 3.4: Three consecutive cells in a downlink one dimensional network.

Consider any three consecutive cells {L1, C, R1}1, and the local problem of

minimizing the total cost that C sustains, generated from L1 and R1:

min
L1(m),C(m),R1(m)

M
∑

m=1

costC(m)

= min
L1(m),C(m),R1(m)

M
∑

m=1

log(pL1(m)gL1C(m) + pR1(m)gR1C(m)). (3.26)

As a key difference from the uplink case (3.11), (3.26) not only depends on the

CA of L1 and R1, but also depends on the CA of cell C itself. Nevertheless, we

have the following lemma similar to Lemma 8 based on the symmetry provided

by the flatness of the channels:

Lemma 10. The optimal solution of (3.26) can be achieved by first arbitrarily

determining the CA of any one of the three cells L1, C, R1, and then optimizing

the other two cells’s CA correspondingly.

For example, we can first let C(m) = Cm, m = 1, 2, . . . ,M WLOG, and (3.26)

can then be solved by jointly optimizing the CA of L1 and R1 :

min
L1(m),R1(m)

M
∑

m=1

log(pL1(m)gL1Cm
+ pR1(m)gR1Cm

). (3.27)

where L1(m), R1(m) specifies the users in L1 and R1 that are co-channel with

user Cm in C. Similarly, (3.26) can also be solved by first arbitrarily determining

1The super-indices “1” are added to L and R to denote that they are the 1st left and 1st

right neighboring cells of C.
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the CA of either L1 or R1, and then jointly optimize the CA of the remaining

two cells.

However, We have the following conjecture on the hardness of solving a prob-

lem like (3.27)2:

Conjecture 1. Given the CA of any one of the three consecutive cells L1, C, R1,

the local problem of minimizing the total cost in C by jointly optimizing the CA

of the two remaining cells (e.g. (3.27)) is NP hard in the number of users M .

Conjecture 1 motivates us to find other forms of local problems that can be

solved with low complexity and also effectively applied in optimizing the entire

network.

Lower Bound on the Minimum Total Cost

Although (3.27) cannot be efficiently solved, by applying Jensen’s Inequality,

we obtain the following lower bound on the optimal value of (3.27):

M
∑

m=1

log(pL1(m)gL1Cm
+ pR1(m)gR1Cm

)

≥
1

2

(

M
∑

m=1

log(2pL1(m)gL1Cm
) +

M
∑

m=1

log(2pR1(m)gR1Cm
)

)

(3.28)

=M +
1

2

(

M
∑

m=1

log pL1(m) +

M
∑

m=1

log gL1Cm
+

M
∑

m=1

log pR1(m) +

M
∑

m=1

log gR1Cm

)

=M +
1

2

(

M
∑

m=1

log pL1
m
+

M
∑

m=1

log gL1Cm
+

M
∑

m=1

log pR1
m
+

M
∑

m=1

log gR1Cm

)

(3.29)

where (3.28) comes from the concavity of the log function and Jensen’s Inequality,

and (3.29) occurs because the channel allocation functions L1(m) and R1(m) are

permutation functions within cells L1 and R1 respectively. Note that (3.29) is a

2The proof of the conjecture remains an open problem.
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constant that does not depend on L1(m) and R1(m), and thus serves as a lower

bound on the optimal value of (3.27).

We note that the lower bound (3.29) is tight if and only if (3.28) is met with

equality, i.e.,

∀m = 1, 2, . . . ,M, pL1(m)gL1Cm
= pR1(m)gR1Cm

. (3.30)

(3.3.1) implies that, in every channel, “perfect” signal scale interference alignment

is achieved: the interference from the left neighboring base station L1 exactly

equals to the interference from the right neighboring base station R1. In light of

this, the intuition of minimizing the total cost is really to approach as much signal

scale interference alignment as possible. However, perfect interference alignment

(3.3.1) may not be achievable even with the optimal solution of (3.27).

3.3.1 Iterative Distributed Heuristics Based on Signal Scale Interfer-

ence Alignment

Simplified Local Problems: Signal Scale Interference Alignment

For minimizing the total cost in C, instead of jointly optimizing the CA of

two cells among L1, C, R1 while fixing the other one, we simplify the the problem

to optimizing the CA of one cell while fixing the other two: Given L1(m), R1(m),

min
C(m)

M
∑

m=1

costC(m) = min
C(m)

M
∑

m=1

log(pL1(m)gL1C(m) + pR1(m)gR1C(m)) (3.31)

We make the following observation:

(3.31) = min
C(m)

M
∑

m=1

log

(

gL1C(m)

(

pL1(m) + pR1(m)

gR1C(m)

gL1C(m)

))

=
M
∑

m=1

log(gL1C(m)) + min
C(m)

M
∑

m=1

log(pL1(m) + p̃C(m)), (3.32)
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where p̃C(m) , pR1(m)
g
R1C(m)

g
L1C(m)

. Note that (3.32) and (3.16) (with NC = 0) are

essentially the same problem, and we have the following corollary of Theorem 8:

Corollary 11 (Signal Scale Interference Alignment). After transforming to (3.32),

(3.31) can solved with O(M logM) complexity by sorting and aligning {pL1(m)}

and {p̃C(m)}.

Note that, in (3.16), the physical meaning of signal scale interference align-

ment is clear: sorting and aligning the interference strengths (seen at the BS of

the center cell) from the mobiles in the left neighboring cell and the right neigh-

boring cell. In (3.32), however, the meaning of sorting and aligning {pL1(m)} and

{p̃C(m)} is less evident. To understand that it is indeed signal scale interference

alignment, consider the case where pL1(m) = p̃C(m), i.e.,

pL1(m) = pR1(m)

gR1C(m)

gL1C(m)

⇔ pL1(m)gL1C(m) = pR1(m)gR1C(m). (3.33)

(3.33) means that the interference strength from the left neighboring BS to the

mobile occupying channel m in the center cell is equal to that from the right

neighboring BS, corresponding to the perfect signal scale interference alignment

in reaching the lower bound (3.29). Thus, we see that the intuition of Corollary

11 is again signal scale interference alignment.

Network Optimization:

Iterative Distributed Signal Scale Interference Alignment

Now, Consider a two-sided infinite one dimensional cellular network with cell

indices . . . ,−3,−2,−1, 0, 1, 2, 3, . . .. Using the above simplified local optimization

(3.31) as building blocks, we propose an iterative two-stage algorithm as follows

(cf. Figure 3.5):
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......

0 1 2-1-2-3 3 4-4

......

Stage 1

Stage 2

Figure 3.5: Iterative distributed two-stage algorithm for channel allocation. In

each stage, the solid circles denote the cells whose CA are fixed, and the open

circles denote the cells whose CA are optimized as local signal scale interference

alignment.

Algorithm 3.2 : iterative distributed signal scale interference alignment

Assign arbitrary initial CAs to all cells.

Repeat

Stage 1: with the CAs in cells . . . ,−3,−1, 1, 3, . . . fixed,

optimize the CAs of cells . . . ,−2, 0, 2, . . . by (3.31).

Stage 2: with the CAs in cells . . . ,−2, 0, 2, . . . fixed,

optimize the CAs of cells . . . ,−3,−1, 1, 3, . . . by (3.31).

until approximate convergence.

Note that, in each stage, all the local optimization are independently per-

formed. Thus, Algorithm 3.2 is a distributed iterative algorithm. To perform

signal scale interference alignment, however, information exchange is needed be-

tween adjacent cells. For example, in forming (3.32), although the received signal

power pL1(m)gL1C(m) can be measured at the mobile C(m) in cell C, either the

transmit power pL1(m) or channel gain gL1C(m) needs to be known at cell C.
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Despite its distributed nature, Algorithm 3.2 does not guarantee that the net-

work total cost is non-decreasing after each stage, and hence does not guarantee

convergence. For example, optimizing the CA of cell 0 affects not only the cost

in cell 0, but also the cost in cells -1 and 1. However, the local optimization at

cell 0 does not take its influence in cells -1 and 1 into account. Therefore, Stage 1

has no control on the resulting total cost in cells . . . ,−3,−1, 1, 3, . . ., and Stage

2 has no control on the resulting total cost in cells . . . ,−2, 0, 2, . . .. As will be

shown in Section 3.3.2.3, by iterating the two stages repeatedly, Algorithm 3.2

can only achieve approximate convergence.

We address the above issues in the next section, and develop a much more

general framework of optimizing CA over the entire network, with yet better

performance.

3.3.2 Iterative Decomposed Heuristics Based on Local Assignment

Problems

3.3.2.1 Local problems as Assignment Problems

To optimize the CA of C, in addition to the total cost in C itself, we also include

into the objective the total cost in C’s entire interference neighborhood N (C):

min
C(m)

∑

A∈C∪N (C)

M
∑

m=1

costA(m), (3.34)

where costA(m) = log(
∑

B∈N (A)

pB(m)gBA(m)). (3.35)
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Interference Neighborhood of C: N(C)

Correlated neighborhood of C: N’(C)

L3 R3

Figure 3.6: Interference Neighborhood N (C), Correlated Neighborhood N ′(C)

in a one dimensional network.

With our assumption on the interference neighborhood in one dimensional net-

works, N (C) = {L1, R1}, and

(3.34) = min
C(m)

M
∑

m=1

(costL1(m) + costC(m) + costR1(m)), (3.36)

where costC(m) = log(pL1(m)gL1C(m) + pR1(m)gR1C(m)), (3.37)

costL1(m) = log(pL2(m)gL2L1(m) + pC(m)gCL1(m)), (3.38)

costR1(m) = log(pC(m)gCR1(m) + pR2(m)gR2R1(m)), (3.39)

For notation, we use Lk (Rk) to denote the kth left (right) neighboring cell of C.

From (3.37),(3.38),(3.39), we see that to solve (3.36), we need to fix not only the

CA in L1, R1, but also the CA in L2, R2. We call the set of cells {L2, L1, R1, R2}

the Correlated Neighborhood of C (cf. Figure 3.6).

For the above local problem in its general form (3.34), in order to solve it, we

need to fix the CA of all cells (other than C itself) that appear in (3.35):

• Clearly, the CA of {A | A ∈ N (C)} need to be known and fixed. From

Remark 11, this is equivalent to fixing the CA of

{A | N (A) ∩ C 6= ∅}. (3.40)
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Figure 3.7: Correlated Neighborhood N ′(C), where A ∈ N ′(C) but B /∈ N ′(C).

Shaded areas represent the interference neighborhood.

• Moreover, the CA of {B | ∃A ∈ N (C), B ∈ N (A)} need to be known and

fixed. From Remark 11, this is equivalent to fixing the CA of

{B | N (B) ∩N (C) 6= ∅}. (3.41)

Combining (3.40) and (3.41), we see that the set of cells that need to be known

and fixed while solving (3.34) is the following:

Definition 18. The Correlated Neighborhood of cell C is defined to be

N ′(C) , {A | N (A) ∩ (C ∪N (C)) 6= ∅}. (3.42)

A conceptual depiction of the correlated neighborhood of C is given in Figure

3.7. We summarize the general form local problem (3.34) as follows:

Remark 16.

1. The optimization variables are the CA of C itself.

2. The objective function includes the cost within the interference neighborhood

of C, in addition to C itself.
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3. The set of cells whose CA need to be fixed consists of the correlated neigh-

borhood of C.

As a result, in (3.34), we include in the objective all the cells that are influ-

enced by the CA of C, with necessarily more neighboring cells’ CA fixed.

Now, we show that (3.34) can be solved efficiently as an Assignment Problem

[Kuh55, BDM09] as follows:

Theorem 9. Given the CA of all the cells in C’s correlated neighborhood N ′(C),

(3.34) can be solved as an assignment problem with a computational complexity

of O(M3).

Proof. Construct an M ×M matrix X, where ∀m,n = 1, 2, . . . ,M,

Xmn =
∑

A∈C∪N (C)

costA(m) given that C(m) = Cn. (3.43)

In other words, Xmn is the total cost sustained by a set of co-channel users in

case it is user Cn that occupies channel m in cell C, and this set of co-channel

users consists of all the users from C ∪ N (C) that occupy channel m. (Clearly,

this set of co-channel users automatically contains Cn as the user from C that

occupies channel m.)

For example, in the above problem (3.36) of one dimensional network, N (C) =

{L1, R1}, N ′(C) = {L2, L1, R1, R2}. Then, ∀m,n = 1, 2, . . . ,M,

Xmn = costC(m) + costL1(m) + costR1(m) given that C(m) = Cn

= log(pL1(m)gL1Cn
+ pR1(m)gR1Cn

) + log(pL2(m)gL2L1(m) + pCn
gCL1(m))+

log(pCn
gCR1(m) + pR2(m)gR2R1(m)), (3.44)

Note that, for (3.43) (of which (3.44) is a special case), given the CA of N ′(C)

and given that C(m) = Cn, Xmn has no ambiguity and can be readily computed.
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With the matrix X constructed by (3.43), the total cost within the entire

C ∪ N (C) can be rewritten as

∑

A∈C∪N (C)

M
∑

m=1

costA(m) =

M
∑

m=1

XmC(m), (3.45)

where we define XmC(m) to be Xmn when C(m) = Cn, thus omitting the cell

index “C” in Cn without ambiguity. The local problem in its general from (3.34)

can be rewritten as

min
C(m)

M
∑

m=1

XmC(m). (3.46)

Note that C(m), m = 1, 2, . . . ,M is a permutation function of C1, C2, . . . , CM ,

i.e., it is a bipartite matching of the M channels to the M users in C. Thus,

(3.46) is exactly in the form of an assignment problem [BDM09], and hence can

be solved by the Hungarian Algorithm [Kuh55] with a computational complexity

of O(M3).

3.3.2.2 Iterative Decomposed Network Optimization

For a general wireless cellular network, we define sets of cells that can be inde-

pendently and simultaneously optimized as independent sets:

Definition 19. A set of cells I is an independent set of cells, if

∀A,B ∈ I, A 6= B, A /∈ N ′(B), and B /∈ N ′(A). (3.47)

Based on the local problem (3.34), while optimizing the CA of any cell A ∈ I,

its correlated neighborhood N ′(A) must be fixed. (3.47) guarantees that there is

no cell in I that falls into the correlated neighborhood of another cell in I.

Note that

(3.47) ⇔ ∀A,B ∈ I, A 6= B, (A ∪ N (A)) ∩ (B ∪N (B)) = ∅. (3.48)
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Figure 3.8: The open circles represent a maximum independent set in a one

dimensional network. Each dotted circle denotes the cells that are influenced by

an open circle.

In other words, the local optimization of the cells within I all have disjoint sets

of cells that are influenced. Thus, the local optimization of the cells within I are

decomposed. As a result, we have the following corollary:

Corollary 12. For any independent set of cells I, with the CAs of Ic (i.e. all

cells not in I) fixed, to achieve the global minimum cost over the entire network,

every cell in I can optimize its own CA independently and simultaneously.

Now, consider a two-sided infinite one dimensional cellular network with cell

indices . . . ,−3,−2,−1, 0, 1, 2, 3, . . .. ∀ cell k,N ′(k) = {k− 2, k− 1, k+1, k+2}.

We define a maximum independent set of cells to consist one of every three

consecutive cells, with a uniform separation of two cells (Figure 3.8). Clearly,

this is the densest set of independent cells in a one dimensional network. Note

that there are three disjoint maximum independent set of cells whose union is the

entire network. We denote them by I0, I1, I2, where Ik = {k|k ≡ k (mod 3)}.

Based on the three maximum independent sets, we propose the following

iterative three-stage algorithm as follows (cf. Figure 3.9):
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Algorithm 3.3: iterative decomposed network optimization

based on local assignment problems

Assign arbitrary initial CAs to all cells.

Repeat

Stage 1: with the CA of cells in I2, I3 fixed,

optimize the CA of cells in I1 by (3.36).

Stage 2: with the CA of cells in I1, I3 fixed,

optimize the CA of cells in I2 by (3.36).

Stage 3: with the CA of cells in I1, I2 fixed,

optimize the CA of cells in I3 by (3.36).

until convergence.

Remark 17.

• At every iteration, one third of the cells’ CAs are optimized with an objective

function covering all the cells.

• While optimizing a maximum independent set of cells Ii, ∀k ∈ Ii, the

total cost within k ∪ N (k) = {k − 1, k, k + 1} is minimized and hence

non-increasing. From (3.48), it is guaranteed that after every iteration, the

total cost in the entire network is non-increasing. Therefore, the algorithm

is guaranteed to converge.

• As each local optimization consumes a computational complexity of O(M3),

the overall computational complexity of Algorithm 3.3 is O(KcellM
3). More-

over, the running time of Algorithm 3.3 is O(M3) as all the local optimiza-
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Figure 3.9: Iterative decomposed three-stage algorithm for channel allocation. In

each stage, the solid circles denote the cells whose CA are fixed, and the open

circles denote the cells whose CA are optimized as local assignment problems.

tion in each stage are simultaneously and independently performed, i.e.,

distributed and decomposed.

3.3.2.3 Performance Evaluation of the Iterative Algorithms

We first examine CDMA (interference averaging) as a baseline scheme. For any

cell C, the total cost within this cell with all the cells in the network using CDMA

is given by:

cost
C
CDMA =

M
∑

m=1

log(

∑M
n=1 pL1(n)

m
gL1C(m) +

∑M
n=1 pR1(n)

m
gR1C(m)). (3.49)

The average cost per user is

costCDMA ,
1

KcellM

∑

C

cost
C
CDMA. (3.50)

In comparison, the average cost per user with CA is

costCA ,
1

KcellM

∑

C

M
∑

m=1

costC(m). (3.51)
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.

With Algorithms 3.2 and 3.3, we compute the average cost difference at every

iteration: costCDMA − costCA. The higher the cost difference is, the better opti-

mality the CA achieves. We also use the lower bound on the minimum total cost

(3.29), which provides an upper bound on the average cost difference.

Note that the average cost difference has a physical meaning of the difference

in average spectral efficiency (averaged over all M channels and Kcell cells) in

bits/sec/Hz.

Simulation parameters and results

Similarly to Section 4.4.3, we assume the simplified path loss model [Gol05]

Pr = PtK(d0
d
)γ with d0 = 50m and the path loss exponent γ = 4 (outdoor

environment), and no multipath or shadow fading. Note that the above average

cost difference does not depend on the parameter K, and we let K = 1. We

consider a one-dimensional cellular network with cell radius equal to 500m. We

assume that the number of cells Kcell = 30, (or equivalently, a two-sided infinite

periodical cellular network with a period of 30 cells.)

We simulate with M = 20 parallel channels, and assume that the 20 users in

every cell are equally spaced. Finally, the transmit power pAn
, n = 1, . . . ,M, ∀A

can be chosen arbitrarily: In our simulation, we choose the transmit power such

that all users’ received power from their own BS are the same, (i.e. fairness in

revenueA(m).)

We plot the average cost difference curves with Algorithms 3.2 and 3.3 as in

Figure 3.10, compared with the upper bound.

Remark 18.
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Figure 3.10: Performance of iterative algorithms 3.2, 3.3 with M=20.

• The average cost difference is always positive, meaning that through channel

allocation we achieve lower interference cost than using CDMA.

• Algorithm 3.3 achieves a 3.38 bits/sec/Hz better spectral efficiency than

CDMA. Compared with the upper bound which is 3.53 bits/sec/Hz, it has

achieved 95% of the globally optimal value. Furthermore, within 5 itera-

tions, it already achieved 90% of the global optimum.

• As mentioned in Section 3.3.1, Algorithm 3.2 does not guarantee a mono-

tonically increasing average cost difference. The average cost difference

approximately converges (with small fluctuations) to above 2.6 bits/sec/Hz,

which is about 74% of the global optimum.

• Both iterative channel allocation algorithms 3.2 and 3.3 achieve significantly

higher spectral efficiency than CDMA.

In general, the maximum achievable cost difference between CA and CDMA
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depends on channel and power parameters. The proposed iterative algorithms

have exhibited a robust performance on their efficiency. In particular, Algorithm

3.3 always achieves within a few percent of the upper bound on the average cost

difference.

3.4 Decomposition Framework with General Network and

User Settings

In this section, we show that the local assignment problem (3.34), and the it-

erative decomposed Algorithm 3.3 apply to general wireless cellular networks,

frequency selective channels, and a general set of objective functions.

3.4.1 Two or More Dimensional Networks with Flat Channels

In the flat channel cases, generalization to two or more dimensional networks is

straightforward:

• The definition of the interference neighborhood N (A) applies.

• The definitions of correlated neighborhood N ′(A) and independent set of

cells I apply, as they are both derivatives of the definition of interference

neighborhood.

• The local problem (3.34) of optimizing C’s CA to minimize the total cost

in C ∪ N (C), while fixing the CA in N ′(C), applies (cf. Remark 16). The

assignment problem formulation (3.46) applies.

• The iterative decomposed Algorithm 3.3 can be directly generalized: in-

stead of having 3 maximum independent sets of cells, in the two or more
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Figure 3.11: Cells {1, 1a, 1b, 1c, 1d, 1e, 1f} belongs to the same

maximum independent set of cells. N (1) = {2, 3, 4, 5, 6, 7}.

N ′(1) = N (1) ∪ {2′, 2′′, 3′, 3′′, 4′, 4′′, 5′, 5′′, 6′, 6′′, 7′, 7′′}.

dimensional case, there are more independent sets to iteratively optimize

one after another. For example, in the regular hexagonal cells with the as-

sumption that N (A) consists of A’s six immediate neighboring cells, there

are 7 maximum independent sets of cells that jointly cover the entire net-

work (cf. Figure 3.11). In each iteration, we optimize one maximum inde-

pendent set, with the CA of the other six independent sets of cells fixed.

• The decomposition framework applies to both uplink and downlink channel

allocation.
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3.4.2 Frequency Selective Channels and Additively Separable Utility

Functions

In frequency selective channels, we consider a general network optimization ob-

jective as follows:

max
∑

A

M
∑

m=1

UA(m)(RA(m)) (3.52)

where UA(m) is the utility function of user A(m), as a function of its achievable

rate. In the form of (3.52), we have assumed that the network objective can be

written as the sum of utilities of all users in all cells. We say that the objective

has additively separable utility functions. We do not make any further assumption

on the utility function UA(m).

We generalize Theorem 9 as follows:

Corollary 13. For any cell C, given all B(m), m = 1, 2, . . . ,M, B ∈ N ′(C),

max
C(m)

∑

A∈{C∪N (C)}

M
∑

m=1

UA(m)(RA(m)) (3.53)

is an Assignment Problem, and can be solved with a computational complexity of

O(M3).

The proof is essentially the same as for Theorem 9, by constructing a utility

matrix U: ∀m,n = 1, 2, . . .M,

Umn =
∑

A∈(C∪N (C))

UA(m)(RA(m)), given that C(m) = Cn. (3.54)

In other words, Umn is the total utility in channel m within C ∪N (C), in case it

is user Cn that occupies channel m in cell C.

Comparing (3.53) with (3.34), the only difference is the utility function for the

assignment problem. The problem structure is exactly the same. Therefore, the
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iterative decomposed Algorithm 3.3 can be directly generalized with the general

assignment problem (3.53) as the building block local optimization. Combining

the generalizations in network topologies discussed in section 3.4.1, the frequency

selectivity, and the generalizations in the objective function (3.52), we see that the

framework of iterative decomposed network optimization based on local assignment

problems applies to all these general network and user settings.

3.5 Summary

In this chapter, we consider the problem of approaching the globally optimal

channel allocation in large-scale wireless cellular interference networks. We show

that by applying local signal scale interference alignment, the uplink channel allo-

cation maximizing the network throughput can be achieved with a computational

complexity of O(KcellM logM) in one dimensional networks. With general addi-

tively separable utility functions in two or more dimensional networks, we propose

a low complexity algorithmic decomposition framework on downlink and uplink

channel allocation over networks with arbitrarily large sizes. In this algorithmic

framework, optimization over the entire network is decomposed into local opti-

mization that are completely decoupled due to wireless propagation losses and

optimized in a distributed manner. Each local optimization is formulated as an

assignment problem which can be efficiently solved. We show that an iterative

algorithm that in each stage simultaneously solves decomposed local assignment

problems can approach the global optimum very closely. The computational com-

plexity of the iterative algorithm based on decomposed local assignment problems

is O(KcellM
3).
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CHAPTER 4

Optimal Transmissions with Successive

Decoding

4.1 Introduction

In this chapter, we consider the sum-rate maximization problem in two-user Gaus-

sian interference channels (cf. Figure 4.1) under the constraints of successive

decoding. While the information theoretic capacity region of the Gaussian in-

terference channel is still not known, it has been shown that a Han-Kobayashi

scheme with random Gaussian codewords can achieve within 1 bit/s/Hz of the

capacity region [ETW08], and hence within 2 bits/s/Hz of the sum-capacity. In

this Gaussian Han-Kobayashi scheme, each user first decodes both users’ com-

mon messages jointly, and then decodes its own private message. In comparison,

the simplest commonly studied decoding constraint is that each user treats the

interference from the other users as noise, i.e., without any decoding attempt.

Using Gaussian codewords, the corresponding constrained sum-capacity problem

can be formulated as a non-convex optimization of power allocation, which has

an analytical solution in the two-user case [EMK06]. It has also been shown

that within a certain range of channel parameters for weak interference channels,

treating interference as noise achieves the information theoretic sum-capacity

[AV09, MK09, SKC09]. For general interference channels with more than two
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users, there is so far neither a near optimal solution information theoretically,

nor a polynomial time algorithm that finds a near optimal solution with interfer-

ence treated as noise [LZ08] [TFL11].

We consider a decoding constraint — successive decoding of Gaussian super-

position codewords — that bridges the complexity between joint decoding (e.g.

in Han-Kobayashi schemes) and treating interference as noise. We investigate the

constrained sum-capacity and its achievable schemes. Compared to treating in-

terference as noise, allowing successive cancellation yields a much more complex

problem structure. To clarify and capture the key aspects of the problem, we

resort to the deterministic channel model [ADT11]. In [BT08], the information

theoretic capacity region for the two-user deterministic interference channel is

derived as a special case of the El Gamal-Costa deterministic model [GC82], and

is shown to be achievable using Han-Kobayashi schemes.

We transmit messages using a superposition of Gaussian codebooks, and use

successive decoding. To capture the use of successive decoding of Gaussian code-

words, in the deterministic formulation, we introduce the complementarity condi-

tions on the bit levels, which have also been characterized using a conflict graph

model in [SCA10]. We develop transmission schemes on the bit-levels, which in

the Gaussian model corresponds to message splitting and power allocation of the

messages. We then solve the constrained sum-capacity, and show that it oscil-

lates (as a function of the cross link gain parameters) between the information

theoretic sum-capacity and the sum-capacity with interference treated as noise.

Furthermore, the minimum number of messages needed to achieve the constrained

sum-capacity is obtained. Interestingly, we show that if the number of messages

is limited to even one less than this minimum capacity achieving number, the

sum-capacity drops to that with interference treated as noise.
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We then translate the optimal schemes in the deterministic channel to the

Gaussian channel, using a rate constraint equalization technique. To evaluate

the optimality of the translated achievable schemes, we derive and compute two

upper bounds on the sum-capacity of Gaussian Han-Kobayashi schemes1. Since

a scheme using superposition coding with Gaussian codebooks and successive de-

coding is a special case of Han-Kobayashi schemes, these bounds automatically

apply to the sum-capacity with such successive decoding schemes as well. We

select two mutually exclusive subsets of the inequality constraints that charac-

terize the Gaussian Han-Kobayashi capacity region. Maximizing the sum-rate

with each of the two subsets of inequalities leads to one of the two upper bounds.

The two bounds are shown to be tight in different ranges of parameters. Numer-

ical evaluations show that the sum-capacity with Gaussian superposition coding

and successive decoding oscillates between the sum-capacity with Han-Kobayashi

schemes and that with single message schemes.

The remainder of the chapter is organized as follows. Section 4.2 formulates

the problem of sum-capacity with successive decoding of Gaussian superposition

codewords in Gaussian interference channels, and compares it with Gaussian

Han-Kobayashi schemes. Section 4.3 reformulates the problem with the deter-

ministic channel model, and then solves the constrained sum-capacity. Section 4.4

translates the optimal schemes in the deterministic channel back to the Gaussian

channel, and derives two upper bounds on the constrained sum-capacity. Nu-

merical evaluations of the achievability against the upper bounds are provided.

Section 4.5 concludes the chapter with a short discussion on generalizations of

the coding-decoding assumptions and their implications.

1Throughout this chapter, when we refer to the Han-Kobayashi scheme, we mean the Gaus-
sian Han-Kobayashi scheme, unless stated otherwise.
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Figure 4.1: Two-user Gaussian interference channel.

4.2 Problem formulation in Gaussian channels

We consider the two-user Gaussian interference channel shown in Figure 4.1. The

received signals of the two users are

y1 = h11x1 + h21x2 + z1,

y2 = h22x2 + h12x1 + z2,

where {hij} are constant complex channel gains, and zi ∼ CN (0, Ni). Define

gij , |hij|2, (i, j = 1, 2).

There is an average power constraint equal to p̄i for the ith user (i = 1, 2).

In the following, we first formulate the problem of finding the optimal Gaussian

superposition coding and successive decoding scheme, and then provide an il-

lustrative example to show that successive decoding schemes do not necessarily

achieve the same capacity as Han-Kobayashi schemes.

4.2.1 Gaussian Superposition Coding and Successive Decoding: a

Power and Decoding Order Optimization

Suppose the ith user uses a superposition of Li messages x
(ℓ)
i (1 ≤ ℓ ≤ Li). Denote

by r
(ℓ)
i the rate of message x

(ℓ)
i . For a given block length n, for each message x

(ℓ)
i ,

a codebook of size 2nr
(ℓ)
i is generated by using IID random variables of CN (0, 1).
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The codebooks for different messages are independently generated. For the ith

user, the transmit signal xi is a superposition of Li Gaussian codewords, with its

individual power constraint p̄i satisfied, i.e.,

xi =

Li
∑

ℓ=1

√

p
(ℓ)
i x

(ℓ)
i ,

Li
∑

ℓ=1

p
(ℓ)
i ≤ p̄i, i = 1, 2. (4.1)

The ith receiver attempts to decode all x
(ℓ)
i , ℓ = 1, . . . , Li, using successive

decoding as follows. It chooses a decoding order Oi of all the L1 + L2 messages

from both users. It starts decoding from the first message in this order (by

treating all other messages that are not yet decoded as noise,) then peeling it off

and moving to the next one, until it decodes all the messages intended for itself

— x
(ℓ)
i , ℓ = 1, . . . , Li.

Denote the message that has order q in Oi by x
(ℓq,i)
tq,i

, i.e., it is the ℓq,i
th message

of the tq,i
th user. Then, the achievable rate for the successive decoding procedure

to have a vanishingly small error probability as the block length n → ∞ yields

the following constraints on the rates of the messages:

r
(ℓq,i)
tq,i
≤ log

(

1 +
p
(ℓq,i)
tq,i

gtq,ii
∑L1+L2

s=q+1 p
(ℓs,i)
ts,i

gts,ii +Ni

)

, ∀1 ≤ q ≤ max
1≤ℓ≤Li

{order of xℓ
i in Oi}, i = 1, 2.

(4.2)

Now, we can formulate the sum-rate maximization problem as:

max
{p

(ℓ)
i },Oi,
i=1,2

2
∑

i=1

Li
∑

ℓ=1

r
(ℓ)
i (4.3)

subject to: (4.1), (4.2).

Note that problem (4.3) involves both a combinatorial optimization of the decod-

ing orders {Oi} and a non-convex optimization of the transmit power {p(ℓ)i }. As
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Deterministic formulation

(Section 4.3, Appendix B)
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(Algorithm 4.1, 4.2)

with optimality check

(Theorem 12)

Figure 4.2: Our approach to solving problem (4.3).

a result, it is a hard problem from an optimization point of view which has not

been addressed in the literature.

Interestingly, we show that an “indirect” approach can effectively and fruit-

fully provide approximately optimal solutions to the above problem (4.3). Instead

of directly working with the Gaussian model, we approximate the problem using

the recently developed deterministic channel model [ADT11]. The approximate

formulation successfully captures the key structure and intuition of the original

problem, for which we give a complete analytical solution that achieves the con-

strained sum-capacity in all channel parameters. Next, we translate this optimal

solution in the deterministic formulation back to the Gaussian formulation, and

show that the resulting solution is indeed close to the optimum. This indirect

approach of solving (4.3) is outlined in Figure 4.2.

Next, we provide an illustration of the following point: Although the con-

straints for the achievable rate region with Han-Kobayashi schemes share some

similarities with those for the capacity region of multiple access channels, succes-

sive decoding in interference channels does not always have the same achievability

as Han-Kobayashi schemes, (whereas time-sharing of successive decoding schemes
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does achieve the capacity region of multiple access channels.)

4.2.2 Successive Decoding of Gaussian Codewords vs. Gaussian Han-

Kobayashi Schemes with Joint Decoding

We first note that Gaussian superposition coding - successive decoding is a special

case of the Han-Kobayashi scheme, using the following observations. For the 1st

user, if its message x
(ℓ)
1 (1 ≤ ℓ ≤ L1) is decoded at the 2nd receiver according to the

decoding order O2, we categorize it into the common information of the 1st user.

Otherwise, x
(ℓ)
1 is treated as noise at the 2nd receiver, i.e., it appears after all the

messages of the 2nd user in O2, and we categorize it into the private information

of the 1st user. The same categorization is performed for the L2 messages of

the 2nd user. Note that every message of the two users is either categorized as

private information or common information. Thus, every successive decoding

scheme is a special case of the Han-Kobayashi scheme, and hence the capacity

region with successive decoding of Gaussian codewords is included in that with

Han-Kobayashi schemes.

However, the inclusion in the other direction is untrue, since Han-Kobayashi

schemes allow joint decoding. In the following sections, we will give a char-

acterization of the difference between the maximum achievable sum-rate using

Gaussian successive decoding schemes and that using Gaussian Han-Kobayashi

schemes. This difference appears despite the fact that the sum-capacity of a Gaus-

sian multiple access channel is achievable using successive decoding of Gaussian

codewords. In the remainder of this section, we show an illustrative example that

provides some intuition into this difference.

Suppose the ith user (i = 1, 2) uses two messages: a common message xc
i

and a private message xp
i . We consider a power allocation to the messages, and
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denote the power of xc
i and xp

i by qci and qpi , (i = 1, 2.) Denote the achievable

rates of xc
i and xp

i by rci and rpi . In a Han-Kobayashi scheme, at each receiver, the

common messages and the intended private message are jointly decoded, treating

the unintended private message as noise. This gives rise to the achievable rate

region with any given power allocation as follows:

rc1 + rp1 + rc2 ≤ log(1 +
qc1 + qp1 + g21q

c
2

g21q
p
2 +N1

), rc2 + rp2 + rc1 ≤ log(1 +
qc2 + qp2 + g12q

c
1

g12q
p
1 +N2

),

(4.4)

rc1 + rc2 ≤ log(1 +
qc1 + g21q

c
2

g21q
p
2 +N1

), rc2 + rc1 ≤ log(1 +
qc2 + g12q

c
1

g12q
p
1 +N2

), (4.5)

rc1 + rp1 ≤ log(1 +
qc1 + qp1

g21q
p
2 +N1

), rc2 + rp2 ≤ log(1 +
qc2 + qp2

g12q
p
1 +N2

), (4.6)

rp1 + rc2 ≤ log(1 +
qp1 + g21q

c
2

g21q
p
2 +N1

), rp2 + rc1 ≤ log(1 +
qp2 + g12q

c
1

g12q
p
1 +N2

), (4.7)

rc1 ≤ log(1 +
qc1

g21q
p
2 +N1

), rc2 ≤ log(1 +
qc2

g12q
p
1 +N2

), (4.8)

rc2 ≤ log(1 +
g21q

c
2

g21q
p
2 +N1

), rc1 ≤ log(1 +
g12q

c
1

g12q
p
1 +N2

), (4.9)

rp1 ≤ log(1 +
qp1

g21q
p
2 +N1

), rp2 ≤ log(1 +
qp2

g12q
p
1 +N2

). (4.10)

In a successive decoding scheme, depending on the different decoding orders

applied, the achievable rate regions have different expressions. In the following,

we provide and analyze the achievable rate region with the decoding orders at

receiver 1 and 2 being (xc
1 → xc

2 → xp
1) and (xc

2 → xc
1 → xp

2) respectively. The

intuition obtained with these decoding orders holds similarly for other decoding

orders. With any given power allocation, we have

rc1 ≤ min

(

log(1 +
qc1

qp1 + g21(qc2 + qp2) +N1
), log(1 +

g12q
c
1

qp2 + g12q
p
1 +N2

)

)

, (4.11)

rc2 ≤ min

(

log(1 +
qc2

qp2 + g12(qc1 + qp1) +N2
), log(1 +

g21q
c
2

qp1 + g21q
p
2 +N1

)

)

, (4.12)

rp1 ≤ log(1 +
qp1

g21q
p
2 +N1

), rp2 ≤ log(1 +
qp2

g12q
p
1 +N2

). (4.13)
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Figure 4.3: Illustrations of the difference between the achievable sum-rate with

Han-Kobayashi schemes and that with successive decoding of Gaussian code-

words.

It is immediate to check that (4.11) ∼ (4.13)⇒ (4.4) ∼ (4.10), but not vice versa.

To observe the difference between the constrained sum-capacity with (4.4)

∼ (4.10) and that with (4.11) ∼ (4.13), we examine the following symmetric

channel,

g11 = g22 = 1, g12 = g21 = 0.17, N1 = N2 = 1, (4.14)

in which we apply symmetric power allocation schemes with qc1 = qc2 and qp1 = qp2 ,

and a power constraint of p̄ = p̄i = qpi + qpi = 1000, i = 1, 2.

Remark 19. Note that SNR = g11p̄

Ni
= 1000 ∼ 30dB, INR = g21p̄

Nj
= 170 ∼

22.5dB ⇒ log INR

log SNR
≈ 3

4
. As indicated in Figure 19 of [BT08], under this parameter

setting, simply using successive decoding of Gaussian codewords can have an arbi-

trarily large sum-capacity loss compared to joint decoding schemes, as SNR→∞.

We plot the sum-rates with the private message power qpi sweeping from nearly
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zero (-30dB) to the maximum (30dB) as in Figure 4.3. As observed, the differ-

ence between the two schemes is evident when the private message power qpi is

sufficiently smaller than the common message power qci (with qpi + qci = 1000.)

The intuition of why successive decoding of Gaussian codewords is not equivalent

to the Han-Kobayashi schemes is best reflected in the case of qpi = 0. In the above

parameter setting, with qpi = 0, (4.4) ∼ (4.10) translate to

rc1 + rc2 ≤ log(1+
qc1 + g21q

c
2

N1
) = 10.19 bits, (4.15)

rc1 ≤ log(1 +
g12q

c
1

N2

) = 7.42 bits, rc2 ≤ log(1 +
g21q

c
2

N1

) = 7.42 bits, (4.16)

whereas (4.11) ∼ (4.13) translate to

rc1 ≤ min{log(1 +
qc1

g21qc2 +N1
), log(1 +

g12q
c
1

N2
)} = min{2.78, 7.42} = 2.78 bits,

(4.17)

rc2 ≤ min{log(1 +
qc2

g12qc1 +N2
), log(1 +

g21q
c
2

N1
)} = min{2.78, 7.42} = 2.78 bits.

(4.18)

As a result, the maximum achievable sum-rates with the Han-Kobayashi scheme

and that with the successive decoding scheme are 10.19 bits and 5.56 bits respec-

tively. Here, the key intuition is as follows: for a common message, its individual

rate constraints at the two receivers in a successive decoding scheme (4.11), (4.12)

are tighter than those in a joint decoding scheme (4.8), (4.9). In the following

sections, we will see that the constraints (4.11), (4.12) lead to a non-smooth

behavior of the sum-capacity using successive decoding of Gaussian codewords.

Finally, we connect the results shown in Figure 4.3 to the results shown later in

Figure 4.11 of Section 4.4.3:

Remark 20. In Figure 4.3, the optimal symmetric power allocation for a Han-

Kobayashi scheme and that for a successive decoding scheme are qp1/N1 = 6.2dB
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and 14.5dB respectively, leading to sum-rates of 11.2 bits and 10.2 bits. This

result corresponds to the performance evaluation at α = log(INR)
log(SNR)

= 0.75 in Figure

4.11.

4.3 Sum-capacity in deterministic interference channels

4.3.1 Channel Model and Problem Formulation

In this section, we apply the deterministic channel model [ADT11] as an ap-

proximation of the Gaussian model on the two-user interference channel. We

define

n11 , log(SNR1) = log(
g11p̄1
N1

) = log(g̃11p̄1), (4.19)

n22 , log(SNR2) = log(
g22p̄2
N2

) = log(g̃22p̄2), (4.20)

n12 , log(INR1) = log(
g21p̄2
N1

) = log(g̃21p̄2), (4.21)

n21 , log(INR2) = log(
g12p̄1
N2

) = log(g̃12p̄1), (4.22)

where g̃ij , gij/Nj are the channel gains normalized by the noise power. Without

loss of generality (WLOG), we assume that n11 ≥ n22. Now, nji counts the bit

levels of the signal sent from the ith transmitter that are above the noise level at

the jth receiver. Further, we define

δ1 , n11 − n21 = − log(
g̃12
g̃11

), δ2 , n22 − n12 = − log(
g̃21
g̃22

), (4.23)

which represent the cross channel gains relative to the direct channel gains, in

terms of the number of bit-level shifts. To formulate the optimization problem,

we consider {nji} to be real numbers. (As will be shown later in Remark 23, with

integer bit-level channel parameters, our derivations automatically give integer

bit-level optimal solutions.)
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Figure 4.4: Two-user deterministic interference channel. Levels A and B interfere

at the 1st receiver, and cannot be fully active simultaneously.

In Figure 4.4, the desired signal and the interference signal at both receivers

are depicted. y11 and y12 are the sets of received information levels at receiver 1

that are above the noise level, from users 1 and 2 respectively. y21 and y22 are the

sets of received information levels at receiver 2. A more concise representation is

provided in Figure 4.5:

• The sets of information levels of the desired signals at receivers 1 and 2 are

represented by the continuous intervals I1 = [0, n11] and I2 = [n11−n22, n11]

on two parallel lines, where the leftmost points correspond to the most

significant (i.e., highest) information levels, and the points at n11 correspond

to the positions of the noise levels at both receivers.

• The positions of the information levels of the interfering signals are indi-

cated by the dashed lines crossing between the two parallel lines.

Note that an information level (or simply termed “level”) is a real point on a

line, and the measure of a set of levels (e.g. the length of an interval) equals the

amount of information that this set can carry. The design variables are whether

each level of a user’s received desired signal carries information for this user,
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characterized by the following definition:

Definition 20. fi(x) is the indicator function on whether the levels inside Ii

carry information for the ith user.

fi(x) =







1, if x ∈ Ii, and level x carries information for the ith user,

0, otherwise.
(i = 1, 2.)

(4.24)

As a result, the rates of the two users areR1 =
∫ n11

0
f1(x)dx,R2 =

∫ n11

0
f2(x)dx.

For an information level x s.t. fi(x) = 1, we call it an active level for the ith user,

and otherwise an inactive level.

The constraints from superposition of Gaussian codewords with successive

decoding (4.11) ∼ (4.13) translate to the following Complementarity Conditions

in the deterministic formulation.

f1(x)f2(x+ δ1) = 0, ∀ −∞ < x <∞, (4.25)

f2(x)f1(x+ δ2) = 0, ∀ −∞ < x <∞, (4.26)

where δ1 and δ2 are defined in (4.23). The interpretation of (4.25) and (4.26) are

as follows: for any two levels each from one of the two users, if they interfere with

each other at any of the two receivers, they cannot be simultaneously active. For

example, in Figure 4.4, information levels A from the 1st user and B from the 2nd

user interfere at the 1st receiver, and hence cannot be fully active simultaneously.

These complementarity conditions have also been characterized using a conflict

graph model in [SCA10].

Remark 21. For any given function fi(x), x ∈ Ii, every disjoint segment within

Ii with fi(x) = 1 on it corresponds to a distinct message. Adjacent segments

that can be so combined as a super-segment having fi(x) = 1 on it, are viewed
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Figure 4.5: Interval representation of the two-user deterministic interference chan-

nel.

as one segment, i.e., the combined super-segment. Thus, for two segments s1 =

[a, b] ∈ Ii and s2 = [c, d] ∈ Ii, (b < c, ) satisfying fi(x) = 1, ∀x ∈ s1 ∪ s2, if

∃x0 ∈ (b, c), f(x0) = 0, then s1, s2 separated by the point x0 have to correspond to

two distinct messages.

Finally, we note that

(4.25)⇔ f2(x)f1(x− δ1) = 0, ∀ −∞ < x <∞,

and (4.26)⇔ f1(x)f2(x− δ2) = 0, ∀ −∞ < x <∞.

Thus, we have the following result:

Lemma 11. The parameter settings







δ1 = a

δ2 = b
and







δ1 = −b

δ2 = −a
correspond to

the same set of complementarity conditions.

We consider the problem of maximizing the sum-rate Rsum , R1 +R2 of the

two users employing successive decoding, formulated as the following continuous

support (infinite dimensional) optimization problem:

max
f1(x),f2(x)

(Rsum =)

∫ n11

0

f1(x) + f2(x)dx (4.27)

subject to (4.24), (4.25), (4.26).
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Problem (4.27) does not include upper bounds on the number of messages L1, L2.

Such upper bounds can be added based on Remark 21. We will analyze the cases

without and with upper bounds on the number of messages. We first derive the

constrained sum-capacity in symmetric interference channels in the remainder

of this section. Results are then generalized using similar approaches to general

(asymmetric) interference channels in Appendix B.

4.3.2 Symmetric Interference Channels

In this section, we consider the case where n11 = n22, n12 = n21. Define α ,

n12

n11
, β , 1 − α. WLOG, we normalize the amount of information levels by n11,

and consider n11 = n22 = 1, and n12 = n21 = α. Note that in symmetric channels,

β = δ1 = δ2.

Now, (4.25) (4.26) becomes

f1(x)f2(x+ β) = 0, ∀ −∞ < x <∞, (4.28)

f2(x)f1(x+ β) = 0, ∀ −∞ < x <∞. (4.29)

Problem (4.27) becomes

max
f1(x),f2(x)

(Rsum =)

∫ 1

0

f1(x) + f2(x)dx (4.30)

subject to (4.24), (4.28), (4.29).

From Lemma 11, it is sufficient to only consider the case with β ≥ 0, i.e.

α ≤ 1.

We next derive the constrained sum-capacity using successive decoding for

α ∈ [0, 1], first without upper bounds on the number of messages, then with

upper bounds. We will see that in symmetric channels, the constrained sum-

capacity Rsum∗ is achievable with R1 = R2. Thus, we also use the maximum
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Figure 4.6: The symmetric capacity with successive decoding in symmetric de-

terministic interference channels.

achievable symmetric rate, denoted by R(α) as a function of α, as an equivalent

performance measure. R(α) is thus one half of the optimal value of (4.30).

4.3.2.1 Symmetric Capacity without Constraint on the Number of

Messages

Theorem 10. The maximum achievable symmetric rate using successive decod-

ing, (i.e., having constraints (4.28), (4.29)), R(α) (α ∈ [0, 1]), is characterized

by

• R(α) = 1− α
2
, when α = 2n

2n+1
, n = 0, 1, 2, . . ..

• R(α) = 1
2
, when α = 2n−1

2n
, n = 1, 2, 3, . . ..
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• In every interval [ 2n
2n+1

, 2n+1
2n+2

], n = 0, 1, 2, . . ., R(α) is a decreasing linear

function.

• In every interval [2n−1
2n

, 2n
2n+1

], n = 1, 2, 3, . . ., R(α) is an increasing linear

function.

• R(1) = 1
2
.

Remark 22. We plot R(α) in Figure 4.6, compared with the information theo-

retic capacity [BT08].

The key ideas in deriving the constrained sum-capacity are to decompose the

effects of the complementarity conditions, such that the resulting sub-problems

become easier to solve.

Proof of Theorem 10. i) When 2n−1
2n

< α ≤ 2n
2n+1

, n = 1, 2, 3, . . . , 1
2n+1

≤ β < 1
2n
.

We divide the interval [0, 1] into 2n+ 1 segments {s1, . . . , s2n+1}, where the first

2n segments have length β, and the last segment has length 1 − 2nβ ∈ (0, 1
2n+1

]

(cf. Figure 4.7.) With these, the complementarity conditions (4.28) (4.29) are

equivalent to the following:































∀x ∈ s1(⇔ x+ β ∈ s2), f1(x)f2(x+ β) = 0,

∀x ∈ s2(⇔ x+ β ∈ s3), f2(x)f1(x+ β) = 0,

· · ·

∀x ∈ s2n−1(⇔ x+ β ∈ s2n), f1(x)f2(x+ β) = 0,

(4.31)

and ∀x+ β ∈ s2n+1, f2(x)f1(x+ β) = 0, (4.32)

(Relations (4.31) and (4.32) correspond to the shaded strips in Figure 4.7.)
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Figure 4.7: Segmentation of the information levels, 2n−1
2n

< α ≤ 2n
2n+1

.

Similarly,































∀x ∈ s1(⇔ x+ β ∈ s2), f2(x)f1(x+ β) = 0,

∀x ∈ s2(⇔ x+ β ∈ s3), f1(x)f2(x+ β) = 0,

· · ·

∀x ∈ s2n−1(⇔ x+ β ∈ s2n), f2(x)f1(x+ β) = 0,

(4.33)

and ∀x+ β ∈ s2n+1, f1(x)f2(x+ β) = 0. (4.34)

We partition the set of all segments into two groups:

G1 = s1 ∪ s3 ∪ . . . ∪ s2n+1 and G2 = s2 ∪ s4 ∪ . . . ∪ s2n.

Note that

• (4.31) and (4.32) are constraints on f1(x) with support in G1, and on f2(x)

with support in G2.

• (4.33) and (4.34) are constraints on f1(x) with support in G2, and on f2(x)

with support in G1.

Consequently, instead of viewing the (infinite number of) optimization variables
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as f1(x)|[0,1] and f2(x)|[0,1], it is more convenient to view them as

C1 , {f1(x)|G1 , f2(x)|G2} and C2 , {f1(x)|G2 , f2(x)|G1}, (4.35)

because there is no constraint between C1 and C2 from the complementarity con-

ditions. In other words, C1 and C2 can be optimized independently of each other.

Define

Rsum
C1

,

∫

G1

f1(x)dx+

∫

G2

f2(x)dx,

Rsum
C2

,

∫

G2

f1(x)dx+

∫

G1

f2(x)dx.

Clearly, Rsum = Rsum
C1

+ Rsum
C2

. Hence (4.30) can be solved by separately solving

the following two sub-problems:

max
f1(x)|G1 ,f2(x)|G2

(Rsum
C1

=)

∫

G1

f1(x)dx+

∫

G2

f2(x)dx (4.36)

subject to (4.24), (4.31), (4.32),

and

max
f1(x)|G2 ,f2(x)|G1

(Rsum
C2

=)

∫

G2

f1(x)dx+

∫

G1

f2(x)dx (4.37)

subject to (4.24), (4.33), (4.34).

We now prove that the optimal value of (4.36) is Rsum
C1

∗ = 1− nβ:

• (Achievability:) 1 − nβ is achievable with f1(x) = 1, ∀x ∈ G1, and f2(x) =

0, ∀x ∈ G2.

• (Converse:) (4.31)⇒ ∀i ∈ {1, 2, . . . , n},
∫

s2i−1
f1(x)dx+

∫

s2i
f2(x)dx ≤ β

⇒

∫

G1

f1(x)dx+

∫

G2

f2(x)dx =

n
∑

i=1

(

∫

s2i−1

f1(x)dx+

∫

s2i

f2(x)dx
)

+

∫

s2i+1

f1(x)dx

≤β · n+ (1− 2nβ) = 1− nβ. (4.38)
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By symmetry, the solution of (4.37) can be obtained similarly, and the optimal

value is Rsum
C2

∗ = 1−nβ as well. Therefore, the optimal value of (4.30) is Rsum∗ =

2(1− nβ).

As the above maximum achievable scheme is symmetric, i.e.,

f1(x) = f2(x) =







1, ∀x ∈ G1

0, ∀x ∈ G2
, (4.39)

the symmetric capacity is

R(α) = 1− nβ = nα + 1− n. (4.40)

Clearly, R(α) is an increasing linear function of α in every interval (2n−1
2n

, 2n
2n+1

], n =

1, 2, 3, . . .. It can be verified that R(α)| 2n−1
2n

= 1
2
, and R(α)| 2n

2n+1
= 1− α

2
.

ii) When 2n
2n+1

< α ≤ 2n+1
2n+2

, n = 0, 1, 2, . . . , 1
2n+2

≤ β < 1
2n+1

. Similarly to i),

we divide the interval [0, 1] into 2n + 2 segments {s1, . . . , s2n+2}, where the first

2n+ 1 segments have length β, and the last segment has length 1− (2n+ 1)β ∈

(0, 1
2n+2

] (cf. Figure 4.8). Then, the complementarity conditions (4.28), (4.29)

are equivalent to the following:

(4.31), (4.32) and f1(x)f2(x+ β) = 0, ∀x+ β ∈ s2n+2, (4.41)

and (4.33), (4.34) and f2(x)f1(x+ β) = 0, ∀x+ β ∈ s2n+2. (4.42)

Similarly to i), with G1 = s1 ∪ s3 ∪ . . . ∪ s2n+1 and G2 = s2 ∪ s4 ∪ . . . ∪ s2n+2,

(4.30) can be solved by separately solving the following two sub-problems:

max
f1(x)|G1 ,f2(x)|G2

(Rsum
C1

=)

∫

G1

f1(x)dx+

∫

G2

f2(x)dx (4.43)

subject to (4.24), (4.31), (4.32), (4.41),
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.

and

max
f1(x)|G2 ,f2(x)|G1

(Rsum
C2

=)

∫

G2

f1(x)dx+

∫

G1

f2(x)dx (4.44)

subject to (4.24), (4.33), (4.34), (4.42).

We now prove that the optimal value of (4.43) is (n + 1)β:

• (Achievability:) (n+1)β is achievable with f1(x) = 1, ∀x ∈ G1, and f2(x) =

0, ∀x ∈ G2.

• (Converse:) (4.31), (4.32), (4.41)⇒ ∀i ∈ {1, 2, . . . , n+ 1},
∫

s2i−1
f1(x)dx+

∫

s2i
f2(x)dx ≤ β

⇒

∫

G1

f1(x)dx+

∫

G2

f2(x)dx =
n+1
∑

i=1

(

∫

s2i−1

f1(x)dx+

∫

s2i

f2(x)dx
)

≤(n+ 1)β. (4.45)

By symmetry, the solution of (4.44) can be obtained similarly. Thus, the optimal

value of (4.30) is 2(n+1)β. The maximum achievable scheme is also characterized

by (4.39), and the symmetric rate is

R(α) = (n + 1)β = −(n + 1)α+ n + 1. (4.46)
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Clearly, R(α) is a decreasing linear function of α in every interval ( 2n
2n+1

, 2n+1
2n+2

], n =

0, 1, 2, . . .. It can be verified that R(α)| 2n
2n+1

= 1− α
2
, and R(α)| 2n+1

2n+2
= 1

2
.

iii) It is clear that R(0) = 1, which is achievable with f1(x) = f2(x) = 1, ∀x ∈

(0, 1), andR(1) = 1
2
, which is achievable by time sharing







f1(x) = 1, x ∈ [0, 1]

f2(x) = 0, x ∈ [0, 1]

and







f1(x) = 0, x ∈ [0, 1]

f2(x) = 1, x ∈ [0, 1]
.

We summarize the optimal scheme that achieves the constrained symmetric

capacity as follows:

Corollary 14. When α ∈ (0, 1), the constrained symmetric capacity is achievable

with

f1(x) = f2(x) =







1, ∀x ∈ G1

0, ∀x ∈ G2
, (4.47)

where G1 =
⋃

i=1,2,... s2i−1 and G2 =
⋃

i=1,2,... s2i.

In the special cases when α = 2n−1
2n

, (n = 1, 2, 3, . . . , ) and α = 1, the con-

strained symmetric capacity drops to 1
2
which is also achievable by time sharing







f1(x) = 1, x ∈ [0, 1]

f2(x) = 0, x ∈ [0, 1]
and







f1(x) = 0, x ∈ [0, 1]

f2(x) = 1, x ∈ [0, 1]
.

We observe that the numbers of messages used by the two users — L1, L2 —

in the above optimal schemes are as follows:

Corollary 15.

• when α ∈ (2n−1
2n

, 2n+1
2n+2

), (n = 1, 2, 3, . . .), L1 = L2 = n+ 1;

• when α ∈ [0, 1
2
], α = 2n−1

2n
, (n = 1, 2, 3, . . .), or α = 1, L1 = L2 = 1.
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Remark 23. In the original formulation of the deterministic channel model

[ADT11], {nij} are considered to be integers, and the achievable scheme must

also have integer bit-levels. In this case, α = n12

n11
is a rational number. As a

result, the optimal scheme (4.47) will consist of active segments G1 that have ra-

tional boundaries with the same denominator n11. This indeed corresponds to an

integer bit-level solution.

From Theorem 10 (cf. Figure 4.6), it is interesting to see that the constrained

symmetric capacity oscillates as a function of α between the information theoretic

capacity and the baseline of 1/2. This phenomenon is a consequence of the

complementarity conditions. In Section 4.5, we further discuss the connections

of this result to other coding-decoding constraints.

4.3.2.2 The Case with a Limited Number of Messages

In this subsection, we find the maximum achievable sum/symmetric rate using

successive decoding when there are constraints on the maximum number of mes-

sages for the two users respectively. Clearly, the constrained symmetric capacity

achieved with α ∈ [0, 1] will be lower than R(α). We start with the following two

lemmas, whose proofs are relegated to Appendix A:

Lemma 12. If there exists a segment with an even index s2i (i ≥ 1) and s2i does

not end at 1, such that

f1(x) = 1, ∀x ∈ s2i, or f2(x) = 1, ∀x ∈ s2i,

(with fi(x) defined as in (4.24),) then Rsum ≤ 1.
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Lemma 13. If there exists a segment with an odd index s2i−1 (i ≥ 1), such that

f1(x) = 0, ∀x ∈ s2i−1, or f2(x) = 0, ∀x ∈ s2i−1,

then Rsum ≤ 1.

Recall that the optimal scheme (4.47) requires that, for both users, all seg-

ments in G2 are fully inactive, and all segments in G1 are fully active. The above

two lemmas show the cost of violating (4.47): if one of the segments in G2 becomes

fully active for either user (cf. Lemma 12), or one of the segments in G1 becomes

fully inactive for either user (cf. Lemma 13), the resulting sum-rate cannot be

greater than 1. We now establish the following theorem:

Theorem 11. Denote by Li(i = 1, 2) the number of messages used by the ith

user. When α ∈ (2n−1
2n

, 2n+1
2n+2

), (n = 1, 2, . . . , ) if L1 ≤ n or L2 ≤ n, the maximum

achievable sum-rate is 1.

Proof. WLOG, assume that there is a constraint of L1 ≤ n.

i) First, the sum-rate of 1 is always achievable with

f1(x) = 1, f2(x) = 0, ∀x ∈ [0, 1].

ii) If there exists s2i, 1 ≤ i ≤ n, such that either f1(x) = 1, ∀x ∈ s2i, or

f2(x) = 1, ∀x ∈ s2i, then from Lemma 12, the achieved sum-rate is no greater

than 1.

iii) If for all s2i, 1 ≤ i ≤ n, there exists xi in the interior of s2i such that

f1(xi) = 0:

Note that xi separates the two segments s2i−1, s2i+1 for the 1st user. From

Remark 21, s2i−1 and s2i+1 have to be two distinct messages provided that both

of them are (at least partly) active for the 1st user. On the other hand, there are
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L1 ≤ 3.

Figure 4.9: The symmetric capacity with a limited number of messages.

n+1 such segments G1 = {s1, s3, . . . , s2n+1} (cf. Figures 4.7 and 4.8), whereas the

number of messages of the 1st user is upper bounded by L1 ≤ n. Consequently,

∃1 ≤ i1 ≤ n+ 1, such that f1(x) = 0, ∀x ∈ s2i1−1. In other words, there must be

a segment in G1 that is fully inactive for the 1st user. By Lemma 13, in this case,

the achieved sum-rate is no greater than 1.

Comparing Theorem 11 with Corollary 15, we conclude that if the number of

messages used for either of the two users is fewer than the number used in the

optimal scheme (4.47) (as in Corollary 15), the maximum achievable symmetric

rate drops to 1
2
. This is illustrated in Figure 4.9(a) with L1 ≤ 2 (or L2 ≤ 2), and

in Figure 4.9(b) with L1 ≤ 3 (or L2 ≤ 3).

Complete solutions (without and with constraints on the number of messages)

in asymmetric channels follow similar ideas, albeit more tediously. Detailed dis-

cussions are relegated to Appendix B.
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4.4 Approximate Sum-capacity for Successive Decoding

in Gaussian Interference Channels

In this section, we turn our focus back to the two-user Gaussian interference

channel, and consider the sum-rate maximization problem (4.3). Based on the re-

lation between the deterministic channel model and the Gaussian channel model,

we translate the optimal solution of the deterministic channel into the Gaussian

channel. We then derive upper bounds on the optimal value of (4.3), and evaluate

the achievability of our translation against these upper bounds.

4.4.1 Achievable Sum-rate Motivated by the Optimal Scheme in the

Deterministic Channel

As the deterministic channel model can be viewed as an approximation to the

Gaussian channel model, optimal schemes of the former suggest approximately

optimal schemes of the latter. In this subsection, we show the translation of the

optimal scheme of the deterministic channel to that of the Gaussian channel.

We show in detail two forms (simple and fine) of the translation for symmetric

interference channels:

g11 = g22, g12 = g21, N1 = N2, p̄1 = p̄2 = p̄.

The translation for asymmetric channels can be derived similarly, albeit more

tediously.

4.4.1.1 A simple translation of power allocation for the messages

Recall the optimal scheme for symmetric deterministic interference channels
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(Corollary 14,) as plotted in Figure 4.10. x
(ℓ)
i , ℓ = 1, . . . , L represent the segments

(or messages as translated to the Gaussian channel) that are active for the ith

user. Recall that

−β = −(1− α) = n21 − n11 = log(
g12
g11

). (4.48)

Thus, a shift of β to the right (i.e. lower information levels) in the deterministic

channel approximately corresponds to a power scaling factor of g12
g11

in the Gaussian

channel. Accordingly, a simple translation of the symmetric optimal scheme (cf.

Figure 4.10) into the Gaussian channel is given as follows:

Algorithm 4.1: A simple translation by direct power scaling.

Step 1: Determine the number of messages L1 = L2 = L for each user as

the same number used in the optimal deterministic channel scheme.

Step 2: Let p(2)

p(1)
= p(3)

p(2)
= . . . = p(L)

p(L−1) =
(

g12
g11

)2
, and normalize the power by

∑L
ℓ=1 p

(ℓ) = p̄.

0

0

1

1

User 1

User 2

x

x

...

(1)

2x̂

...

...
β
(1)

1x
(2)

1x
(2)

2x̂
(3)

1x

(1)

2x
(1)

1̂x
(2)

2x
(2)

1̂x
(3)

2x

Figure 4.10: The optimal scheme in the symmetric deterministic interference

channel.
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4.4.1.2 A finer translation of power allocation for the messages

In this part, for notational simplicity, we assume WLOG that the noise power

N1 = N2 = 1 and g11 = 1. We consider the case where the cross channel gain is

no greater than the direct channel gain: 0 ≤ g12 ≤ g11.

In the optimal deterministic scheme, the key property that ensures optimality

is the following:

Corollary 16. A message x
(ℓ)
i that is decoded at both receivers is subject to the

same achievable rate constraint at both receivers.

For example, In the optimal deterministic scheme (cf. Figure 4.10), message

x
(1)
1 is subject to an achievable rate constraint of |x(1)

1 | at the 1
st receiver, and that

of |x̂(1)
1 | at the 2nd receiver, with |x(1)

1 | = |x̂
(1)
1 | = β. In general, x

(1)
1 , . . . , x

(L−1)
2

and x
(1)
2 , . . . , x

(L−1)
2 are the messages that are decoded at both receivers, whereas

x
(L)
1 , x

(L)
2 are decoded only at their intended receiver (and treated as noise at the

other receiver.)

According to Corollary 16, we show that a finer translation of the power

allocation for the messages is achieved by equalizing the two rate constraints for

every common message (x
(1)
i , . . . , x

(L−1)
i , i = 1, 2). (However, rates of different

common messages are not necessarily the same.)

As the 1st step of determining the power allocations, we give the following

lemma on the power allocation of x
(1)
1 (with the proof found in Appendix C):

Lemma 14.

1) If p̄ ≤ 1−g12
g212

, then L = 1, and x
(1)
1 (x

(1)
2 ) is treated as noise at the 2nd(1st)

receiver, with p(1) = p̄. In this case, there is only one message for each user (as

its private message.) rate constraint equalization is not needed.
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2) If p̄ > 1−g12
g212

, then L ≥ 2, and x
(1)
1 (x

(1)
2 ) are decoded at both receivers. To

equalize its rate constraints at both receivers, we must have

p(1) = 1− g12 + (1− g212)p̄ (< p̄). (4.49)

Next, we observe that after decoding x
(1)
1 , x

(1)
2 at both receivers, determining

p(2) for x
(2)
1 , x

(2)
2 can be transformed to an equivalent 1st step problem with p̄← p̄−

p(1): solving the new p(1) of the transformed problem gives the correct equalizing

solution for p(2) of the original problem. In general, we have the following recursive

algorithm in determining L and p(1), . . . , p(L).

Algorithm 4.2, A finer translation by adapting L and the powers

using rate constraint equalization.

Initialize L = 1.

Step 1: If p̄ ≤ 1−g12
g212

, then p(L) ← p̄ and terminate.

Step 2: p(L) ← 1− g12 + (1− g212)p̄. L← L+ 1. p̄← p̄− p(1). Go to

Step 1.

Numerical evaluations of the above simple and finer translations of the optimal

scheme of the deterministic channel into that of the Gaussian channel are provided

later in Figure 4.11.

4.4.2 Upper Bounds on the Sum-capacity with Successive Decoding

of Gaussian Codewords

In this subsection, we provide two upper bounds on the optimal solution of

(4.3) for general (asymmetric) channels. More specifically, the bounds are de-

rived for the sum-capacity with Han-Kobayashi schemes, which automatically

upper bound the sum-capacity with successive decoding of Gaussian codewords
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(as shown in Section 4.2.2.) We will observe that the two bounds have comple-

mentary efficiencies, i.e., each being tight in a different regime of parameters.

Similarly to Section 4.2.2, we denote by xp
i the private message of the ith

user, and xc
i the common message (i = 1, 2.) We denote qi to be the power

allocated to each private message xp
i , i = 1, 2. Then, the power of the common

message xc
i equals p̄i − qi. WLOG, we normalize the channel parameters such

that g11 = g22 = 1. Denote the rates of xp
i and xc

i by rpi and rci . The sum-capacity

of Gaussian Han-Kobayashi schemes is thus the following:

max
q1,q2

rc1 + rp1 + rc2 + rp2 (4.50)

s.t. (4.4) ∼ (4.10).

To bound (4.50), we select two mutually exclusive subsets of the constraints:

{(4.4), (4.10)} and {(4.7)}. Then, with each subset of the constraints, a relaxed

sum-rate maximization problems can be solved, leading to an upper bound to the

original constrained sum-capacity (4.50).

The first upper bound on the constrained sum-capacity is as follows (whose

proof is immediate from (4.4) and (4.10)):

Lemma 15. The sum-capacity using Han-Kobayashi schemes is upper bounded

by

opt1 , max
q1,q2

min
{

log(1 +
p̄1 + g21(p̄2 − q2)

g21q2 +N1

) + log(1 +
q2

g12q1 +N2

),

log(1 +
p̄2 + g12(p̄1 − q1)

g12q1 +N2

) + log(1 +
q1

g21q2 +N1

)
}

. (4.51)
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Computation of the upper bound (4.51). Note that

log(1 +
p̄1 + g21(p̄2 − q2)

g21q2 +N1
) + log(1 +

q2
g12q1 +N2

)

= log(c1)− log(g21q2 +N1)− log(g12q1 +N2) + log(g12q1 + q2 +N2),

(4.52)

and log(1 +
p̄2 + g12(p̄1 − q1)

g12q1 +N2
) + log(1 +

q1
g21q2 +N1

)

= log(c2)− log(g12q1 +N2)− log(g21q2 +N1) + log(g21q2 + q1 +N1),

(4.53)

where c1 , N1 + p̄1 + g21p̄2, c2 , N2 + p̄2 + g12p̄1. Clearly, the minimum of (4.52)

and (4.53)) is

− log(g21q2 +N1)− log(g12q1 +N2) (4.54)

+ log
(

min{c1(g12q1 + q2 +N2), c2(g21q2 + q1 +N1)}
)

.

Now, consider the halfspace (q1, q2) ∈ H defined by the linear constraint

c1(g12q1+q2+N2) ≤ c2(g21q2+q1+N1)⇔ (c1g12−c2)q1 ≤ (c2g21−c1)q2+c2N1−c1N2.

(4.55)

In H,

(4.54) = log(c1)−log(g21q2+N1)−log(g12q1+N2)+log(g12q1+q2+N2) , f(q1, q2).

(4.56)

Note that ∂f(q1,q2)
∂q1

< 0, ∀q1 ≥ 0. Thus, depending on the sign of c1g12 − c2, we

have the following two cases:

Case 1: c1g12 − c2 ≥ 0. Then, (4.55) gives an upper bound on q1. Conse-

quently, to maximize (4.56), the optimal solution is achieved with q1 = 0. Thus,
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maximizing (4.56) is equivalent to

max
q2
− log(g21q2 +N1) + log(q2 +N2) (4.57)

s.t. 0 ≤ q2 ≤ p̄2, (4.58)

in which the objective (4.57) is monotonic, and the solution is either q2 = 0 or

q2 = p̄2.

Case 2: c1g12 − c2 < 0. Then, (4.55) gives a lower bound on q1,

q1 ≥
(c1 − c2g21)q2 + c1N2 − c2N1

c2 − c1g12
. (4.59)

Consequently, to maximize (4.56), the optimal solution is achieved with q1 =

(c1−c2g21)q2+c1N2−c2N1

c2−c1g12
, which is a linear function of q2. Substituting this into (4.56),

we need to solve the following problem:

max
q2
− log(a1q2 + b1)− log(a2q2 + b2) + log(a3q2 + b3) (4.60)

s.t. 0 ≤ q2 ≤ p̄2,

where ai, bi, (i = 1, 2, 3) are constants determined by c1, c2, g12, g21, N1, N2. Now,

(4.60) can be solved by taking the first derivative w.r.t. q2, and checking the two

stationary points and the two boundary points.

In the other halfspace Hc, the same procedure as above can be applied, and

the maximizer of (4.54) within Hc can be found. Comparing the two maximizers

within H and Hc respectively, we get the global maximizer of (4.51).

The second upper bound on the constrained sum-capacity is as follows (whose

proof is immediate from (4.7)):

Lemma 16. The sum-capacity using Han-Kobayashi schemes is upper bounded

by

opt2 , max
q1,q2

log

(

1 +
q1 + g21(p̄2 − q2)

g21q2 +N1

)

+ log

(

1 +
q2 + g12(p̄1 − q1)

g12q1 +N2

)

. (4.61)
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Computation of the upper bound (4.61). Note that

log

(

1 +
q1 + g21(p̄2 − q2)

g21q2 +N1

)

+ log

(

1 +
q2 + g12(p̄1 − q1)

g12q1 +N2

)

= log(q1 + g21p̄2 +N1)− log(g12q1 +N2) (4.62)

+ log(q2 + g12p̄1 +N2)− log(g21q2 +N1), (4.63)

where (4.62) is a function only of q1, and (4.63) is a function only of q2. Clearly,

max (4.62), s.t. 0 ≤ q1 ≤ p̄1 and max (4.63), s.t. 0 ≤ q2 ≤ p̄2 can each be solved

by taking the first order derivatives, and checking the stationary points and the

boundary points.

We combine the two upper bounds (4.51) and (4.61) as the following theorem:

Theorem 12. The sum-capacity using Gaussian superposition coding-successive

decoding is upper bounded by min(opt1, opt2).

4.4.3 Performance Evaluation

We numerically evaluate our results in a symmetric Gaussian interference channel.

The SNR is set to be 30dB. To evaluate the performance of successive decoding,

we sweep the parameter range of α = log(INR)
log(SNR)

∈ [0.5, 1], as when α ∈ [0, 0.5], the

approximate optimal transmission scheme is simply treating interference as noise

without successive decoding.

In Figure 4.11, the simple translation by Algorithm 4.1 and the finer trans-

lation by Algorithm 4.2 are evaluated, and the two upper bounds derived above

(4.51), (4.61) are computed. The maximum achievable sum-rate with a single

message for each user (L1 = L2 = 1) is also computed, and is used as a baseline

scheme for comparison.

We make the following observations:
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Figure 4.11: Performance evaluation: achievability vs. upper bounds.

• The finer translation of the optimal deterministic scheme by Algorithm 4.2

is strictly better than the simple translation by Algorithm 4.1, and is also

strictly better than the optimal single message scheme.

• The first upper bound (4.51) is tighter for higher INR (α ≥ 0.608 in this

example), while the second upper bound (4.61) is tighter for lower INR

(α < 0.608 in this example).

• A phenomenon similar to that in the deterministic channels appears: the

sum-capacity with successive decoding of Gaussian codewords oscillates be-

tween the sum-capacity with Han-Kobayashi schemes and that with single

message schemes.

• The largest difference between the sum-capacity of successive decoding and

that of single message schemes appears at around log(INR)
log(SNR)

= 0.64, which is

about 1.8 bits.
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Figure 4.12: Sum-capacity differences: Han-Kobayashi vs. successive decoding

at α = 0.75, and successive decoding vs. the optimal single message scheme at

α = 0.66.

• The largest difference between the sum-capacity of successive decoding

and that of joint decoding (Han-Kobayashi schemes) appears at around

log(INR)
log(SNR)

= 0.74. This corresponds to the same parameter setting as dis-

cussed in Section 4.2.2 (cf. Figure 4.3). We see that with 30dB SNR, this

largest sum-capacity difference is about 1.0 bits.

For this particular case with SNR = 30dB, the observed sum-capacity dif-

ferences (1.8 bits and 1.0 bits) may not seem very large. However, the capacity

curves shown with the deterministic channel model (cf. Figure 4.6) indicate that

these differences can go to infinity as SNR → ∞. This is because a rate point

dsym(α) on the symmetric capacity curve in the deterministic channel has the

following interpretation of generalized degrees of freedom in the Gaussian channel
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[ETW08, BT08].

dsym(α) = lim
SNR,INR→∞, log INR

log SNR
=α

Csym(INR, SNR)

Cawgn(SNR)
, (4.64)

where Cawgn(SNR) = log(1+SNR), and Csym(INR, SNR) is the symmetric capacity

in the two-user symmetric Gaussian channel as a function of INR and SNR.

Since Cawgn(SNR) → ∞ as SNR → ∞, for a fixed α, any finite gap of the

achievable rates in the deterministic channel indicates a rate gap that goes to

infinity as SNR → ∞ in the Gaussian channel. To illustrate this, we plot the

following sum-capacity differences in the Gaussian channel, with SNR growing

from 10dB to 90dB:

• The sum-capacity gap between Gaussian superposition coding - successive

decoding schemes and single message schemes, with α = log(INR)
log(SNR)

= 0.66.

• The sum-capacity gap between Han-Kobayashi schemes and Gaussian su-

perposition coding - successive decoding schemes, with α = log(INR)
log(SNR)

= 0.75.

As observed, the sum-capacity gaps increase asymptotically linearly with

log SNR, and will go to infinity as SNR→∞.

4.5 Summary

In this chapter, we studied the problem of sum-rate maximization with Gaussian

superposition coding and successive decoding in two-user interference channels.

This is a hard problem that involves both a combinatorial optimization of decod-

ing orders and a non-convex optimization of power allocation. To approach this

problem, we used the deterministic channel model as an educated approximation

of the Gaussian channel model, and introduced the complementarity conditions
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that capture the use of successive decoding of Gaussian codewords. We solved the

sum-capacity of the deterministic interference channel with the complementar-

ity conditions, and obtained the capacity achieving schemes with the minimum

number of messages. We showed that the constrained sum-capacity oscillates as

a function of the cross link gain parameters between the information theoretic

sum-capacity and the sum-capacity with interference treated as noise. Further-

more, we showed that if the number of messages used by either of the two users

is fewer than its minimum capacity achieving number, the maximum achievable

sum-rate drops to that with interference treated as noise. Next, we translated the

optimal schemes in the deterministic channel to the Gaussian channel using a rate

constraint equalization technique, and provided two upper bounds on the sum-

capacity with Gaussian superposition coding and successive decoding. Numerical

evaluations of the translation and the upper bounds showed that the constrained

sum-capacity oscillates between the sum-capacity with Han-Kobayashi schemes

and that with single message schemes.

Next, we discuss some intuitions and generalizations of the coding-decoding

assumptions.

4.5.1 Complementarity Conditions and Gaussian Codewords

The complementarity conditions (4.25), (4.26) in the deterministic channel model

has played a central role that leads to the discovered oscillating constrained sum-

capacity (cf. Theorem 10). The intuition behind the complementarity conditions

is as follows: At any receiver, if two active levels from different users interfere

with each other, then no information can be recovered at this level. In other

words, the sum of interfering codewords provides nothing helpful.

This is exactly the case when random Gaussian codewords are used in Gaus-
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sian channels with successive decoding, because the sum of two codewords from

random Gaussian codebooks cannot be decoded as a valid codeword. This is the

reason why the usage of Gaussian codewords with successive decoding is trans-

lated to complementarity conditions in the deterministic channels. (Note that

the preceding discussions do not apply to joint decoding of Gaussian codewords

as in Han-Kobayashi schemes.)

4.5.2 Modulo-2 Additions and Lattice Codes

In the deterministic channel, a relaxation on the complementarity conditions is

that the sum of two interfering active levels can be decoded as theirmodulo-2 sum.

As a result, the aggregate of two interfering codewords still provides something

valuable that can be exploited to achieve higher capacity. This assumption is

part of the original formulation of the deterministic channel model [ADT11], with

which the information theoretic capacity of the two-user interference channel (cf.

Figure 4.6 for the symmetric case) can be achieved with Han-Kobayashi schemes

[BT08].

In Gaussian channels, to achieve an effect similar to decoding the modulo-2

sum with successive decoding, lattice codes are natural candidates of the coding

schemes. This is because lattice codebooks have the group property such that

the sum of two lattice codewords can still be decoded as a valid codeword. Such

intermediate information can be decoded first and exploited later during a suc-

cessive decoding procedure, in order to increase the achievable rate. For this to

succeed in interference channels, alignment of the signal scales becomes essential

[MDF11]. However, our preliminary results have shown that the ability to de-

code the sum of the lattice codewords does not provide sum-capacity increase for

low and medium SNRs. In the above setting of SNR = 30dB (which is typically
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considered as a high SNR in practice,) numerical computations show that the

sum-capacity using successive decoding of lattice codewords with alignment of

signal scales is lower than the previously shown achievable sum-rate using suc-

cessive decoding of Gaussian codewords (cf. Figure 4.11), for the entire range

of α = log INR

log SNR
∈ [0.5, 1]. The reason is that the cost of alignment of the signal

scales turns out to be higher than the benefit from it, if SNR is not sufficiently

high. In summary, no matter using Gaussian codewords or lattice codewords, the

gap between the achievable rate using successive decoding and that using joint

decoding can be significant for typical SNRs in practice.
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CHAPTER 5

Conclusion

This thesis studies optimal transmission schemes in interference networks under

a set of different problem models. Each model entails a different level of prob-

lem complexity, for which methods and algorithms are developed that effectively

reduce the computational complexities in approaching the optimal solution with

performance guarantees.

The model with interference treated as noise and general Gaussian

interference networks

With the continuous frequency model, for any two (among K) users, if the

two normalized cross channel gains between them are both larger than or equal

to 1
2
, an FDMA allocation between them benefits every one of the K users.

For the classic non-convex optimization of power and spectrum management, an

equivalent primal domain convex formulation is established. For piecewise flat

channels, we showed that the main computational complexity lies in computing

convex hull functions.

With the discrete frequency model, a provably optimal “vertical” decompo-

sition of the spectrum management problem into channel allocation and power

allocation was developed. With this vertical decomposition, the global optimum

can be achieved to within a constant number of bits. If the channel allocation is

globally optimal, the globally optimal power allocation can be solved by a convex
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optimization. Applying dual decomposition methods further reduced the compu-

tational complexity of finding the globally optimal spectrum management. This

result suggests that approaching the optimal channel allocation is the essential

problem, and its combinatorial complexity is what carries the NP hardness.

The model with interference treated as noise and wireless cellular in-

terference networks

Algorithms that approach the optimal channel allocation for arbitrarily large

wireless cellular networks were proposed. For one-dimensional uplink cellular

networks with flat fading channels, a two-stage channel allocation algorithm with

O(KcellM logM) complexity that maximizes the network throughput was found.

The key idea is local signal scale interference alignment. Unfortunately, this

interference alignment approach does not generalize in a low-complexity manner

to more general cases. Instead, we developed a local optimization which can

be formulated as an assignment problem to be solved efficiently. Using it as

a building block, an iterative decomposed network optimization algorithm with

O(KcellM
3) was developed, and was shown to very closely approach the globally

maximum network throughput. This decomposition framework based on local

assignment problems is applicable to very general optimization objectives and

network settings. An interesting future research direction is to combine the low

complexity channel allocation algorithms with power allocation algorithms (e.g.,

in an alternating manner,) and seek to approach the globally optimal solution

for the classic non-convex joint spectrum and power optimization in large-scale

wireless cellular networks.

The model with Gaussian superposition coding - successive decoding

and two-user Gaussian interference channel
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We used the deterministic channel model as an educated approximation of the

Gaussian channel model, and introduced the complementarity conditions that

capture the use of successive decoding of Gaussian codewords. We showed that

the constrained sum-capacity in the deterministic interference channel oscillates

as a function of the cross link gain parameters between the information theoretic

sum-capacity and the sum-capacity with interference treated as noise. Further-

more, if the number of messages used by either of the two users is fewer than

the minimum number required to achieve the constrained sum-capacity, the max-

imum achievable sum-rate drops to that with interference treated as noise. Trans-

lating the optimal schemes in the deterministic channel back to the Gaussian

channel, we showed that the constrained sum-capacity with successive decoding

oscillates between the sum-capacity with Han-Kobayashi schemes and that with

single message schemes. Based on our results on successive decoding capacity

in the two-user interference channel, it is an interesting future research direction

to apply the insight into networks with larger sizes and special structures (e.g.

cellular networks,) and to further evaluate how much gain from message splitting

and successive decoding can be obtained in practical scenarios.

In general, optimization in interference networks is fundamentally hard. In

this thesis, we illustrated a trade-off between approaching the network optimal-

ity and pursuing practical solutions with low implementation complexity. Having

constructed a variety of levels of abstraction in the problem model, we developed

capacity approaching schemes of reasonable complexity with each level of ab-

straction.
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APPENDIX A

Proof of Lemma 12 and 13

Proof of Lemma 12. By symmetry, it is sufficient to prove for the case f2(x) =

1, ∀x ∈ s2i, for some s2i that does not end at 1.

Now, consider the sum-rate achieved within C1 (4.35). As shown in Figure

A.1, C1 can be partitioned into three parts: C11 = {f1(x)|s1,s3,...,s2i−3
, f2(x)|s2,s4,...,s2i−2

},

C12 = {f1(x)|s2i−1,s2i+1
, f2(x)|s2i}, andC13 = {f1(x)|s2i+3,..., f2(x)|s2i+2,...}, (C11, C12, C13

can be degenerate.) Note that

• From the achievable schemes in the proof of Theorem 10, the maximum

achievable sum-rate within C11 ∪ C13 can be achieved with f2(x) = 1, ∀x ∈

s2 ∪ s4 ∪ . . . ∪ s2i−2 ∪ s2i+2 ∪ . . ., and f1(x) = 0, ∀x ∈ s1 ∪ s3 ∪ . . . ∪ s2i−3 ∪

s2i+3 ∪ . . ..

• By the assumed condition, f2(x) = 1, ∀x ∈ s2i ⇒ f1(x) = 0, ∀x ∈ s2i−1 ∪

s2i+1.

Therefore, under the assumed condition, the maximum achievable sum-rate within

C1 is achievable with {f2(x) = 1, ∀x ∈ G2, and f1(x) = 0, ∀x ∈ G1}.

Furthermore, from the proof of Theorem 10, we know that the maximum

achievable sum-rate within C2 is achievable with {f2(x) = 1, ∀x ∈ G1, and f1(x) =

0, ∀x ∈ G2}. Combining the maximum achievable schemes within C1 and C2, by

letting {f2(x) = 1, ∀x ∈ [0, 1], and f1(x) = 0, ∀x ∈ [0, 1]}, a sum-rate of 1
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Figure A.1: C1 partitioned into three parts for Lemma 12.

is achieved, and this is the maximum achievable sum-rate given the assumed

condition.

Proof of Lemma 13. By symmetry, it is sufficient to prove for the case f1(x) =

0, ∀x ∈ s2i−1, for some s2i−1.

Now, consider the sum-rate achieved within C1. As shown in Figure A.2, C1

can be partitioned into three parts: C11 = {f1(x)|s1,s3,...,s2i−3
, f2(x)|s2,s4,...,s2i−2

},

C12 = f1(x)|s2i−1
, and C13 = {f1(x)|s2i+1,s2i+3,..., f2(x)|s2i,s2i+2,...}, (C11, C12, C13 can

be degenerate.) Note that:

• From the achievable schemes in the proof of Theorem 10, the maximum

achievable sum-rate within C11 ∪ C13 can be achieved with f2(x) = 1, ∀x ∈

s2∪s4∪. . .∪s2i−2∪s2i∪. . ., and f1(x) = 0, ∀x ∈ s1∪s3∪. . .∪s2i−3∪s2i+1∪. . ..

• By the assumed condition, f1(x) = 0, ∀x ∈ s2i−1.

Therefore, under the assumed condition, the maximum achievable sum-rate within

C1 is achievable with {f2(x) = 1, ∀x ∈ G2, and f1(x) = 0, ∀x ∈ G1}.

Furthermore, from the proof of Theorem 10, we know that the maximum

achievable sum-rate within C2 is achievable with {f2(x) = 1, ∀x ∈ G1, and f1(x) =
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Figure A.2: C1 partitioned into three parts for Lemma 13.

0, ∀x ∈ G2}. Combining the maximum achievable schemes within C1 and C2,

by letting {f2(x) = 1, ∀x ∈ [0, 1], and f1(x) = 0, ∀x ∈ [0, 1]}, a sum-rate 1

is achieved, and this is the maximum achievable sum-rate given the assumed

condition.
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APPENDIX B

Sum-capacity of Deterministic Asymmetric

Interference Channels

We consider the general two-user interference channel where the parameters

n11, n22, n12, n21 can be arbitrary. Still, WLOG, we make the assumptions that

n11 ≥ n22 and n11 = 1. We will see that our approaches in the symmetric channel

can be similarly extended to solving the constrained sum-capacity in asymmetric

channels, without and with constraints on the number of messages.

From Lemma 11, it is sufficient to consider the following three cases:

i) δ1 ≥ 0 and δ2 ≥ 0; ii) δ1 ≥ 0 and δ2 < 0; iii) δ1 < 0 and δ2 ≥ 0. (B.1)

B.1 Sum-Capacity without Constraint on the Number of

Messages

We provide the optimal scheme that achieves the constrained sum-capacity in

each of the three cases in (B.1), respectively.

B.1.1 δ1 ≥ 0 and δ2 ≥ 0

This is by definition (4.23) equivalent to n21 ≤ 1 and n22 ≥ n12.

Case 1, n22 ≥ n21:
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Define β1 , 1− n12, β2 , n22 − n21. As depicted in Figure B.1, interval I1(=

[0, 1]) is partitioned into segments {s1, s2, s3, . . .}, with |s1| = |s3| = . . . = β1 and

|s2| = |s4| = . . . = β2; the last segment ending at 1 has the length of the proper

residual. Interval I2(= [1 − n22, 1]) is partitioned into segments {s′1, s
′
2, s

′
3 . . .},

with |s′1| = |s
′
3| = . . . = β2 and |s′2| = |s

′
4| = . . . = β1; the last segment ending at

1 has the length of the proper residual.

Similarly to (4.35) as in the previous analysis for the symmetric channels, we

partition the optimization variables f1(x)|[0,1] and f2(x)|[1−n22,1] into

C1 , {f1(x)|s1,s3,..., f2(x)|s′2,s′4,...} and C2 , {f1(x)|s2,s4,..., f2(x)|s′1,s′3,...}. (B.2)

0

0

User 1

User 2

x

x

1

1

n22

β1

β2 β1

β1β2

β2

s1 s2 s3

s1' s2' s3'

. . .

n21

n12

Figure B.1: n11 ≥ n21, n22 ≥ n12, and n22 ≥ n21.

As there is no constraint between C1 and C2 from the complementarity condi-

tions (4.25) and (4.26), similarly to (4.36) and (4.37), the sum-rate maximization

(4.27) is decomposed into two separate problems:

max
f1(x)|s1,s3,...,f2(x)|s′2,s

′
4
,...

(Rsum
C1

=)

∫

s1,s3,...

f1(x)dx+

∫

s′2,s
′
4,...

f2(x)dx (B.3)

subject to (4.24), (4.25), (4.26),

max
f1(x)|s2,s4,...,f2(x)|s′1,s

′
3
,...

(Rsum
C2

=)

∫

s2,s4,...

f1(x)dx+

∫

s′1,s
′
3,...

f2(x)dx (B.4)

subject to (4.24), (4.25), (4.26).
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By the same argument as in the proof of Theorem 10, the optimal solution of

(B.3) is given by

f1(x) = 1, ∀x ∈ s1 ∪ s3 ∪ . . . , and f2(x) = 0, ∀x ∈ s′2 ∪ s′4 ∪ . . . . (B.5)

Also, the optimal solution of (B.4) is given by

f1(x) = 0, ∀x ∈ s2 ∪ s4 ∪ . . . , and f2(x) = 1, ∀x ∈ s′1 ∪ s′3 ∪ . . . . (B.6)

Consequently, we have the following theorem:

Theorem 13. A constrained sum-capacity achieving scheme is given by

f1(x) =







1, ∀x ∈ s1 ∪ s3 ∪ . . .

0, otherwise
, and f2(x) =







1, ∀x ∈ s′1 ∪ s′3 ∪ . . .

0, otherwise
,

(B.7)

and the maximum achievable sum-rate is readily computable based on (B.7).

Case 2, n21 > n22:

Define β1 , 1 − n12 − (n21 − n22). As depicted in Figure B.2, interval I1(=

[0, 1]) is partitioned into segments {s0, s1, s3, s5, . . .}, with |s0| = n21 − n22, and

|s1| = |s3| = . . . = β1; the last segment ending at 1 has the length of the proper

residual. Interval I2(= [1 − n22, 1]) is partitioned into segments {s′2, s
′
4 . . .}, with

|s′2| = |s
′
4| = . . . = β1; the last segment ending at 1 has the length of the proper

residual. (The indexing is not consecutive as we consider {s2i} and {s′2i−1} (i ≥ 1)

as degenerating to empty sets.)

Clearly, s0 of I1 does not conflict with any levels of I2, and thus we let f1(x) =

1, ∀x ∈ s0. On all the other segments, the sum-rate maximization problem is

max
f1(x)|s1,s3,...,f2(x)|s′2,s

′
4
,...

∫

s1,s3,...

f1(x)dx+

∫

s′2,s
′
4,...

f2(x)dx (B.8)

subject to (4.24), (4.25), (4.26).
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Figure B.2: n11 ≥ n21, n22 ≥ n12, and n21 > n22.

By the same argument as in the proof of Theorem 10, the optimal solution of

(B.8) is given by

f1(x) = 1, ∀x ∈ s1 ∪ s3 ∪ . . . , and f2(x) = 0, ∀x ∈ s′2 ∪ s′4 ∪ . . . .

Thus, a sum-capacity achieving scheme is simply f1(x) = 1, ∀x ∈ I1, and f2(x) =

0, ∀x ∈ I2.

B.1.2 δ1 ≥ 0 and δ2 < 0

This is by definition (4.23) equivalent to n21 ≤ 1 and n22 < n12. Note that by

Lemma 11, it is sufficient to only consider the case where |δ1| ≥ |δ2|, (because in

case |δ1| < |δ2|, we have | − δ2| > | − δ1|.)

Case 1, n22 ≥ n21, and n12 > 1:

Define β1 , n22 − n21 − (n12 − 1). As depicted in Figure B.3, interval I1(=

[0, 1]) is partitioned into segments {s1, s3, . . .}, with |s1| = |s3| = . . . = β1;

the last segment ending at 1 has the length of the proper residual. Interval

I2(= [1 − n22, 1]) is partitioned into segments {s′0, s
′
2, s

′
4 . . .}, with |s

′
0| = n12 − 1

and |s′2| = |s
′
4| = . . . = β1; the last segment ending at 1 has the length of the

proper residual.
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Figure B.3: n11 ≥ n21, n22 < n12, n22 ≥ n21, and n12 > n11.

Clearly, s′0 of I2 does not conflict with any levels of I1, and thus we let f2(x) =

1, ∀x ∈ s′0. On all the other segments, the sum-rate maximization problem is

again (B.8), and the optimal solution is given by

f1(x) = 1, ∀x ∈ s1 ∪ s3 ∪ . . . , and f2(x) = 0, ∀x ∈ s′2 ∪ s′4 ∪ . . . .

Thus, a sum-capacity achieving scheme is f1(x) = 1, ∀x ∈ I1, and f2(x) =






1, ∀x ∈ s′0

0, otherwise
.

Case 2, n22 ≥ n21, and n12 ≤ 1:

Define β1 , 1− n12, β2 , n22 − n21. As depicted in Figure B.4, interval I1(=

[0, 1]) is partitioned into segments {s1, s2, s3, . . .}, with |s1| = |s3| = . . . = β1 and

|s2| = |s4| = . . . = β2; the last segment ending at 1 has the length of the proper

residual. Interval I2(= [1 − n22, 1]) is partitioned into segments {s′1, s
′
2, s

′
3 . . .},

with |s′1| = |s
′
3| = . . . = β2 and |s′2| = |s

′
4| = . . . = β1; the last segment ending at

1 has the length of the proper residual.

Compare with Case 1 of Section B.1.1 and note the similarities between Figure

B.4 and Figure B.1: we apply the same partition of the optimization variables

(B.2), and the sum-rate maximization (4.27) is decomposed in the same way into

two separate problems (B.3) and (B.4). However, while the optimal solution of
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Figure B.4: n11 ≥ n21, n22 < n12, n22 ≥ n21, and n12 ≤ n11, scheme I (non-opti-

mal).

(B.3) is still given by (B.5), the optimal solution of (B.4) is no longer given by

(B.6). Instead, as δ2 < 0, the optimal solution of (B.4) is given by

f1(x) = 1, ∀x ∈ s2 ∪ s4 ∪ . . . , and f2(x) = 0, ∀x ∈ s′1 ∪ s′3 ∪ . . . .

Thus, a sum-capacity achieving scheme is given by f1(x) = 1, ∀x ∈ I1, and f2(x) =

0, ∀x ∈ I2, depicted as in Figure B.5.
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Figure B.5: n11 ≥ n21, n22 < n12, n22 ≥ n21, and n12 ≤ n11, scheme II (optimal).

Case 3, n22 < n21:

Compare with Case 2 of B.1.1 (cf. Figure B.2), with the same definition of β1

and the same partition of I1 and I2, the segmentation is depicted in Figure B.6.

Noting the similarities between Figure B.2 and Figure B.6, we see that the
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Figure B.6: n11 ≥ n21, n22 < n12, and n22 < n21.

optimal solution of the two cases are the same: f1(x) = 1, ∀x ∈ I1, and f2(x) =

0, ∀x ∈ I2.

B.1.3 δ1 < 0 and δ2 ≥ 0

This is by definition (4.23) equivalent to n21 > 1 and n22 ≥ n12. Note that by

Lemma 11, it is sufficient to only consider the case where |δ1| ≤ |δ2|, (because in

case |δ1| > |δ2|, we have | − δ2| ≤ | − δ1|.)

Define β1 , 1 − n12 − (n21 − n22). As depicted in Figure B.7, interval I1(=

[0, 1]) is partitioned into segments {s0, s1, s3, s5, . . .}, with |s0| = n21 − n22 and

|s1| = |s3| = . . . = β1; the last segment ending at 1 has the length of the proper

residual. Interval I2(= [1 − n22, 1]) is partitioned into segments {s′2, s
′
4 . . .}, with

|s′2| = |s
′
4| = . . . = β1; the last segment ending at 1 has the length of the proper

residual.

Clearly, s0 of I1 does not conflict with any levels of I2, and thus we let f1(x) =

1, ∀x ∈ s0. On all the other segments, the sum-rate maximization problem is

again (B.8). As δ1 < 0, the optimal solution is given by

f1(x) = 0, ∀x ∈ s1 ∪ s3 ∪ . . . , and f2(x) = 1, ∀x ∈ s′2 ∪ s′4 ∪ . . . .
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Thus, a sum-capacity achieving scheme is f1(x) =







1, ∀x ∈ s0

0, otherwise
, and f2(x) =

1, ∀x ∈ I2.

Summarizing the discussions of the six parameter settings (cf. Figures B.1 -

B.3 and B.5 - B.7) in this section, we observe:

Remark 24. Except for Case 1 of Section B.1.1, the optimal schemes for the

other cases all have the property that only one message is used for each user.

B.2 The Case with a Limited Number of Messages

In this section, we extend the sum-capacity results in Section 4.3.2.2 to the asym-

metric channels when there are upper bounds on the number of messages L1, L2

for the two users respectively. From Remark 24, we only need to discuss Case 1

of Section B.1.1 (cf. Figure B.1,) with its corresponding notations.

Similarly to the symmetric channels, we generalize Lemma 12 and 13 to the

following two lemmas for the general (asymmetric) channels, whose proofs are

exact parallels to those of Lemma 12 and 13:

Lemma 17.
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1. If ∃s2i, s2i does not end at 1, such that f1(x) = 1, ∀x ∈ s2i, then Rsum ≤ 1.

2. If ∃s′2i, s
′
2i does not end at 1, such that f2(x) = 1, ∀x ∈ s′2i, then Rsum ≤

n22.

Lemma 18.

1. If ∃s2i−1, such that f1(x) = 0, ∀x ∈ s2i−1, then Rsum ≤ n22.

2. If ∃s′2i−1, such that f2(x) = 0, ∀x ∈ s′2i−1, then Rsum ≤ 1.

We then have the following generalization of Theorem 11 to the general (asym-

metric) channels:

Theorem 14. Denote by Li the number of messages used by the ith user in any

scheme, and denote by ni the dictated number of messages used by the ith user

in the constrained sum-capacity achieving scheme (B.7). Then, if L1 ≤ n1− 1 or

L2 ≤ n2 − 1, we have Rsum ≤ 1.

Proof. Consider L2 ≤ n2 − 1. (The case of L1 ≤ n1 − 1 can be proved similarly.)

i) The sum-rate of 1 is always achievable with

f1(x) = 1, ∀x ∈ I1, f2(x) = 0, ∀x ∈ I2.

ii) If there exists s′2i, (i ≥ 1) and s′2i does not end at 1, such that f2(x) =

1, ∀x ∈ s′2i, then from Lemma 17, Rsum ≤ n22 ≤ 1.

iii) If for every s′2i, i ≥ 1 and s′2i does not end at 1, there exists xi in the

interior of s′2i such that f2(xi) = 0:

For every xi, since s
′
2i does not end at 1, s′2i+1 exists. Note that xi separates the

two segments s′2i−1, s
′
2i+1 for the 2

nd user. From Remark 21, s′2i−1 and s′2i+1 have to

be two distinct messages provided that both of them are (at least partly) active for

the 2nd user. On the other hand, there are n2 such segments {s′1, s
′
3, . . . , s

′
2n2−1},
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whereas the number of messages is upper bounded by L2 ≤ n2−1. Consequently,

∃1 ≤ i2 ≤ n2, such that f2(x) = 0, ∀x ∈ s2i2−1. In other words, for the 2nd user,

there must be a segment with an odd index that is fully inactive. By Lemma 18,

in this case, Rsum ≤ 1.

Similarly to the symmetric case, we conclude that if the number of messages

used for either user is fewer than the number used in the optimal scheme (B.7),

the maximum achievable sum-rate drops to 1.
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APPENDIX C

Proof of Lemma 14

At the 1st receiver, the message x
(1)
1 is decoded by treating all other messages

(x
(2)
1 , . . . , x

(L)
1 , x

(1)
2 , . . . , x

(L)
2 ) as noise, and has an SNR1 of p(1)

(p̄−p(1))+g21p̄+1
.

At the 2nd receiver, x
(1)
2 is first decoded and peeled off. Suppose x

(1)
1 is also

decoded at the 2nd receiver (by treating x
(2)
1 , . . . , x

(L)
1 , x

(2)
2 , . . . , x

(L)
2 as noise,) it

has an SNR2 of g12p
(1)

g12(p̄−p(1))+(p̄−p(1))+1
. To equalize the rate constraints for x

(1)
1 at

both receivers, we need

SNR1 = SNR2 ⇒ p(1) = 1− g12 + (1− g212)p̄.

Note that p(1) < p̄ requires that p̄ > 1−g12
g212

. Otherwise, p̄ ≤ 1−g12
g212

, and the above

1 − g12 + (1 − g212)p̄ ≥ p̄. It implies that we should not decode x
(1)
1 at the 2nd

receiver, i.e., x
(1)
i (i = 1, 2) is the only message (L = 1) of the ith user, which is

treated as noise at the other receiver.
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