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ABSTRACT OF THE DISSERTATION

Energy E�cient Routing

For Wireless Sensor Networks

by

Jay Lin Gao

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2000

Professor Gregory J. Pottie, Chair

As hardware technology pushes sensor performance near its fundamental limit,

further improvement in sensor technology relies on the application of advanced

signal processing techniques. The use of sensor arrays is one such example. As

a further extension of the concept of sensor array, a sensor network seems to

have greater potential for performance improvement due to its versatility to be

deployed in a wide range of applications and its ability to monitor a large physical

area. To tap into the full potential of sensor networks, we have to deal with the

communication problem. The best long term solution will be based on an ad-

hoc network architecture because of its ability to operate without infrastructural

support. However, the stringent constraint on energy resources has become the

most signi�cant challenge in sensor network design.

xii



In this dissertation, we anticipate a set of application level tasks and design

energy e�cient algorithms to ful�ll their communication needs. One of the ap-

plication level tasks is the multi-hop communication between a large number

of sensors and an information gathering entity called the USER. We envision

that the bulk of the long-range multihop tra�c consists of short packets car-

rying target detection reports or network status queries and replies. Based on

this assumption, we present a table-driven, multi-path network structure and a

routing algorithm, based on the concept of a sequential stochastic assignment,

that has demonstrated, through simulation experiments, signi�cant performance

improvement over the classic minimum metric routing algorithm.

Another major application level task in sensor network operation is the forma-

tion of an adaptive local network to perform various cooperative signal process-

ing functions on detected targets, which is essential for target identi�cation and

tracking purposes. This task involved the selection of a central processing node

and the construction of routes from each sensor to the central node. The size,

location, and topology of the local network will depend on the signal strength,

mobility and location of the target. Such networks typically have a short op-

erational life time, just long enough for the necessary data to be gathered and

uploaded to the central node. In this dissertation, we present an energy e�cient

and highly scalable election algorithm, called Single-Winner Election(SWE), to

select the central node and build energy e�cient paths from each sensor to the

central node.
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Chapter 1

Introduction

Sensor networks are basically monitoring networks with a wide range of appli-

cations. They can be as simple as the transducer circuits that are wired and

installed in an automobile to gauge fuel level, engine temperature, and vehicle

speed and display the results to the driver in real time, or they can be wireless

networks that cover a vast geographical area, such as the ADRAMS and AARI-

GPS buoy networks deployed by the International Arctic Buoy Program (IABP).

These buoys collect data on barometric pressure, temperature, and ice motion in

the Arctic Basin and relay the data through satellite. They can be deployed by

small rockets or air dropped on location. All vital electronics, including batter-

ies, data recording device, diagnostic circuitry, and antenna are housed inside a

polycarbonate sphere to protect it from the harsh Arctic environment. These are

examples of pure monitoring networks that are designed to measure well de�ned

environmental parameters from clear and present targets.

In general, the targets of interest are not necessarily present and available,

and the parameter of interest, such as target location, movement, and categories
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are only indirectly linked to measurable environmental parameters. For example,

in military applications, a sensor network can be used to detect the movement of

vehicles or foot soldiers. Such events can only be recognized indirectly through

the presence of a complex sequence of measurable acoustic or seismic vibrations

that are generated by the event. In civilian applications such as search and

rescue and law enforcement, the targets of interest can vary from simple human

movement to the presence of weapon and explosives. In these cases, the linkage

between measurable physical phenomena and their origin can only be discovered

through the appropriate use of signal processing and hypothesis testing. This

tells us that in order to extend the usefulness of sensor networks, it is no longer

su�cient to just gather data, which is what the pure monitoring networks do,

but it is vital to extract information meaningful to the application and present

them in understandable form. As the nature of possible targets become more

diversi�ed, it is increasingly necessary to develop a new class of intelligent sensors

that can synthesize sensing and processing capabilities in a single package. Recent

progress in very-large-scale integration (VLSI) technology has spawned an entire

generation of such sensors. One example is the low power integrated microsensor

(LWIM) developed at UCLA. It features light-weight and easily deployable nodes

with programmable microprocessor, low power radio communication, and highly

sensitive sensor circuitry. In order to realize the full potential of this class of

sensors, new software technology and communication protocol sensitive to the

unique constraints and requirement of microsensor must also be developed.
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1.1 Overview of Sensor Networks

In most applications, sensor networks have three functional components: (1)

detection and data collection, (2) signal processing, and (3) noti�cation. There

are two basic approaches by which these three functions are implemented: (1)

single-sensor approach and (2) multi-sensor approach.

The single-sensor approach centralizes all three functions on a single node.

These nodes are equipped with ultra-sensitive sensors(e.g. arrays), powerful sig-

nal processing units, long range radio communication capability, and high ca-

pacity power supply. This approach is not robust because failure of a single

component renders the entire node useless. Also, the large physical size of these

nodes often makes them di�cult to deploy and vulnerable to sabotage. Further,

the propagation losses due to distance and physical obstructions can often render

distant targets undetectable regardless of the sensor sensitivity.

The multi-sensor approach distributes sensing functions to a large number

of small yet capable nodes, which signi�cantly lowers the hardware requirement

and manufacturing cost for each node. Failures caused by hardware or other en-

vironmental factors will most likely disable only a subset of the nodes, allowing

most network operations to continue. Although each node has lower sensing and

processing power than a single super node, networking functions allow them to

operate as a single unit while covering a large geographical area. Environmental

events can be detected at close proximity due to better sensor coverage, resulting

in higher average signal-to-noise ratio. Applying signal processing techniques,

each sensor can extract a small set of essential features from the raw data to

determine the nature of the target, and when necessary, report its �nding to a
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user node through multi-hop routing. When a target is observed by multiple

sensors, cooperative data fusion or beamforming techniques can be used to im-

prove probability of detection, false alarm, and target identi�cation accuracy [22].

To facilitate the operations for such sensor networks, routing protocols must be

developed to handle the communication needs.

Sensors networks are most valued for their small size, signal processing capa-

bilities, and versatility to form wireless ad hoc networks. Their ability to operate

without pre-existing infrastructure makes them useful in virtually any environ-

ment. However, this independence from the infrastructure also imposes a new

set of constraints. One such constraint is shorter radio range, which can lower

network connectivity. Due to low antenna height, ground level features have a

strong e�ect on propagation loss. Small rocks, plants, or even mild undulation in

the terrain can create signi�cant variations in the radio channel characteristics.

Furthermore, radio signal strength tends to drop o� with higher exponent at a

smaller distance than those with higher antennae. Channel measurements [21]

show that for an outdoor environment, near ground propagation loss exponent

can vary from 3.5 to 5.0.

Another factor that a�ects network connectivity is node density. When den-

sity is low, the network can be severely fragmented due to a low average nodal

degree - the average number of neighbors within radio transmission range. A sim-

ulation study shows that the average size of the maximal connected component -

the largest subset of connected nodes in a network - cannot reach 90% until the

average nodal degree goes above 7.(See Table 1.1) To compensate for low node

density, radio power needs to be raised to extend transmission range.

The most signi�cant constraint on network operation is energy limitation.
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Network Size = 100

Average Nodal Degree 0.79 1.54 2.54 3.80 5.31 7.07 9.08

Average Size of Maximal

Connected Component

2.17 4.09 8.37 25.38 66.6 91.84 98.2

Standard Deviation of Con-

nected Component

1.55 3.81 7.34 20.27 31.2 18.19 9.19

Table 1.1: Network Connectedness

Lacking infrastructural support, each node depends on small and low capacity

batteries as the energy source, and cannot expect replacement when operating in

hostile or remote regions. As nodes deplete their batteries, there will be a gradual

reduction of network connectivity and sensor coverage, which degrades sensing

and signal processing performance and introduces some dynamics in network

topology. Most protocols, whether on the signal processing, networking, MAC, or

physical levels, do not consider their impact on external situation such as network

connectivity because they are designed for infrastructured networks in which any

component failures are restored quickly, either by outside agents or sophisticated

automatic recovery schemes. For such networks, loss of connectivity is a rare

event that has little statistical signi�cance to overall performance, therefore is

not a factor in protocol design and testing. For mobile networks, many protocols

attribute the loss of connectivity to the mobility of nodes, not to the energy

depletion caused by the execution of the algorithm. Therefore the task of handling

mobility assumes far more importance than energy conservation.

Because of their very limited energy resources and lack of maintenance after

deployment, ad hoc sensor networks are required to operate under degraded ca-

pacity for a signi�cant time duration such that the overall system performance

becomes highly dependent on the energy e�ciency of the algorithm.
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1.2 Overview of Dissertation Topics

The role of any sensor network protocol is to support the detection noti�cations

and cooperative signal processing functions under a stringent energy constraint.

In a broader sense, a sensor network is formed from the integration of sensing,

signal processing, and communication functions.(See Figure 1.2) It is the perfect

platform on top of which hierarchical information processing [30] can take place.

It allows information to be processed on di�erent levels of abstraction, ranging

from the detailed, microscopic examination of speci�c targets, to the macroscopic

view on the aggregate behavior of targets. Any events in the environment can be

processed on three levels: node level, local cluster level, and global level.

Figure 1.1 depicts a sensor network operating on these three levels in response

to environmental stimuli. On the node level, data collection and processing occurs

on each individual node, and no communications are required except for the

noti�cation of the �nal result to the USER. On the cluster and global level,

routing functions are required for the gathering of raw or pre-processed data

from individual or clusters of nodes to a central location for advanced processing

such as data fusion or beamforming. Having a larger set of data to work with,

detailed information on individual target as well as general, aggregate patterns

in target dynamics are obtainable.

In this dissertation, we propose two routing algorithms that ful�ll these com-

munication needs: (1) an energy e�cient multi-hop routing algorithm for long

distance noti�cation, and (2) an adaptive local routing algorithm for cooperative

signal processing on the cluster level which can be extended to the global level

as well.
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Figure 1.1: Hierarchical Information Processing

Chapter 2 presents the concept of ad hoc network and a simple survey on

some of the major categories of routing algorithms, with comments on their

individual strengths and weaknesses. We also brie
y describe the concept of

network scalability.

Chapter 3 presents an energy e�cient multi-hop routing algorithm for sensor

network applications. We discuss the issues and challenges involved in protocol

design, such as assymetrical tra�c loading, energy management, robustness, and

the need to distinguish packets that require di�erent quality of service (QoS) due

to the content of its payload. We consider what network structure can best satisfy

this set of requirements and constraints and propose a constrained overlapping

tree structure for its simplicity, robustness, and low overhead. This tree structure

can be constructed by a modi�ed spanning tree algorithm for which we give a

7



Figure 1.2: Integration of Sensing and Communication Functions

detailed description of its operation and proof of convergence and path restoration

capabilities.

The proposed overlapping tree structure will provides a multi-path environ-

ment that enables priority routing and load sharing. To select the best path, each

node has to consider the priority level of the packet and the QoS and capacity

on each path. For this task we propose a sequential assignment routing (SAR)

algorithm, and present its mathematical background and modi�cation required

for implementation. Simulation results provide performance and sensitivity com-

parison between SAR and the classic minimum metric algorithm.

Chapter 4 begins by the categorization of targets into two broad categories,

(1) near-�eld (NF) and (2) far-�eld (FF), and is followed by comments on the
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communication requirements for coherent and non-coherent cooperative informa-

tion processing. We then present the second major network function: an adaptive

local network formation/routing algorithms that facilitates non-coherent cooper-

ative signal processing. A Single Winner Election (SWE) algorithm is used to

select a central node (CN) distributively that maximizes a given election crite-

rion among a small group of nodes that cooperate in information processing. This

election criterion can be either SNR, node location, or any other characteristics

associated with the node, as required by the particular cooperative function.

This election process is similar to a multi-source di�using computation pro-

cess [15]. In this distributed process, multiple local elections can start simultane-

ously, and by exchanging local election results, the global solution is found with

lower overhead. By piggybacking routing information onto the signaling tra�c of

the election process, a minimum-hop spanning tree rooted at the CN is created si-

multaneously. We demonstrate the energy e�ciency of SWE by a simple analysis

under an information theoretic context. We show that further energy saving can

be obtained by imposing voluntary delay on local election, thus demonstrating

the energy-delay trade-o� inherent to this type of distributed process. At the

end of the election, a termination procedure will inform the winning CN about

the completion of all election and routing computations, so the actual cooper-

ative function can be initiated by the CN. This procedure can be implemented

as a simple state machine on each node, and we provide a proof for its correct-

ness. Finally, simulation results are presented to demonstrate the delay-overhead

characteristic and scalability.

For coherent cooperative functions, tra�c loading will increase substantially

due to the necessity to transmit a large amount of raw data across the radio
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channel. Therefore the focus of protocol design shifts from algorithmic e�ciency

to path optimization. In chapter 5, we describe a modi�ed network building

procedure. It follows the basic structure of the non-coherent case except that a

membership trimming procedure is required to limit tra�c loading. This trim-

ming procedure can be implemented by a Multi-Winner Election (MWE) algo-

rithm, which selects a limited number of source nodes (SN) that will eventually

provide the raw data for cooperative processing. Then a modi�ed SWE will

select the optimal node among the original members as CN so that the total

energy consumption required to gather raw data from each SN to this CN is min-

imized. Issues such as time delay and complexity will be discussed. Simulation

results demonstrate the delay-overhead characteristics and lower scalability than

the non-coherent case.

In chapter 6 we include some �nal remarks on our research �ndings and pos-

sible directions for future research.
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Chapter 2

Background

Before we describe our sensor network protocols in detail, a few remarks on the

possible underlying link level technologies that support network operations are

warranted. In section 2.1, we brie
y describe the concepts of wireless Ad-Hoc

Networks and link level channel access control algorithms. Section 2.3 presents a

simple survey on several major categories of routing techniques, and section 2.4

discusses the concept of scalability, which is an increasingly important factor in

ad-hoc network design and performance evaluation.

2.1 Infrastructured & Ad-Hoc Networks

In an infrastructured network, there is a clear distinction between the users, which

are entities that are source and/or the destination of information exchange, and

the infrastructure, which consists of a set of nodes and links that store and relay

information for the users. We note that in its purest form, an infrastructured

network does not allow a direct connection between two users, so information
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Figure 2.1: Infrastructured and Ad-Hoc Networks

exchange must always go through the network infrastructure. (See Figure 2.1(a))

The advantage of this approach is that the operational complexity involved in the

actual information transfer is transparent to the users. A prime example of such

a network is the telephone network, where the users can communicate by a simple

analog device (telephone) that is plugged into a pre-installed outlet wired to the

telephone company facility. The user and his simple device have no involvement

in the sampling and digitization of the voice waveform, the calculation of routes,

and the setup of the circuit that actually enables the conversation to take place.

Although the cellular system required more sophisticated devices, they are only

responsible for establishing a link level communication with the nearest base

station beyond which the operations of the network remain transparent.

Although having an infrastructured network makes communication easy for

the users, sometimes, due to physical limitations and user mobility, it is better to

shift some of the networking tasks to the users themselves. An example of this

is the ALOHA network developed in the early 1970's to provide communications
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for the University of Hawaii's various computing facilities located on di�erent

islands. For ease of operation, a satellite repeater is used to create a single

broadcast channel shared by all users. Although the satellite can be considered

in principle as part of the \infrastructure\, it does not regulate or control the

way the users communicate with each other. The users will share the channel

by following a channel access procedure later known as the ALOHA algorithm.

This algorithm gives the users the ability to compete for access to the channel

while keeping their behaviors in check. The DARPA Packet Radio Network [13]

is an example of a network where each user can be called upon to \serve\ the

communication needs of other users by relaying messages and reporting changes

in network conditions. In both cases, the users have more direct involvement in

the operation of the networks.

Moving further toward a user-initiated and user-maintained operation, at the

other end of the spectrum, we have the ad-hoc networks, where the users are also

their own service providers. Each user, upon joining the network, earns the right

to request service from other users and the responsibility to shoulder the cost

of network maintenance and operation. Free from the reliance on pre-existing

communication infrastructure, such a mode of operation is ideal for a mobile

ad-hoc network or MANET, where network topology and membership change

constantly.
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2.2 Network Topology & Channel Access Tech-

nologies

The foundation of a communication network is the individual link that connects

the nodes. Each link represents the fact that communication between the nodes

joined are supported through some transmission medium by a link level Medium

Access Control (MAC) protocol. In wireless ad-hoc networks, the transmission

medium is the radio channel, and the task of MAC is to control the way individual

nodes can access the radio channel. Two general approaches can be taken:

1. Scheduling

2. Random Access

In scheduling, communication resources can be divided along three dimensions:

time, frequency, and code. In Time Division Multiple Access (TDMA),

a channel can be divided into time slots that are assigned to di�erent links. In

Frequency Division Multiple Access (FDMA), each link uses a di�erent

frequency band. In Code Division Multiple Access (CDMA), radio signals

are spread across a large bandwidth by a linear transformation using a code, and

each signal can be recovered by applying the corresponding reverse mapping.

The highest level of access control will create a contention-free system where

scheduling is held unchanged. This is also called �xed assignment. The advan-

tage of this approach is that upon the creation of a schedule, network operation

can become very energy e�cient. On the other end of the spectrum are the

contention-based or random access schemes. Contention-based MAC is de-

signed based on \self-regulated aggression,\ where users compete for resources
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but try, whenever possible, to avoid a deadlock with other users. In both slot-

ted and unslotted ALOHA protocols, users will compete for resources by using

it whenever the need arises. If no competition occurs, then transmission is suc-

cessful; if competition results in collision of the signal, then each competing user

will voluntarily impose a delay for a random length of time, hoping to separate

the time of their respective future retransmissions. To further reduce the chance

of collision, some preventive measures can be used. In Carrier Sense Multi-

ple Access (CSMA) systems, each user is required to listen to the channel for

tra�c before transmitting. This reduces the possibility of collision.

These schemes are often chosen for their simplicity and the bene�t of \statisti-

cal sharing\ of resources. Since in a �xed assignment system, users cannot volun-

tarily acquire additional resources outside those already scheduled, in anticipation

of periods of demand surge caused by normal statistical 
uctuation, each user is

usually allocated bandwidth much higher than its statistical average. The result

is ine�cient bandwidth utilization. On the other hand, the contention-based sys-

tem breaks away from the rigid structure of the �xed-assignment schedule so that

all users share a common pool of resources through a contention process. The re-

sult is that while individual service demand still 
uctuates, the aggregate demand

shows much less 
uctuation above or below the aggregate norm, as predicted by

the Strong Law of Large Numbers. Therefore more users can be accommodated

than what the �xed-assignment schedule will allow. However this contention pro-

cess itself generates secondary tra�c that may consume considerable amount of

bandwidth. Furthermore, since a successful transmission can occur in any slot,

each user has to keep its transceiver turned on to listen to the channel, which

may sum up to considerable energy consumption over time.
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To achieve adaptability to demand 
uctuation without losing operational ef-

�ciency, a demand assigned scheduling can be used. One such scheme is called

reservation, in which a TDMA, FDMA, or CDMA system can be used as the

foundation. However, access to time slots, frequency bands, or codes is granted

only after a user successfully makes a reservation through a contention process.

By separating the contention process from the data transmission, energy con-

sumption is lowered because smaller packets reduce the collision pro�le signif-

icantly. However, since the contention mechanism is still based on \collision,\

performance improvement can be quite limited.

To bring about a fundamental change in the contention mechanism, a \collision-

free\ process is introduced. A token passing system is one where a token (rep-

resented by a special packet) is circulating among the users. When a user is in

possession of the token, it has exclusive use of the transmission medium. When

it passes the token to others, it will lose access. Instead of directly competing

with each other, users compete for resources by optimizing how long they will

hold on to the token once they come into possession of it, and to whom they will

pass the token. The optimal token passing protocol should allow each user fair

and equal access to the channel relative to individual and aggregate demand.

Another scheme, which works like a centralized version of the token passing

scheme, is called polling. In this scheme, a central entity polls each user, which in

e�ect gives the user the opportunity to use the channel. When the user is done,

the central entity will be informed so that others can be polled. The polling

procedure can vary according to the overall objective of the protocol. In general,

we note that the contention process is much more structured, and bandwidth

consumption is reduced signi�cantly.
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2.3 Routing Algorithms

In this section, we present several dissection of routing algorithms based on their

adaptability and features in their network structures. We explore the motivation,

methodology, and pros and cons for each approach.

Adaptability

\Adaptability\ refers to the responsiveness of the algorithm to changes in

network topology, congestion, and other conditions that can impact routing per-

formance. Despite the fact that there is always the possibility of change, non-

adaptive routing algorithms are nevertheless used in many cases. Although they

can perform rather poorly, their simplicity is highly desirable. One example of

such an algorithm is 
ooding. Communication from the source node to the desti-

nation node is accomplished by saturating the network with data, so that as long

as the source-destination pair is connected, delivery is guaranteed. This protocol

is very ine�cient, but extremely simple and robust. When system resources are

abundant, it can be a viable option if the scope of 
ooding is controlled [12] and

used infrequently as a backup.

In �xed directory systems, a network with fairly static conditions can oper-

ate according to a \directory\ or \table\ that lists for each source-destination

pair a pre-determined out-going link. This requires some pre-programming be-

fore system activation, but no further overhead will be incurred. It has much

lower robustness but higher e�ciency than 
ooding. If network topology can be

maintained for a long period of time and channel conditions and user demand are
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well-behaved, a �xed directory system can produce nearly optimal performance.

Adaptive algorithms are those capable of self-adjustment in response to change

of network conditions. They have higher complexity but better performance un-

der changing conditions. Example of such algorithms are found under the broad

category of Link State protocols. Such protocols keep track of the condition of

all links (and nodes) in the network by 
ooding the network with update pack-

ets when change occurs. Although capable of making optimal adjustment, the

large overhead involved in keeping each node informed of all changes is its most

signi�cant drawback.

To alleviate this situation, a Distance Vector approach can be used. In many

networks, changes in network connectivity or channel noise level a�ect only those

nodes near it. The exact scope of adjustment required is related to the degree of

coupling in the network, which is re
ected by the interdependence of a \distance

vector,\ a quantity that represents the QoS expected when routing packets from

a node to a list of destinations. When the network condition changes, update

packets will start propagating outward, away from the location where the change

occurs. Nodes with strong coupling to the change will make proper adjustment

to their own vector values and inform others about this change. Nodes with weak

coupling will see very little change in their vector values, and therefore stop fur-

ther propagation of update packets. As result, the scope of the update process is

limited and overhead is reduced.

Single Path & Multipath

In general, a collection of nodes and links through which a single packet
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reaches its destination can be called a path. A path, as a networking construct,

is not strictly required for routing (consider 
ooding.) However, it is very ben-

e�cial to work with this construct because it provides the necessary directional

orientation for e�cient routing. When the construct of path is applied, it can

be done implicitly or explicitly. With an implicit path construct, each node sees

only a portion of each path and makes routing decisions based on local knowl-

edge. If an explicit path construct is used, each node will have some information

regarding the overall condition along each path, such as the pathwise delay and

QoS estimate. Most advanced routing techniques utilize the path construct as

an aid to routing, and two approaches can be distinguished.

The single path approach establishes one path for each source-destination pair,

and the multipath approach will allow several paths to be used simultaneously.

The classic shortest path algorithm is an example of a single path algorithm. It

�nds the path that minimizes an additive metric between a pair of nodes. Because

of its simplicity, quick convergence and good performance under mild loading and

slow changing conditions [27], it is often one of the top candidates considered by

designers as a starting point for developing new protocols.

However, there are many reasons one would consider taking a multi-path ap-

proach. One of these is load balancing, which can help keep queuing delay low. In

bifurcation routing [16], at each node streams of data packets can be split among

several outgoing links to balance queue lengths or as a way of diverting \over
ow\

tra�c when the local queue is full. Another bene�t is robustness against packet

loss. Having multiple paths, the source node can send multiple copies of a mes-

sage through several paths. The highest degree of protection against path failure

is provided by a node-disjoint multipath algorithm. Since disjoint paths share no
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common nodes, except the source and destination, any single link or node fail-

ure can disable at most one path at a time. If k node-disjoint paths exist, then

delivery will be successful even if k � 1 failures occur during the transmission

session. However, the overhead and time complexity of disjoint path calculation

is high. Multipath algorithms often need to be used in conjunction with a packet

resequencing procedure because individual packets may arrive out of order. For

applications such as real time voice or video playback, a single path algorithm

will be more suitable.

Table-driven & Demand-driven

In any routing protocols, the designers have two options on when paths should

be generated. In a table-driven system, paths connecting all possible source-

destination pairs are pre-computed and recorded in a routing table. However,

it is not particularly suitable under rapidly changing conditions due to the fact

frequent calculation and revision of the routing tables can raise overhead signif-

icantly. There is also the challenge of maintaining routing table consistency so

that the appearance of invalid routes such as loops or dead ends are rare and

temporary.

When a single-path algorithm comes under heavy tra�c, oscillatory behavior

can also occur as tra�c is shuttled back and forth between groups of nodes each

time the routing table is revised [27]. Such oscillation creates a bursty loading

pattern and long delay.

A demand-driven protocol seeks to circumvent frequent routing table update

by doing away with it completely. The term demand-driven means that no path
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calculation takes place until the moment it is actually required. In other words,

instead of tracking the network conditions continuously, the demand-driven ap-

proach simply takes the most current snapshot of the network at the instant

when routing service is required and builds a set of paths to ful�ll that service

requirement. In [35] a prototype demand-driven routing algorithm is described

for the wireless mobile environment. When a source wishes to send packets to an-

other node, a path discovery procedure takes place. During this procedure, the

intention to �nd a connecting path to the destination is announced by 
ooding a

query, or QRY, packet, that will invariably reach the destination node if it is still

connected to the network. Then the destination node will send a reply, or RPY

packet, to the source node by back-tracing the paths taken by the QRY packets.

When the source node receives the RPY packets, it will have information on

several paths that lead to the destination node at its current position. Then the

source node can use these paths to send information to the destination node.

Here we see that the path discovery operation can have fairly high overhead

since the 
ooding procedure is used, and overall delay will increase because it pre-

cedes every transmission session. Attempts to alleviate overhead during the path

discovery have been made by keeping the route table of previously computed

paths so that re-use is possible. This is only suitable if network topology did not

change su�ciently to make the path invalid. Another approach, called Location

Aided Routing [36], makes use of the last known location of the destination node

as a starting point for a more focused search. A controlled 
ooding of the query

packets, limited inside a request zone that contains the last known location of

the destination node, make the path discovery procedure more energy e�cient.

Despite the possibility of high overhead, a demand-driven protocol is often the
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only choice we have under fast changing network conditions.

Hierarchical Routing

In hierarchical routing, di�erent kinds of protocols will be applied to the

network under a logical hierarchy. The network is often divided by task, hard-

ware and software technology, and/or physical location into several smaller au-

tonomous groups. Within each group there is the capacity for routing, self-

organization if it is ad-hoc, and independent MAC structure. These groups are

then joined together by another network that consists of specially selected nodes

from each individual group. Thus there are two network layers: one handles the

group-to-group communications; the other the communications within a group.

Examples of such layered architectures can be found in the class of clustering

networks. In [10], several distributed algorithms are presented so that a random

collection of mobile nodes can organize themselves into a network of overlapping

clusters. Each cluster consists of a cluster-head, and all nodes within its 1-

hop neighborhood are considered members of the cluster. Since each cluster

has a diameter no larger than 2, the cluster-head is given the special task of

monitoring, controlling and when necessary relaying all intra-cluster tra�c. The

communication between di�erent clusters is handled by nodes called gateways.

These are selected from nodes that are in communication range with at least one

other cluster. One nice property about this approach is that it allows a natural

division of the channel resources for adjacent clusters.

The specialization of nodes into cluster-heads and gateways naturally lead
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to a division between inter-cluster routing and intra-cluster routing and the for-

mation of a two-level hierarchy. When two nodes belong to the same cluster, intra-

cluster routing is all that is required; otherwise, they have to connect through

intra-cluster routing to a gateway or a cluster-head in their individual clusters,

and these gateways and/or cluster-heads will then be connected through a sepa-

rate inter-cluster protocol. The hierarchical structure lends itself easily to hybrid

schemes, where di�erent MAC and routing protocols are used on the intra and

inter-cluster levels.

One advantage of the cluster topology is that it bu�ers the routing protocols

from overreacting to mobility. Small scale movement within the same cluster,

however frequent, will remain transparent to inter-clustering routing. A larger

cluster size (k > 1 hops) can be used to further decrease sensitivity to mobility

if the pattern of node movement is localized and predictable. The trade-o� for

this increased manageability of mobile nodes is the overhead involved in creating

and maintaining the clusters.

2.4 Scalability

The idea behind scalability can be simply understood as the ability of a network

to \scale\ to larger size. A perfectly scalable network is one where the average

operational complexity, resource consumption, and performance level remains

constant for each individual node despite the network size. Therefore, to increase

network size from ten to one hundred, simply add ninety more identical nodes

to it. One nice property of a scalable system is that it can be designed and

tested on small scale, because its large scale performance can be easily projected.
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Furthermore, if a network protocol is scalable, then network size can increase

without raising the burden on individual nodes.

The keys to building a scalable protocol are two-fold: (1) the distribution of

tasks and (2) the reduction of coupling. It is clear that when operation is not

distributed, then some central entity will have to execute certain tasks for each

node in the network. Such networks cannot possibly scale easily because the

size of the network will be limited by the computational capacity of the central

entity. Scalability essentially means that increase of network size is transparent to

the individual members of the network. This is only possible when the network

is loosely coupled. A network protocol will invariably create some degree of

coupling, which is generally the parametric dependence among di�erent nodes.

Thus when a change occurs or when a new node is added, a chain reaction of

adjustments has to be made. The stronger the coupling, the more signi�cant and

far-reaching is this reaction. A scalable network can have coupling, but the \zone

of in
uence,\ within which coupling is strong, should be curbed from growing.

2.5 Interlayer Cooperation

The OSI Reference Model is a network architecture developed so that di�erent

systems can work together in an "open" environment. According this model,

each node can be divided vertically into seven functional layers (from bottom to

top): Physical, Data Link, Network, Transport, Session, Presentation,

Application. Peer-to-peer communication can occur on each layer. However,

the top four layers provide end-to-end connections for source-destination 
ow

control or ARQ, and the lower three layers provide hop-by-hop communications
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Figure 2.2: OSI Reference Model

needed between the source and destination node. (Figure 2.2) Ideally, with

regard to the goal of interfacing di�erent systems together, the operational details

of the lower layers should be transparent to those on top. However, this should

not be taken as a recommendation to develop each layer in isolation. Rather, we

should note that there are often close relationships between the layers, and their

division in the model is merely done for convenience for adaptation in an open

system.

If we look at the relationship between network and data link layers, we see

that they can be implemented as separate systems as long as a standardized

interface is used. However they share many common design considerations such

as QoS, energy consumption and delay on a hop-by-hop basis, so it is important

that we consider how they might cooperate and enhance each other.
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As an example, let us consider a system where the 
ooding algorithm is the

best choice. This may occur in military applications where robustness and sim-

plicity are the primary concerns. Although 
ooding works with any link level

protocol, it is wise to take advantage of the omnidirectional propagation of radio

waves by creating a broadcast channel. A broadcast channel allows each node to

send data to all neighbors in one single transmission, thus reducing tra�c load

and time delay. We can see that if a point-to-point TDMA is used for MAC, then

the broadcast procedure will be time consuming because multiple transmissions

are required. On the other hand, if conserving energy is the primary concern for

a network, an explicit or implicit path construct will be used to "direct" each

packet from the source to the destination. In this case, a broadcast channel is

not only unnecessary but also wasteful of energy because the radio has to stay on

all the time to listen to broadcast messages. A structured MAC such as TDMA

or FDMA will be better.

2.6 Summary

In this section we brie
y described the concept of ad-hoc networks and some basic

issues in MAC and routing protocols. We also discussed the concept of scalability

and the necessity of interlayer cooperation between MAC and networking. In the

coming chapters, we will use many of these concepts and ideas to design a new set

of routing and network formation protocols for autonomous sensing applications.
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Chapter 3

Multi-hop Routing

This chapter presents a multi-hop routing algorithm designed for wireless ad hoc

sensor networks. We start with an overview of the key assumptions, requirements,

and constraints in protocol design, and propose a network structure and routing

algorithm to meet our objectives.

In order to tie multiple sensors into a cohesive sensing/processing unit, two

modes of operation must be supported by a multi-hop routing algorithm: (1)

collection mode and (2) distribution mode, with respect to a USER node that

serves as an access point through which outside agents can interact with the sen-

sors. This USER node can be a stationary long range radio deployed permanently

as part of the sensor network or a mobile unit that can extract data by moving

into communication range with the network. When a USER node comes into

communication range of the network, it will initiate a distributed computational

process to construct routes from each sensor node to itself. If it then moves to a

di�erent location and wishes to extract sensor data again, the same computation

process can be repeated at this new location. In the distribution mode, command
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or query packets are multi-casted to selected groups of sensors to trigger sensing,

processing, or communication functions or request sensor information and signal

processing results. In the collection mode, a network USER acts as a "sink" node

that gathers from individual sensors information regarding physical environment,

target activities and network status.

These two distinct modes of operations create two major tra�c 
ow compo-

nents: (1) sensor-to-user and (2) user-to-sensor. The user-to-sensor tra�c

usually consists of single-packet command messages issued sporadically by USERs

who, in most cases, assumes a passive role as a gatherer of sensor data. Therefore

the bulk of network tra�c belongs to the sensor-to-user component. Furthermore,

it can be observed that the user-to-sensor 
ow pattern is inherently more energy

e�cient than sensor-to-user 
ow, as illustrated by Figure 3.1, which shows the

di�erence in loading pattern when sending one packet from each sensor to USER

and from the USER to each sensor. The sensor-to-user pattern is clearly assy-

metric, putting disproportionally heavier strain on the energy resources of the

immediate neighborhood of the USER. To prevent early energy depletion and

maintain connection, particular attention must be focused on loading balancing

inside this neighborhood.

Our basic approach to algorithm design is to optimize performance on the

sensor-to-user tra�c under a stringent constraint on energy. Sensor-to-user traf-

�c usually has low intensity because packets are generated in response to envi-

ronmental events. With the aid of hierarchical information processing, sensor

data is highly compressed so that only short summary reports containing the

most relevent information is sent to the distant USER. One possible performance
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Figure 3.1: Collection and Distribution Mode

criterion is packet delay. For a lightly loaded system, delay is due less to queue-

ing than factors such as link-level ARQ and/or low duty-cycle MAC scheduling.

Therefore, the overall delay on each path can be reasonably estimated by a link

level additive quality-of-service (QoS) metric. Having the QoS on each path,

priority service can be provided to each packet according to the nature of its pay-

load. For example, a detection report for a large battalion of enemy troops will

require quicker delivery than the detection of, say, the temperature conditions.

Robustness is another key challenge in network design. Besides environmental

factors and probabilistic failure of hardware components, sensor networks can fail

rather quickly due to wasteful energy expenditure. To raise robustness, one has

to take up preventive measure such as building multiple paths and corrective

measures that restore failed paths. It will be a challenge to �nd energy e�cient

ways to implement them.
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In general energy e�ciency can be improved in two areas: (1) route com-

putation and (2) route maintenance. However e�ciency in one area often come

at the expense of the other. Complex computations may �nd minimum energy

paths, but they can be expensive to maintain as network topology changes. So

energy e�ciency should be emphasized in each area to the degree that appropri-

ately matches its importance in meeting the overall objective. If we assume most

sensors are not mobile, then network topology should change much slower. In

this case, more resources can be spent on route computations to provide priority

service and long term failure protection, while simple, distributed and localized

procedures should be su�cient for route maintenance.

3.1 Network Structure: Table Driven and Mul-

tipath

To determine what network structure is appropriate for sensor networks, we turn

to the research literature for suggestions and insights. In recent years, mobile ad-

hoc networks (MANET) has emerged as the most versatile networking platform

for the future. It is designed to provide peer-to-peer multimedia communication

between mobile users. Two multi-hop routing algorithms have been proposed for

MANET : Ad-hoc On-Demand Distance Vector (ADOV) routing and Temporally

Ordered Routing Algorithm (TORA). Both are examples of demand-driven sys-

tems that eliminate the overhead associated with table update in high mobility

scenarios. However, they have high energy cost during the path discovery phase

that must preceed each transmission session. Since our system does not deal with

high mobility and multimedia tra�c, it is in the interest of energy e�ciency to
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take the table driven approach.

While the MANET has to deal with mobility by a demand driven approach

despite its high cost, the Power-Aware Routing [28] is designed to minimize power

consumption under more static network topology. It applies the minimum metric

algorithm (shortest path) on two di�erent power metrics:

1. Minimum energy per packet, and

2. Minimum cost per packet.

The �rst metric is intuitive and produces substantial energy saving while the

network retains full connectivity; however, possible performance degradation

due to node/link failure has not been accounted for. The minimum cost metric is

obtained by weighting the �rst metric by the energy reserve on each node. It has

the nice property of load balancing by steering tra�c away from low energy nodes.

However since the single path algorithm makes a "discrete routing decision" by

sending packets on one single path, the cost metric has to be continuously updated

to allow a smooth distribution of tra�c load. A more energy e�cient approach

is to create multiple paths so that less route updating is required.

There are many multipath network structures mentioned in the research liter-

ature [25, 23, 24]. They mostly deal with the generation of multiple node-disjoint

or edge-disjoint paths from each node to one single destination. The degree of

failure protection is directly related to the degree of disjointness k. A k-disjoint

structure can protect against failures on k links or nodes. Path computations

generally start with a graph labeling procedure, at the end of which a path from

each node to the destination node is found, and then followed by another round
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of graph labeling to generate a new set of paths that are disjoint from the previ-

ous set. As a rule of thumb, k iterations will be required to generate a k-disjoint

structure. Each iteration will have roughly the same complexity as a shortest

path algorithm, and the disjoint property creates strong coupling between rout-

ing tables that makes a localized recovery scheme nearly impossible. After the

k+1 failures occured, a global scale recomputation with complexity k times that

of a shortest path algorithm will be required. The key to reduce overhead is to

loosen up this coupling e�ect by relaxing the disjointness requirement. Although

the degree of failure protection is lower, one can compensate by a localized path

restoration procedure at much lower energy cost.

3.1.1 Tier Structure & Overlapping Trees

Before the network starts to build multiple routes from each sensor to the USER,

a minimum-hop spanning tree is used to create a logical tier structure centered

around the USER. Tier n will comprise all nodes whose minimum hop-distance

from the USER is n. Having the hop-distance allows each node to estimate

its topological distance and direction relative to the USER. On top of this tier

structure, multiple trees, each rooted from a 1-hop neighbor of the USER, are

built. The number of trees generated is equal to the number of 1-hop neighbors

the USER has at its present location. Each tree will be forced to grow outward

from the USER by successively branching, in the uptree direction, to nodes with

higher hop-distances. This serves two purposes: (1) to restrict the coverage of

each tree and therefore the degree to which the trees overlap each others, and (2)

to control the number of paths each node has to the USER. When tree coverage

is too high, the overhead associated with building each tree approaches that of
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a global tree; when the tree coverage is too low, there will be an insu�cient

number of paths available for failure protection. To �ne tune the size of each

tree, a TREE DEPTH parameter can be used to set the hop-distance above

which each tree can branch to nodes with higher or equal hop-distance under

certain conditions. A larger TREE DEPTH parameter will reduce the degree of

tree overlap. At the end of the procedure, most nodes will belong to multiple

trees and thus having multiple paths to the USER. Paths provided by each tree

from any node to the USER are node-disjoint inside the 1-hop neighborhood of

the USER. The advantage of this structure is that it allows each sensor indirect

control of which 1-hop neighbor of the USER will relay each message by selecting

the corresponding tree. This is very important for tra�c management near the

USER, and the more trees a sensor belongs to, the more choices it has.

3.1.2 Tree Building Procedure

For each node, the tier structure and the overlapping trees are computed based

on a modi�ed version of a distributed spanning tree (ST) algorithm. There

are several advanced features of the modi�ed spanning tree (MST) algorithm.

The �rst feature is that after any topological change, as long as the resulting

network is still connected to the USER, path restoration automatically occurs

and converges to a feasible solution without the need for a separate recovery

algorithm. The second feature is that branching decisions are made by considering

multiple metrics, rather than minimizing just one metric. Detailed descriptions

of the procedure will be provided in Section 3.1.3, and proof of convergence and

path restoration will be given in Section 3.1.4.
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Figure 3.2: Two overlapping trees on a network with four tiers

Spanning Tree Metrics & Branching Metrics

As we know from graph theory, in a spanning tree each node will have a single

path to the root node. That implies there will be only one single outgoing link

registered in each routing table for the root. If, for example, in a spanning tree,

node i has node j as its outgoing neighbor to the root, then node j is called

the successor of i, and node i is the predecessor of j. In any tree, each node,

other than the root, must have one successor and any number of predeccessors.

Any path from a node to the root is de�ned by the predecessor-successor pairings

that connect it to the root. Therefore the spanning tree algorithm is basically a

successor selection algorithm. To facilitate the successor selection, two metrics

are used: (1) spanning tree (ST) metric and (2) branching metrics. The
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ST metric is usually an additive metric that is summed along a path, de�ned

by the its predecessor-successor pairs, to re
ect certain characteristics associated

with that path. The branching metric is used for successor selection; it is a

quantitative measure of the "desirability" of a neighbor as successor, which can

depend on the ST metric and some other parameters.

For the tier structure computation, the ST metric and the branching metric

are the same, i.e., the hop-distance from the USER. However, in the overlapping

tree computation, the ST metric is the QoS on each path, and the branching

metric will be both a function of the QoS and path capacity. The QoS metric

and path capacity estimate can be computed during the tree building process.

Since the QoS metric is additive, higher QoS metric represents lower performance.

Path capacity is the estimated number of packets that can be routed from each

node to the USER on a single tree before it causes energy depletion to occur.

It can be approximated given the average transmitter power setting and current

energy reserve level on each node along the path. Although the tier structure and

the overlapping trees are created based on di�erent ST and branching metrics, the

algorithm is essentially the same. Therefore, it makes sense to �rst present the

di�erent metrics used in both cases, and then present description of the algorithm

in general. In Table 3.1, we list some of the notation and de�nitions that will

be used throughout this chapter.

We also de�ne a function I such that:

I(A) =

8><
>:

1 A is true

1 A is false
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E the set of directed links

V the set of nodes in the network

(i; j) edge connecting i and j;

ni ST metric associated with node i;

li;j ST metric associated with the directed link from i to j;

H i
k = H i

k;a minimum hop-distance from k to a as registered in node i;

Hi = H i
i minimum hop-distance from i a;

Qi
k = Qi

k;a QoS metric from k to USER on tree a as registered in node i;

Qi = Qi
i QoS metric from i to USER on tree a;

Li
k = Li

k;a path capacity from k to USER on tree a as registered in node i;

Li = Li
i = Li;a path capacity from i to USER on tree a;

si = sia node i's successor on tree a;

Pi = Pi;a directed path from node i to USER, as implied by current chosen successor;

M i
k =M i

k;a ST metric of k on tree a as registered in node i;

Mi =Mi;a =M i
i;a ST metric from i to USER on tree a;

Bi
k = Bi

k;a Branching metric associated with k on tree a as computed by node i;

N i
l all nodes l-hop away from node i;

N i = N i
1

1-hop neighbor of i;

N�i set of \feasible\ neighbors of i. A neighbor, say j, is feasible if Bi
j <1;

Table 3.1: Notation & De�nitions

Tier Structure Computation

To apply the MST algorithm to create a tier structure, we initialize the ST metric

associated with node i to zero: ni = 0; 8i 2 V and the ST metric associated with

the directed link (i; j) to 1: li;j = 1; 8(i; j) 2 E. Then the ST metric, branching

metric, and successor selection will be triggerred from the root and computed

distributively. We note that at each node i, the ST metric represent its minimum
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hop distance from the root: Mi = Hi. The branching metric associated with j

computed by i is:

Bi
j =M i

j + li;j (3.1)

A node, say node i, will choose its successor:

si = j such that Bi
j = min

k2N i
fBi

kg (3.2)

Its ST metric will then be:

Mi =M i
si + li;si =M i

si + 1 (3.3)

Overlapping Tree Computation

To show how branch decisions are made for each overlapping tree, let us consider

the network shown in Figure 3.3, which shows two overlapping trees a and b.

Node i has n neighbors, N i = f1; 2; � � � ; ng, where node f1; 2; � � � ; mg belong to

tree a and node fk; � � � ; ng belong to tree b. In this case, ni and li;j are the QoS

metrics associated with node i and link (i; j), respectively. Then for node i, the

ST metrics associated with each neighbor on tree a and b are:

M i
j;a = Mj;a + li;j; j 2 f1; 2; � � � ; mg (3.4)

M i
j;b = Mj;b + li;j; j 2 fk; � � � ; ng (3.5)

Let p(i; j) by the average energy consumption per packet on link (i; j), and b(i)

be the battery reserve in node i at the time of the computation, then the path

capacity can be estimated by:

Lij;a = min

(
b(i)

p(i; j)
; Lj;a

)
; j 2 f1; 2; � � � ; mg (3.6)

Lij;b = min

(
b(i)

p(i; j)
; Lj;b

)
; j 2 fk; � � � ; ng (3.7)
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where Lj;a and Lj;b are the capacity estimates from node j to the root on tree a

and b, respectively.

On any given path, lower metric and higher path capacity are both desirable.

Therefore, we want both factors included in the branch metric. For this pur-

pose, a function � used to combine both considerations into a single quantity for

branching decision. In general, � should be non-decreasing with respect to the ST

metric and non-increasing with respect to the path capacity. In our algorithm,

we choose a simple form:

�(x; y) =
x

y + 1
(3.8)

and evaluate it for each neighbor of node i on each tree:

Bi
j;a = �(M i

j;a; L
i
j;a)I(Hi > Hj); j 2 f1; 2; � � � ; mg (3.9)

Bi
j;b = �(M i

j;b; L
i
j;b)I(Hi > Hj); j 2 fk; � � � ; ng (3.10)

The term I(Hi > Hj) is used to limit the tree size and can be turned into a �

relation, as described in Section 3.1.1. The successor and ST metric for node i

on tree a and b will be:

sia = j such that Bi
j;a = min

k2N i
fBi

k;ag (3.11)

sib = j such that Bi
j;b = min

k2N i
fBi

k;bg (3.12)

Mi;a = M i
sia;a

+ ni (3.13)

Mi;b = M i
si
b
;b + ni (3.14)

The path capacity for tree a and b between node i and the USER will be Lisia;a

and Li
si
b
;b
, respectively.
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Figure 3.3: Overlapping Trees: Selecting a Successor Node

3.1.3 Modi�ed Spanning Tree Algorithm (MST)

The modi�cation to the ST algorithm involves a hand-shaking procedure that

"enforces" ST metric consistency between any predecessor-successor pairs. For

tier computation, the ST metric is just the hop-distance; for the overlapping trees,

the ST metric is the QoS metric. During the operational lifetime of the network,

the MST process can be triggered by the root node many times to either create

new trees or reset ST metrics on an existing tree. We de�ne a computational epoch

to be the time duration between two successive MST procedures triggered from

the root. Each epoch represents a completely fresh new cycle, whose operation

will be independent of the result of the last epoch. Therefore, it is su�cient to
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describe the behavior of the MST during a single epoch.

The MST algorithm requires two bu�ers: (1) First-In-First-Out (FIFO) bu�er

to hold MST and data messages, and (2) Random Access Memory (RAM) bu�er

to hold ACK and NACK messages only. The network function can retrieve mes-

sages from either bu�ers, depending on its current state. The algorithm can op-

erate in one of two possible states: (1) ACTIVE state, during which both MST

messages and data messages are processed sequentially as they are retrieved from

the FIFO bu�er, and (2)WAIT state, during which a node attempts to establish

a new successor by sending a request message and waiting for either an ACK or

NACK message for a limited time duration. The ACK signi�es acknowledgement

and agreement to the proposed change by the new successor node, and NACK

or timer expiration will cancel the proposed successor change. In MST, there are

three basic message types:

1. ST Metric Update - Reports ST metric changes to neighboring nodes.

2. Link List Update - Reports topologicial changes to neighboring nodes.

3. Successor REQ, ACK, NACK - Signallingmessages used during the predecessor-

successor hand-shaking procedure.

and the basic entries in the routing table for each tree are:

� counter - An integer value set by the USER node after initiating a global

computation, used to distinguish a new computational epoch from the old.

� current time stamp - Time stamp value of the last MST message processed,

except Successor ACK, Successor NACK. It is used to �lter out old MST
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messages that carries outdated information regarding network state during

the current epoch.

� root - ID no. of the root node (the 1-hop neighbors of the USER). (default

= null.)

� successor - current successor node ID. (default = null.)

� state - ACTIVE or WAIT.

� current ST metric - current ST message as computed based on current suc-

cessor. (default = 1.)

� reported ST metric - list of the latest reported ST metric values for each

neighbor. (default = 1.)

� current neighbor list - list of neighbors and the latest reported link level

metric values associated with each neighbor.

A 
ow chart is given in �gure 3.4, and the following is a brief description of the

MST procedure:

� Step 0: Each sensor node will initialize all entries in the routing table to

their default values; each root node, as instructed by the USER, broadcasts

ST Metric Update to all neighbors to initiate a new computational epoch.

All nodes in ACTIVE mode.

� Step 1: Each node retrieves a MST message from the FIFO bu�er; if the

bu�er is empty, then wait. For each message retrieved, if it belongs to the

previous epoch or has an older time stamp then the last processed MST
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message, discard it and retrieve another; if it has a new counter value, then

reset routing table to the default values. This represents the beginning of

a new epoch at this node.

� Step 2: If a node received Successor REQ, then go to Step 7; if ST Metric Update

or Link List Update is received, it will update the routing table accordingly

and recompute the branching metric. If successor change is not required,

go to step 6.

� Step 3: A Successor REQ message is sent to the best \feasible\ succes-

sor candidate, then enters WAIT state for a Successor ACK or Succes-

sor NACK message from the RAM bu�er. If no \feasible\ candidate is

available go to step 5.

� Step 4: If Successor ACK is received before time out, set state:=ACTIVE,

update routing table, register new successor information, go to step 6; if

Time-Out or NACK is received, go to step 3.

� Step 5: Update successor:=null, state:=ACTIVE and set current ST metric:=

1.

� Step 6: Compute Current ST metric and if necessary broadcast new value

by sending ST Metric Update messages to all neighbors. Return to step 1.

� Step 7: If the neighbor sending successor REQ is the current successor

or the current ST metric is 1, then the request is denied, by a NACK to

prevent route table con
ict; otherwise request is granted by ACK. Return

to step 1.
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Figure 3.4: Procedure for Modi�ed Spanning Tree Algorithm

3.1.4 Proof of Convergence & Path Restoration for MST

In this section, we provide a proof of convergence for the MST using the branching

metric � described in Section 3.1.2. We will only consider the behavior of MST

within a single computational epoch. At any time t, a node will be in one of the

following three categories in relation to the root:

I. Topologically disconnected.

II. Topologically connected but has no valid route at time t according to its

routing table.

III. Topologically connected with valid route at time t.

Condition (I) usually occurs after long period of network operation, when energy

resource in its surrounding region is completely exhausted. Once a node falls
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into this category, it will be di�cult to restore connection by itself. One possi-

bility is to raise transmitter power in the hope of connecting with some distant

nodes. However, such e�ort is usually not feasible because those distant nodes

will also have to raise transmitter power in order to establish duplex connection.

The high energy consumption required and possible increase in co-channel in-

terference make such desperate e�orts less appealing. A more likely scenario is

when another batch of new nodes are deployed in the same region, thus restoring

network connectivity. However, as long as a node stays in category (I), it will

not participate in the multi-hop operation. Therefore our proof refers exclusively

to nodes in category (II) and (III) only.

General approach for the proof

We will prove the convergence property of MST by showing that if at time t = 0,

a node belongs to category (II) and that no further topological changes occur af-

ter time t = 0, then it will eventually enter and stay in category (III) after �nite

time. We start by proving a series of propositions that shows the handshaking

procedure used to establish each predecessor-successor pair will enforce ST metric

consistency. Therefore, the ST metric for any node in (II), as a function of time,

will be lower bounded by a monotone increasing sequence that converges to 1.

Using this fact in several lemmas, we can show that any node with neighbors

in category (III) will eventually select its successor exclusively from them, thus

become a permanent member in category (III) itself. We then apply the last

argument iteratively to show that any node in category (II) will be in category

(III) in �nite time. A node can be in category (II) for many reasons. It could that

at time t the spanning tree has not yet been built, or that a topological change
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occurs before t which caused its path to the root to become invalid temporarily.

In any case, our proof will show that as long as a \feasible\ path exists, the

MST algorithm will converge in �nite time. This proof shows both the conver-

gence of the MST when started at the beginning of an epoch and its ability to

automatically restore paths in �nite time after some failures occur.

Notations & De�nitions:

� G = (V;E) is a connected network that contains the root node r at time t.

� V is the set of \feasible\ nodes with non-zero but �nite energy resource.

� E is the set of \feasible\ edges with non-zero but �nite link metric.

� 8i; j 2 V , (i; j) 2 E implies there is an edge connecting i and j.

� Let r denote the root node of a spanning tree.

� If si = j, then the node j is the successor of node i.

� Let Ci(t); i = 1; 2; � � � represent mutually disjoint maximal connected sub-

graphs in G such that: 8 node j 2 Ci(t), the path de�ned by its successors:

fsj(t); ss
j

(t); ss
sj

(t); � � �g does not lead to r.

� Let C(t) be the union of all Ci(t) in G.

� Let M�(t) be the minimum ST metric in C(t), and if C(t) = ;, then

M�(t) =1.

� i�(t) is the node in C(t) having the minimum ST metric M�(t); if two

nodes have the lowest ST metric in C(t), then an arbitrary but �xed rule
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independent of the MST process and parameters are used to select i�(t).

Therefore, i�(t) is unique at all times.

� N(t1; t2) is the number of times i
� changes during (t1; t2].

� Ni(t1; t2) is the number of times i
� changes into i during (t1; t2].

� Nmax is the maximum number of neighbor for each node.

� lmin is the minimum link metric in E.

� tout is the time out for WAIT state.

� Cc is the complementary set of C in G.

� A node i becomes \permanently\ in Cc after time to if and only if 8t >

to; i 2 Cc(t).

Assumptions:

� The branching metrics and ST metrics are those described in Section 3.1.2.

� 8i; j 2 V and (i; j) 2 E; ni, lij(> 0), b(i), p(i; j) are assigned at the be-

ginning of a computational epoch and held constant by the MST algorithm

during that epoch.

� Time progression and delay account for only the processing of MST mes-

sages or idle periods; time consumed by data packet processing and trans-

missions incurred by the link level protocol are excluded.

� Examine only the behavior of MST during one computational epoch.

� Assumes each epoch has in�nity time duration.

46



� Assumes topological changes occurs before t = 0 created a non-empty C(t)

at t = 0, and not topological changes occurs after t = 0.

Proposition 3.1 If si(t) = j, then sj(t) 6= i.

Proof: Step 7 of MST algorithm prevents any two nodes from setting each other

as successors. See Section 3.1.3.

Proposition 3.2 If i 2 C(t); j 2 Cc(t), and (i; j) 2 E, then si(t) 6= j and

sj(t) 6= i.

Proof: We can prove by contradiction. Since j 2 Cc(t), if si(t) = j, then i has a

path to r which suggest i cannot be in C(t). Similarly, since i 2 C(t), if sj(t) = i,

then j has no path to r which implies j 2 C(t).

Proposition 3.3 If C(t) 6= ; and M�(t) < 1, then (i) i�(t) has successor

j 2 C(t), and (ii) there exists a routing table inconsistency: Mj(t) + li�j >

Mi�(t) =M�(t).

Proof: Again, we prove by contradiction. For (i), if i�(t) has no successor, step

5 of MST algorithm will set ST metric to 1. For (ii) if Mj(t) + li�j � Mi�(t) =

M�(t), thenMj(t) �Mi�(t)� li�j �M�(t), which contradicts the fact thatM�(t)

is the minimum ST metric in C(t).

Proposition 3.4 Let �t = toutNmax. If C(t) 6= ; and M�(t) < 1, then 9to 2

(t; t+�t] such that: (i) M�(to) �M�(t), (ii) let t1 be the �rst instance after to

that i�(t1) = i�(t), and if M�(t1) <1 and then M�(t1) �M�(t) + lmin, and (iii)

if M�(to) <1, then i�(t) 6= i�(to) .
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Proof: By Proposition 3.3, at time t, i� has a route table inconsistency. There-

fore, according to the MST algorithm, it must be either re-calculating the metric

or in WAIT state for successor acknowledgment. The ST metric for i� will not

change untill either (1) a new successor k is found, or (2) no successor candidate

is found among the neighbors. Both (1) and (2) must occur before t +�t.

Let to denote the earliest instant in (t; t +�t] when either (1) or (2) occurs.

For easy of argument, we prove (iii) �rst. Consider case (1), since node i�(t)

found a new successor at time to, then that new successor must have �nite ST

metric. This implies the minimum ST metric for C(to) must also be �nite. For

case (2) we show that the contrapositive of (iii) is true. Suppose i�(t) = i�(to)

and no successor is found, then at time to, the ST metric for node i�(t) is set

to 1. However, that would also imply the ST metric for i�(to) is 1 because

i�(t) = i�(to). This proves (iii).

By our selection of to, node i
�(to) must have ST metric greater than or equal

to that of i�(t) during time interval (t; to). If i�(to) changed ST metric during

(t; to], then it cannot become lower or equal than M�(t) because that would

suggest it has a neighbor whose ST metric is lower than M�(t) prior to time to

and contradicting the premise. In other words, Mi�(to)(�) � M�(t); � 2 (t; to],

and therefore M�(to) �M�(t). This proves (i).

To prove (ii), we consider both case (1) and (2):

� If (1) occurs, then si
�(t)(to) = k, and from (i) we know that:

Mi�(t)(to) = Mk(to) + li�(t)k

� M�(to) + lmin

� M�(t) + lmin (3.15)
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Since the ST metric for node i�(t) is �nite at time t1, then by (iii) we know

that during (t0; t1), node i
�(t) does not have the minimum ST metric in C.

Therefore the inequality in Eq 3.15 remains true for � 2 (t0; t1):

Mi�(t)(�) � M�(�) + lmin

� M�(to) + lmin

� M�(t) + lmin (3.16)

At t1, we know node i�(t)(= i�(t1)) again has the minimum ST metric.

According to proposition 3.3, a routing table inconsistency occurs at node

i�(t), and it will enter WAIT state until successor is either found or deter-

mined to be unavailable. Therefore the ST metric will stay the same. Thus

we have:

M�(t1) = Mi�(t1)(t1)

= Mi�(t)(t1)

= Mi�(t)(t
�
1 )

� M�(to) + lmin

� M�(t) + lmin

� If (2) occurs, thenMi�(t)(to) =1, so that Eq 3.15 obviously holds. Regard-

less of whether a new successor is found during (t0; t1), Eq 3.16 also holds,

therefore, we will reach the same conclusion about M� at time t1.

This proves (ii).

Proposition 3.5 Given C(t2) 6= ; for t2 > t1 � 0, then 9i 2 C(t2) such that

Ni(t1; t2) �
N(t1;t2)
jV j

.
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Proof: (By contradiction) Suppose 8i 2 C(t2); Ni(t1; t2) <
N(t1;t2)
jV j

, then

N(t1; t2) =
X
i2V

Ni(t1; t2) <
X
i2V

N(t1; t2)

jV j
= N(t1; t2)

.

Remark: Up to this point, we have shown some of the basic properties of the set

C(t). Especially important is Proposition 3.4, which provides three key insights.

� The minimum ST metric in C, M�(t), if �nite, will increase by at least lmin

each time i�(t) visits the same node.

� If M�(t) remain �nite is still �nite, then i�(t) will change its identity at

least once during any time period of length �t.

� M�(t) is non-decreasing as a function of t.

The next series of Lemmas will show that M� converges to 1, which will force

all nodes in C to �nd a feasible path to r.

Lemma 3.1 limt!1M�(t) =1.

Proof: It is su�cient to show that 8� > 0; 9to > 0 such that 8t > to;M
�(t) > �.

Let us choose to = jV j�t �

lmin
, then there are three possible cases:

Case 1: (C(to) = ;) Since M�(to) = 1 by de�nition, then M�(t) = 1 > �,

8t > to since M
� is non-decreasing.

Case 2: (C(to) 6= ; and M�(to) =1) Essentially the same situation as Case 1.

Case 3: (C(to) 6= ; and M�(to) <1) If at time to, M
� is still �nite, based on

its non-decreasing property, we conclude that it must be �nite prior to
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to as well. In other words, M�(t) < 1; 8t � to. Using this fact and

proposition 3.4(iii), we see that i� must change identity at least once within

any duration of length �t. Therefore we have

N(0; to) �
to
�t

=
�jV j

lmin

By proposition 3.5, we choose i 2 C(to) such that

Ni(0; to) �
N(0; to)

jV j
�

�

lmin

Let us now de�ne a sequence of real numbers fT1; T2; T3; � � � ; TNi(0;to)g to

designate the times that i� makes a transition to i. Then by proposition

3.4(ii), the following inequalities are true:

M�(TNi(0;to)) � M�(TNi(0;to)�1) + lmin

� M�(TNi(0;to)�2) + 2lmin

� M�(T1)| {z }
>lmin

+(Ni(0; to)� 1)lmin

> Ni(0; to)lmin

�
�

lmin

lmin

= �

Again by the non-decreasing property of M�, we have

M�(�) �M�(to) �M�(TNi(0;to)) > �; 8� > to

This proves Lemma 3.1.

Lemma 3.2 Once a node, say, i is \permanently\ in Cc after t0, then Mi(t) is

bounded above by a �nite number for t > t0.
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Proof: Since i is in Cc after t0, a feasible path to the root will be maintained by

MST for at all times after t0. The longest possible path that can be found and

maintained by MST for i will have less than jEj links and jV j nodes. Assume

that this extreme case occurs, such path still has �nite length, the ST metric will

be a �nite sum and therefore bounded.

Remark: The reason that a node in C does not have bounded ST metric is

because its successor selection cannot lead to the root. Therefore any path inside

C is invalid in that it will either form a loop, or terminate at some node with

in�nity ST metric. In both cases, no upper bound on ST metric can be found.

Lemma 3.3 For overlapping trees, the capacity estimate at any node will be

bounded above and below by a �nite number during each computational epoch.

Proof: Since the MST algorithm will not change b(i) and p(i; j) for any i and

j after an epoch begins, and they are both non-zero �nite numbers, then the

following inequality holds for any i 2 V :

Lupper =
maxi2V b(i)

min(i;j)2E p(i; j)
� Li �

mini2V b(i)

max(i;j)2E p(i; j)
= Llower > 0

Lemma 3.4 If i 2 V has a neighbor j that is \permanently\ in Cc after time t0,

then eventually, i will also be \permanently\ in Cc.

Proof: Since j is permanently in Cc. Let M̂j be the upperbound on its ST metric

in Cc.

� (Tier structure case:) The ST metric is the same as the branching metric

in this case, and the link metric is always 1. By Lemma 3.1, 9to such that

M�(to) > M̂j + 1. Since M� is non-decreasing in time, M�(t) will always
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be greater than M̂j + lmax for t > to. Therefore the branching decision in

node i will never select any node in C(t) as successor over j after time to

because node j is always a better choice than those neighbors in C(t). So

we have si(t) 2 Cc(t); 8t > to, and i will be permanently in Cc.

� (Overlapping tree case:) By Lemma 3.1, 9to such that:

M�(to) > (Lmax + 1)
M̂j + lmax

Lmin + 1
� lmin| {z }

constant

M�(to) + lmin

Lmax + 1
>

M̂j + lmax

Lmin + 1

�(M�(to) + lmin; Lmax) > �(M̂j + lmax; Lmin)

where � is de�ned in Equation 3.8. Now recalled the de�nition of branching

metric B, we have:

min
k2C(t)

Bi
k(t) � �(M�(to) + lmin; Lmax)

> �(M̂j + lmax; Lmin)

� max
l2Cc(t)

Bi
l (t) 8t � to

Since for t � to, branching metric to any neighbor in C will be higher than

those in Cc, successor si(t) cannot belong to C after to. Therefore i is

permanently in Cc after to.

This proves Lemma 3.4.

We now have all the necessary facts to prove MST convergence.

Theorem 3.1 If at any time t, C(t) 6= ;, then C will be empty in �nite time

given no further topological changes occur after t.
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Proof: At any time t, the root node will be permanently in Cc. By Lemma

3.4, the 1-hop neighbor of root will be permanently in Cc in �nite time. Then

applying the same argument repeatedly, we can show that, the 2-hop, 3-hop, up

to d-hop neighborhood will be permanently in Cc in �nite time, where d is the

diameter of the network. Since the network has �nite size and therefore �nite

diameter, it takes �nite time to cover all nodes in V . This proves the convergence

of MST.

Further Remarks on the Proof

In any network, the set C(t) represents those nodes that, although still belonging

to the same connected graph as the root node, do not have a valid (i.e., �nite

metric) path to the root node at time t according its routing table. C(t) can be

non-empty under two conditions: (1) when the spanning tree is not completely

built, or (2) after link or node failures occur.

In either case, we have proved that the MST algorithm can complete the

tree building procedure and restore existing trees in �nite time. However, we

have also made two key assumptions: (1) each epoch has in�nte duration and (2)

topological changes do not occur after time t = 0. We would like to give a few

remarks to show that these assumptions do not hinder the e�ectiveness of MST

in realistic applications.

Each epoch has in�nite time duration - This assumption e�ectively means

that each computational epoch will last su�ciently long for convergence to

take place, and simulation study has con�rmed that this is almost always

the case. Although it is possible that path restoration procedure tiggerred

by topological changes at the very end of the current epoch may not have
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enough time for convergence, the start of the next epoch will ensure that

a set of valid routes are generated in �nite time. Therefore in reality, the

�nite duration of each epoch will not a�ect MST convergence.

No topological changes occur after t = 0 - This assumption simply shifts

the time axis so that we only examine the behavior of MST when net-

work topology, perhaps after a rapid succession of changes, becomes stable

for a su�ciently long period of time that convergence can take place. This

is actually a reasonable assumption because during simulation trials, the

observed rate of convergence for MST is always much faster than the rate

of topological changes which is primarily the result of energy depletion. If

the rate of topological changes is very high, it is usually due to mobility. In

those cases a demand-driven protocol would have been used instead of the

MST.

One will also notice that although the MST is convergent for both tier struc-

ture and overlapping tree calculations, the latter is dependent on the former

because the branching metric for each overlapping tree uses the hop distance

provided by the tier structure. There are two methods we can use to make sure

that the overlapping trees are built after a valid tier structure is in place:

Delay - At the beginning of an epoch, or immediately after topological changes,

each node will carry out each step of MST with a small time delay imposed

on the overlapping tree calculation so that it will occur after all necessary

tier computations are completed. In simulation experiments, we see that

the delay required to separate out these two calculations is rather small,

roughly that which is required to relay packets for three or four hops.

55



Bu�er Management - As a safeguard, a bu�er management scheme can be

used so that when MST messages are retrieved from the FIFO bu�er, pri-

ority can be given to tier structure computation packets over those for the

overlapping tree.

In our simulations, we implemented su�cient delay and checked for the existence

of tier structure before computing overlapping trees. No compromise to MST

convergence was observed.

3.1.5 Network Failure and Loop Prevention

When a su�cient number of node or link failures occur, the network can become

fragmented into mutually disjoint clusters that may or may not be connected

with the USER. Although these isolated nodes are temporarily separated from

the USER, they can still perform important sensing functions either as individual

nodes or in a cooperative fashion and report their �ndings after re-establishing

connection with the rest of the network. Therefore it is important to take a look

at the energy consumption incurred by the MST in these isolated clusters.

When a cluster is disconnected from the USER topologically, the MST algo-

rithm will try to restore a path to the USER. However, the convergence of MST

is based on the premise that a node is still topologically connected to its root (a

1-hop neighbor of the USER), and this is a form of global information that can-

not be determined locally. In other words, short of gathering the topological data

for the entire network, as a link state algorithm would do, most sensors will not

be able to determine with certainty whether any feasible path to the root exists.

However, within an isolated cluster, each node will typically observe signi�cant
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ST metric increase in short period of time. These increases are caused by metric

updates occuring inside the cluster as each node tries to �nd a new route to the

root node, and since no valid path can be found, the ST metric has no choice but

to increase until reaching in�nity. This is clearly predicted by Lemma 3.1, where

we showed that M�(t)!1 as t!1.

The rate at which the ST metric reaches in�nity will determine how soon the

path-restoration e�ort will stop and therefore how much energy will be consumed.

One way the ST metric can reach in�nity quickly is when it has no neighbor or

all neighbors have reported in�nite ST metric. The likelihood of this happening

will depend on the internal topology of the cluster and many other factors. There

is also the possibility that the propagation of ST Metric Update messages will be

trapped in a loop. In this case the ST metric will increase by a �nite amount

each time the ST Metric Update message goes around the loop. Such a loop can

stay intact for a prolonged period of time, draining signi�cant energy resources

on radio transmissions.

One can see that the key to increase the rate of converge to in�nity is to either

prevent or break up loop formations that would have otherwise stayed intact for

a long time. In [19], loops are prevented by suppressing all path restoration

attempts on the local level. Whenever a link failure occurs, the root node will

be noti�ed and a new computation epoch will begin. This means every failure

will require a global recomputation, a high energy cost procedure itself. Instead,

we allow local recovery to take place but only try to detect loop formations

by setting a threshold value on the ST metric. Any time the ST metric goes

above this threshold, the MST algorithm will stop, declare in�nity metric to its

neighbors, and only resume operation when a neighboring node presents a path
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with ST metric lower than the threshold.

By adding a threshold value on ST metric, each node can reach in�nite metric

much more easily. This will raise the rate of convergence forM�(t) toward in�nity.

Beside the obvious bene�t of stopping MST quickly when no valid path exists,

it is also helpful to the rate of convergence when a valid path does exist because

the faster M�(t) reaches in�nity, the faster a node will be \permanent\ in set

C�(t).(See Lemma 3.4)

3.2 Sequential Assignment Routing (SAR) Al-

gorithm

For most networks, a minimum QoS metric routing approach is usually the �rst

choice to consider. It is a simple greedy algorithm based on the principle: Use the

optimal path whenever it is available. Under most circumstances, it generalizes

quite well into global strategies that have fairly good performance. Furthermore,

if the optimal path is guaranteed to be available at all times, then the greedy

principle becomes a globally optimal strategy. Once such an optimal path is

found, it can be used forever.

However, in sensor network applications, any path can only operate for a

limited time depending on the availability of energy resources, and the more

a path is used, the less capacity is available to serve future demand. Under

such conditions, the greedy principle will not generalize well unless each packet

is treated the same and the best service is provided on a �rst-come-�rst-serve

basis. For sensor networks, however, packets with di�erent payloads have di�erent

requirements, and preferences should be given to those with higher priorities. To
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Figure 3.5: Single Source Ideal Scenario

assign the limited energy resources on paths with di�erent QoS to a random set

of service requests, a �rst-come-�rst-serve approach is no longer e�cient. On

close inspection, the sensor routing problem is very closely related to a sequential

stochastic assignment problem.

3.2.1 Ideal Scenario: Single source, disjoint paths

In the ideal environment, we have a fully disjoint multi-path network and know

the exact sequence of packets that we need to route ahead of time. Suppose

in response to events detected, a sequence of packets is generated by node a,

which has unlimited energy, with priority fXn(!) = xn; n = 1; 2; 3 : : :g for some

! 2 
. Assume node a belongs to m trees providing m disjoint paths such

that the maximum number of packets it can route is N(m) =
Pm

j=1 La;j. Let pi

represent the tree selected by the SAR for the ith packet. LetW (x) be the weight
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coe�cient associated with priority x, which scales the QoS metric. If there is no

other tra�c on the network, then node a will exhaust the energy resource on

each path by routing N(m) packets to the USER. For performance evaluation,

we de�ne the average weighted metric to be:

�M =
N(m)X
i=1

W (xi)Ma;pi (3.17)

We can interpret the quantity, �M , as the average QoS that is provided to each

packet relative to its priority level. To maintain the same average weighted QoS,

or �M , high priority packets should be given better QoS then lower priority

packets. The weight coe�cient W (xi) scales the contribution each packet made

to �M , giving high priority packets signi�cant in
uence over the lower priority

packets. Since higher metric represents lower QoS, the SAR algorithm will make

routing decisions with the goal of minimizing �M . Let us now de�ne a resource

matrix:

r =

2
64 r1

r2

3
75 (3.18)

=

2
6664
Ma;1 : : :Ma;1 Ma;2 : : :Ma;2 : : : Ma;m : : :Ma;m

1 : : : : : : 1| {z }
LA;1

2 : : : : : : 2| {z }
LA;2

: : : m : : : : : : m| {z }
LA;m

3
7775 (3.19)

Each column of r represents the capacity to route one packet from node a to

USER. Note that 8i; r1;i is the metric value associated with r2;i, the tree ID

number. To map the tree selection pi to its corresponding column index in the

resource metric r, we de�ne: qi be any permutation of f1; 2; 3; : : : ; N(m)g such

that N(pi�1) � qi � N(pi). Then Eq (3.17) is equivalent to:

�M =
N(m)X
i=1

W (xi)r1;qi (3.20)
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The optimal algorithm will minimize the quantity in Eq (3.20). Without loss

of generality, assume the sequence fW (x1);W (x2); : : : ;W (xNm)g is in ascending

order. Lemma 7.1 tells us that to minimize the product sum of two vectors,

one should be sorted in ascending order, the other in descending order. This

is proved in Appendix A by mapping the product sum into a Gilmore-Gomory

matching problem [2]. Therefore, we know that �M is minimized by �nding a

sequence q�i such that r1;q�i is in descending order. The corresponding optimal

tree assignment will be p�i = r2;q�
i
.

In the simplest terms, to minimize the average weighted metric, the higher

the priority, the better the path that is assigned, and the lower the priority, the

lower the QoS that will be provided, even when high QoS paths are available. In

the ideal situation, when the capacity and QoS for each path and the priorities

of the entire sequence of packets are known, optimal assignment can be achieved.

3.2.2 Real Time Implementation

However, in practical situations, paths are not necessarily disjoint because the

overlapping tree structure has relaxed the disjointness requirement in the interest

of energy e�ciency. Also, tra�c can be generated from multiple regions inside the

network, not just from a single location. Consequently, parameters for di�erent

paths usually interact in a way that cannot be tracked locally. For example, if

two trees share a common node, it is very likely that this node will have higher

loading because it has to relay tra�c from both trees. This is not observable to

most upstream nodes in both trees, so their capacity estimates tends to be more

optimistic. Although each node can use a linear projections on the local tra�c

to predict the path capacities available in the future, correction must be made to
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keep these local estimates accurate.

The most accurate method of keeping accurate path capacity is to report down

stream tra�c activities to the upstream nodes. There are several possible ways

to accomplish this: (1) piggybacking energy information on the USER-to-sensor

tra�c or (2) periodic recomputation of capacity estimates.

The �rst method looks promising because the potential energy saving can be

signi�cant, but its feasibility will depend on the frequency of user-to-sensor tra�c

and whether the packet size is �xed or 
exible. Since user-to-sensor tra�c usually

consists of small packets, if the packet size has to increase to accommodate the

additional information, then the overall packet size will have to increase. The

receiver will have to turn on its radio for longer time to listen for these additional

information. Also the user-to-sensor tra�c may be sporadic and covers only a

small subset of nodes, and the results maybe unpredictable results.

Therefore it is safer to make no assumptions on the frequency of USER-to-

sensor tra�c and track the network state primarily by explicit periodic updates.

The hope is that since the underlying structure is multipath, enough tra�c bal-

ance occurs that errors in capacity estimates will not signi�cantly impact the

routing decisions. If this is true, then these periodic updates can be less fre-

quent.

In real time implementation, routing decisions must be made on a packet-by-

packet basis, without the opportunity to observe the full sequence. The decision

process of matching arriving packet Xn to a �nite set of resources are made

based on predictions of the statistics of future tra�c according to the observa-

tion ofW (xi) in the past. Such predictive decisions are similar to the sequential
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stochastic assignment policy described in [31], in which a set of positive num-

bers p1; p2; : : : ; pn is assigned to another sequence of positive iid random variables

X1; X2; : : : ; Xn whose CDF is GX(z), in a sequential manner under an optimal

strategy that maximizes the expected value of the product sum, E
hPn

j=1 pijXj

i
.

The optimal policy is as follows:

For each n � 1, there exist numbers

�1 = a0;n � a1;n � a2;n � : : : � an;n = +1

such that when ever there are n stages to go and p1 � p2 � : : : � pn

then the optimal choice in the initial stage is to use pi if the random

variable X1 is contained in the interval (ai�1;n; ai;n]. The ai;n depend

on GX but are independent of the p's. De�ne a0;n = �1; an;n = +1.

Then:

ai;n+1 =
Z ai;n

ai�1;n

zdGx(z) + ai�1;nG(ai�1;n) + ai;n[1�G(ai;n)] (3.21)

for i = 1; 2; : : : ; n, where �1 � 0 and 1 � 0 are de�ned to be 0.

Although the optimal strategy is for a maximization problem, it can be shown

that it is also the optimal strategy for the minimization problem through a linear

mapping. Again, let p1 � p2 � : : : � pn be a set of positive number that

needs to be assigned in sequential order to a sequence of positive iid random

variables: �X1; �X2; : : : ; �Xn. Since n is �nite, let �Xmax = maxf �X1; �X2; : : : ; �Xng,

then we know that there exists positive sequence X1; X2; : : : ; Xn such that 8j � n,

�Xj = �Xmax �Xj. Let ij be the index of the p's assigned to the jth �X, then

E

2
4 nX
j=1

pij �Xj

3
5 = �Xmax

nX
j=1

pij| {z }
constant

�E

2
4 nX
j=1

pijXj

3
5 (3.22)
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To minimize the left side of Eq (3.22), we can apply the optimal policy for the

maximization problem to Xj's, whose distribution can be easily translated from

that of the �Xj's. Therefore the basic approach is the same except that we have

to note the proper sign and index reversal.

However, the direct application of the optimal strategy is still di�cult for

several reasons. First of all, the calculation of fai;n; i = 1; 2; : : : ; ng must start

from n = 1 and progressively increase up to the maximum, say N . This re-

quires repeated computation of an integral and the memory capacity to hold

approximately N2=2 real numbers. As complex as it already is, by removing

the independent assumption on the Xn's, as shown in [32], the calculation of

fai;n; i = 1; 2; : : : ; n; n � Ng will become that for the optimal stopping problem

of �nding the k largest values from X1; X2; : : : ; XN for k = 1; 2; : : : ; N . Either

way, the processing and memory requirements are too high.

The alternative is to examine what are the functions of the set fai;n; i =

1; 2; : : : ; ng and try to develop a simpler approach to calculate them. The a(i; n)'s

are a set of numbers that partition the real number into n intervals, and when

an observed Xj falls into the i interval, it is then assigned to the ith highest

value in the sequence p1; p2; : : : ; pn. Comparing this to the optimal policy in the

ideal scenario described in Section 3.2.1, where the path with the ith highest

metric value is assigned to a packet with the ith lowest priority, we can see that

fai;n; i = 1; 2; : : : ; ng is simply used as a ranking predictor on the observed Xj.

In order to avoid the overhead required by the optimal policy, we need to

construct a simpler predictor on the ranking of the priority of the arrival packets.

To construct such a predictor, assume that W = fWi = W (Xi); i = 1; 2; � � � ; ng

is a sequence of iid random variables with CDF FW (w). The basic concept in
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relative frequency tells us that the number of observations out of n realizations

ofWj's that falls inside the interval
�
�1; F�1

W ( i�1
n
)
i
can be approximated, when n

is large, by n�FW (F�1
W ( i�1

n
) = n� i�1

n
= i�1, and that for

�
F�1
W ( i

n
);+1

�
it is n�i.

Thus, if Wj is observed in the interval
�
F�1
W ( i�1

n
); F�1

W ( i
n
)
i
then the magnitude of

Wj should be close to the ith largest value in fW1;W2; : : : ;Wng. This predictor

is suboptimal in the sense that it is only good under large n, but very simple to

compute. Using this predictor, we propose the following suboptimal policy:

For any node, say a, assume, without loss of generality, thatMa;1 �

Ma;2 � : : : � Ma;m, so that r2;j's are also in descending order. If by

the best estimate, the network is determined to have resource capac-

ity to route total of n packets and wi 2 (F�1
W ( j�1

n
); F�1

W ( j
n
)], where

1 � j � n, then the path assignment will be r1;j with QoS metric

value of r2;j.

3.3 Simulation Results

We simulate a randomly deployed sensor network with one USER and 37 sensor

nodes. Its topology is shown in Figure 3.6. Each edge represents a bidirectional

communication link. Node 15 is detached from the rest of the network. Node

1 is the USER. Assume network tra�c is generated by the subgroup consisting

of nodes f37,10,17,21,27g, which detects some events in the southwest corner.

Each node has equal probability of generating packets, and each packet has three

possible priority settings, flow,medium,highg. In our simulation test, 30% of the

packets are low priority packets, representing house keeping messages, such as

status report, maintenance command, or synchronization packets.
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Figure 3.6: Simulated Network Topology

3.3.1 Average Weighted Metric & Capacity

Each link is assigned with one of two possible metric values to re
ect di�erent

performance levels under general criteria. For the network simulated, a "good

zone" is de�ned that includes nodes f36,30,12,0,28,7,3,26g. For each link that

terminated in this zone, the metric is set to 0, for links that terminate outside this

zone, the metric is 30. Radios are assumed to operate at �xed power level and the

per packet energy consumption is 10 energy units. Each node has metric of 1:0

and an identical power source with 106 units of energy. Global metric recomputa-

tion is initiated by the USER after every 5000 sensor packets were received. This

is a relatively long interval compared to the average radio transmission capacity

on each node, which is no more than 105 packets.

In our simulation, we focus on how SAR performs under di�erent high priority

tra�c settings. There are two major tra�c parameters: ph, the probability that

a packet generated is high priority, and wh, the weight coe�cient assigned to it.
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Figure 3.7: Average Weighted Metric & Wh

Higher ph means more high priority packets will be sent through the system, and

their contribution to the average weighted metric will be signi�cant. If a high

priority packet is generated at node i and travels on a path with ST metric Mi,

then it contributes Miwh to the total weighted metric sum. Higher wh raises

the impact each high priority packet has on the average weighted metric. In our

simulation, the average weighted metric �M is compared between the SAR and

the minimum metric algorithm, under di�erent ph and wh values.

In Figure 3.7, wh is between 5 and 100. For the top two curves, ph is 0.4; for

the bottom two curves, ph = 0:1. As expected, in both cases, average per packet

metric increases with wh. When ph = 0:4, SAR provides 34 to 39% reduction in

average metric; when ph = 0:1, 33 to 44% reduction can be achieved.

In Figure 3.8, the same comparison is made for ph 2 [0:05; 0:4]. As expected,

the average weighted metric increases when more high priority packets are gener-

ated. For wh = 50, SAR is 38% to 40% better than minimummetric; for wh = 10,
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Figure 3.8: Average Weighted Metric & Ph

SAR is about 37.5% better. For both SAR and minimum metric, the metric val-

ues grow roughly linearly with ph and wh. The SAR algorithm is able to produce

a lower metric value because it preserves better paths by limiting their usage,

thus making them available for priority packets, which is more important to the

overall system performance. On the other hand, the minimum metric algorithm

makes no such distinction based on priorities. It assigns many low and medium

priority packets to the best path, which degrades the performance in the long

run. Frequent recomputation can signi�cantly reduce network capacity. Fig-

ure 3.9 shows that for both algorithms, the average network capacity takes a 20%

loss when the frequency of recomputation increases by one order of magnitude.

3.3.2 Sensitivity Study

The performance of any algorithm depends heavily on the validity of its input

parameters. Input errors will generally lead to output errors to some degree.
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Figure 3.9: Network Capacity & Epoch Duration

The \sensitivity\ of an algorithm can be understood in terms of how detrimen-

tal input error will be to the output. Over-estimation or under-estimation on

either the QoS or capacity metric will cause tra�c imbalance and a�ect the av-

erage weighted QoS. The primary function of a global re-computation is to reset

algorithm parameters based on the current condition of the network, and keep

the routing tables on track. The period between two successive recomputations

is called an epoch, and it is during this period that the network goes through

changes that the algorithm is not aware of. The deviation of these parameters

from the actual state of the network is the reason for performance degradation.

In our simulation study, we look at the e�ect of (1) capacity estimate error and

(2) channel metric error separately.

In SAR, path capacity is computed during the tree building process. Although

it can be updated later on during a path restoration procedure, it only re
ects
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Figure 3.10: Average Weighted Metric & Epoch Duration

local changes. Therefore, it is of considerable interest to see how much degrada-

tion is possible when the number of recomputations is reduced. In general, metric

recomputation is triggered by the USER. Therefore a natural criterion used to

determine the length of each epoch is the number of packets a USER receives

during that epoch. Furthermore, since other energy consuming activities are not

simulated in our study, this criterion can provide an accurate measure of capacity

change during each epoch.

To study the e�ect of energy capacity error, three di�erent tra�c settings

under �xed link metrics are used. We change the duration of a computational

epoch and compare average weighted metrics �M for SAR and minimum metric.

Figure 3.10 shows the simulation results. The two curves on top have ph = 0:4

and wh = 50. No signi�cant change in �M is observed for the minimum metric

algorithm. However, SAR algorithm su�ers a 20% increase when recomputations
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are more frequent, which is not what we expected. A possible explanation is

that when recomputation is more frequent, communication overhead will increase,

resulting in a signi�cant reduction in energy resource available to high priority

tra�c. The minimum metric algorithm makes no such distinction, therefore it

has less sensitivity as well. The other two pairs of curves, for ph = 0:1 and

wh = 60 and wh = 1, showed no observable metric increase because at ph = 0:1,

high priority packets have less impact on the average metric. Overall, it seems

that both SAR and minimum metric algorithm have fairly low sensitivity to error

in capacity estimates.

To examine the sensitivity to link metric accuracy, we simulate the same

network under �xed epoch duration and dynamic channel metrics. The radio

channel is allowed to change, after the initial route computation, among three

states: fgood, average, poorg with metric value of 1, 30 and 60, respectively.

Each link is allowed to make a transition from its current state to one of the

other two states with probability: p

2
whenever a packet is routed through it. The

higher the value of p, the less accurate the metric estimates in the routing table

will be. We compared the performance of both algorithms under two di�erent

settings: ph = 0:1, and ph = 0:3 under wh = 10 and allow p to vary from 1% to

50%. The result is summarized in Table 3.2.

For smaller p, the gap between the average weighted metric is large, with the

minimum metric algorithm producing approximately 31% to 37% higher metric

than SAR. But with increased p, the gap shrinks considerably to somewhere be-

tween 3:5% to 8:6%. The change is expected if one considers the fact that the

more the channel changes, the more random the routing decisions will become.
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Thus both algorithms approach a random decision scheme. The alternative solu-

tion is to dynamically track the channel state and update the routing table more

frequently, but any gain we may obtain could easily be o�set by the unavoidable

high overhead required by such an operation.

p: channel metric transition probability

ph = 0:1; wh = 10

p 0.01 0.02 0.05 0.1 0.2 0.5

Min Metric 173 180.02 185.53 205.45 219.48 266.4

SAR 132.22 135 140.41 151.4 181.37 245.6

Reduction % 24% 25% 24% 26% 17% 8%

ph = 0:3; wh = 10

Min Metric 354 360 367.2 401.5 436.89 536.2

SAR 258.6 257.92 282.8 331.65 359.9 518.4

Reduction % 27% 28% 23% 17% 18% 3%

Table 3.2: Average Weighted Metric & p

3.4 Summary

In this chapter, we presented a sensor network routing algorithm designed to pro-

vide multihop priority routing service between individual sensors and a USER

node, under signi�cant energy limitation. The underlying network structure

is multi-path, generated by multiple overlapping spanning trees rooted at the

72



USER. The network construction uses a Modi�ed Spanning Tree (MST) algo-

rithm that is guaranteed to converge to a feasible solution and provide automatic

path restoration. On top of this multi-path structure, we apply a Sequential

Assignment Routing (SAR) algorithm that dynamically adapts to network con-

dition to make route assignments based on a combined consideration of the packet

priority and the QoS and capacity on each path.
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Chapter 4

Adaptive Local Routing for

Non-Coherent Cooperative

Functions

To increase the signal processing capabilities, a group of sensors can form a local

network to collect, exchange, and analyze sensor data in a cooperative fashion.

Such cooperative signal processing techniques can reduce the probability of false

alarm, estimate signal source location and enhance overall SNR [22]. The creation

and operation of such local networks must be supported by a set of network

functions that facilitate the necessary internodal signaling and data transfer.

In contrast to the multihop routing functions required for global data collection,

cooperative functions usually involve a small set of nodes near the target location

and operate for a relatively short time span. They need to adapt temporally

and spatially to the pattern of target appearances and the nature of the signal

processing techniques used. Although the multihop functions are also adaptive,
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one key distinction is that while it adapts to the tra�c pattern over time, local

network adapts a priori, by generating paths based on tra�c loading declared by

participating sensors before the formation process begins.

4.1 Overview and Assumptions

Cooperative functions can extract valuable target information that individual

sensor cannot obtain. The decision to form a local network and engage in a

particular cooperative function can be made by a remote USER after receiving a

target detection report or by a built-in algorithm in each sensor when pre-de�ned

conditions are met. In any case, we assume that a high level algorithm or outside

agent will determine what cooperative function is needed and trigger the network

formation process. We assume the sensor network is connected, and a link level

channel access control algorithm provides contention-free point-to-point duplex

communications between any \connected\ pair of nodes.

In an energy constrained network, a point-to-point protocol has the attractive

feature of not requiring the radio to stay on for long duration in \listening mode.\

This allows the network to run at very low duty-cycle and extends the operational

life of the network. Also, we assume that the packet loss probability is su�ciently

low on each link so that the energy consumption is linearly proportional to the

number of successful transmissions. The term \local network\ refers speci�cally

to any connected subnetwork consisting of sensors that detect a common target,

and we may sometimes simply refer to it as the \network\ to reduce verbiage.

Before describing the network formation algorithm in detail, a few remarks on the

basic categories of environmental stimuli and cooperative functions are warranted.
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4.1.1 Target & Cooperative Function Categories

In general, environmental stimuli can be separated into two major categories: (1)

near-�eld (NF) and (2) far-�eld (FF). Near-�eld stimuli have short range relative

to the baseline width of sensor groups within detectable distance. Accurate lo-

calization and identi�cation are possible if the target is located inside the convex

hull of the network. Depending on its signal strength, the number of sensors that

can detect its presence varies greatly. We can model the SNR at each sensor by

an inverse relationship to some power of the distance because propagation loss is

dominated by the line-of-sight component. However, more sophisticated models

will have to take other factors into account. For example, for accoustic sensors,

wind, microphone height, and physical orientation of the microphone will have a

signi�cant e�ect on the SNR of the data. It is also possible that a NF target will

see reverberance due to the accoustic structure of the surrounding environment.

Another major di�culty is the SNR degradation caused by low-pass �ltering of

the transmission medium. Nonetheless we can still expect the best data to be

gathered by sensors that are closer to the target.

Far-�eld targets are located at much farther distance relative to the baseline

width of the network. For these targets, source localization and range estimation

can be di�cult. Due to their physical distance from the network, seismic or

accoustic signal propagation may have a strong multipath component. Therefore

the SNR measured at each sensor can no longer be accurately modeled by a

simple inverse relation the physical distance. Instead, a Raleigh random variable

will be used to capture the multi-path e�ect.

There are two types of cooperative signal processing techniques: (1) non-

coherent and (2) coherent. For non-coherent processing such as data fusion, raw
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Figure 4.1: Target and Local Network

sensor data will be preprocessed at each node to extract a small set of parame-

ters to be forwarded to a central node (CN) for further processing; for coherent

processing like beam-forming, raw sensor data, after minimal pre-processing, will

be tagged with a time stamp and uploaded through the local network to the CN

for more intensive computations. The key di�erence is that coherent processing

will generate a much higher tra�c load in the local network compared to the

non-coherent case. One particularly important case for protocol design is when a

target with very strong signal strength is present. In this case, the entire sensor

network may be awakened, and there is a potential that too much network re-

sources will be spent on a single target when coherent processing is used. In the

interest of energy e�ciency, the number of participating sensors must be limited
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as a safeguard.

Although energy e�ciency is the ultimate goal, di�erent approaches can be

used for di�erent cooperative functions. As we mentioned before, non-coherent

functions generate light data tra�c loading. Therefore energy e�ciency cannot

be won through generating minimum energy paths, rather, algorithmic e�ciency

should be emphsized. There are two approaches by which algorithmic e�ciency

can be raised:

1. Reduce signalling overhead (number of transmissions), and

2. Reduce average energy consumption for each signaling message.

To reduce energy consumption for each signaling message will require the con-

struction of a low-energy signaling network, which may further complicate the

algorithm and raise the overhead. The additional complexity required may wipe

out any gain achieved. Besides raising overhead, a separate signaling network

will not do much good if an energy conserving protocol is already used on the

link level. In such a case, the network will be operating on top of a set of en-

ergy e�cient links which will serve both the signaling and data communication

needs. For these reasons, we will attempt to achieve energy e�ciency mainly

through overhead reduction and from time to time, use the terms "e�ciency,"

"overhead e�ciency," and "energy e�ciency" almost interchangeably throughout

this chapter.

On the other hand, the coherent cooperative function requires much higher

data tra�c, and energy e�ciency must be achieved by path optimality and not

algorithmic simplicity. Therefore, energy consumption on each link as well as

the data tra�c loading generated by each participating sensor must be explicitly
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accounted for to produce a set of minimum energy paths for data transfer. For

clarity of presentation, we shall separate the discussion of the coherent and non-

coherent case into two chapters. For the rest of this chapter, we will focus our

discussions on the non-coherent case and will defer detailed discussions on the

coherent case until the next chapter.

4.1.2 Network Formation Process for Non-coherent Co-

operative Functions

In general, there are three phases in the formation process of a local network:

I. Target Detection, Data Collection, Pre-Processing

II. Membership Declaration

III. Central Node Election

During phase I, a target is detected, its data collected and pre-processed. Al-

though the USER node can override any decision made on the local level, the

results of pre-processing can serve as good indicators whether a node should

participate in a cooperative function. One such indicator is the Signal-to-Noise

Ratio (SNR) of the sensor measurement, another would be the length of the data.

Other factors such as energy reserve or the location of the sensor node can also

be included in the overall considerations. In our study, we assume that SNR is

used as the primary indicator because it is the only characteristic of the wave-

form that is modeled in our simulations and a good indicator on the usefulness

of each piece of sensor data. It can serve as a proxy for knowledge of the

likelihood function for a target. When a node decides to participate in a
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cooperative function, it will enter phase II of the process and declare its intention

to all neighbors. This should be done as soon as possible so that each sensor

knows which neighbors are part of the local network and eliminate unnecessary

signaling tra�c with non-participating neighbors.

Phase III of the formation process is the CN election algorithm. A Central

Node (CN) is needed to process data from di�erent sensors. Since the CN is

selected to perform more sophisticated information processing, it must have suf-

�cient energy reserves and computational capability. It can also be selected based

on its location, especially when it is centrally situated in the local network where

average hop distance to each member node is minimized. If the data tra�c is

expected to be high, then explicit calculation of total transmission energy must

precede the election algorithm so that a CN can be chosen to minimize this over-

all energy consumption. Fortunately, for the non-coherent cooperative function,

data tra�c is fairly low, therefore we make no special e�ort to �nd the optimal

CN location and paths. Rather, we try to raise energy e�ciency by simplifying

the election process itself.

4.1.3 Overhead e�ciency of distributed election algorithm

An election algorithm can be either centralized or distributed. Centralized elec-

tion will take place at a single entity where all CN candidate information is

gathered and compared. Then the result of the election will be broadcasted to

each sensor in the local network. However, such a process cannot be energy ef-

�cient unless supported by a set of pre-existing routes connecting each sensor

to the election entity. Otherwise information exchange has to rely on 
ooding

techniques whose minimum complexity is O(jV 0j2), where jV 0j is the number of

80



nodes in the local network. To develop an autonomous election algorithm that

can function with as little network support as possible, distributed election is a

better choice.

There are two approaches by which a distributed election can be conducted.

The �rst one is a \virtual centralized election,\ where each node gathers full

information about all CN candidates in the local network and then selects the

CN. However, since the initial data exchange still relies on a 
ooding algorithm,

its overhead is rather substantial. The second approach is similar to a \di�using

computation,\ where elections are held locally at lower overhead and their results

are exchanged later on. The advantage of such an approach is that by sharing

local election results, losing candidates are eliminated from contention from the

very beginning of the election process, thus reducing overhead dramatically. We

can illustrate this advantage with a simple analysis:

Consider a distributed election process occurring on a network of n nodes.

Let fQi; i = 1; 2; � � � ; ng denote the election criterion associated with each node

i. We also assume that Qi's are iid random variables, and P (Qi = Qj) = 0; i 6= j.

Let us de�ne CNm1;m2
; m1 � m2, so that

QCNm1;m2
= max

i=m1;���;m2

Qi (4.1)

So the goal of any CN election algorithm is to �nd CN1;n. Since Qi's are iid, then

we know that 8m1 � j � m2:

P (CNm1;m2
= j) =

1

m2 �m1 + 1
(4.2)

and the joint distribution for CN1;n and CN1;m is:

P (CN1;n=i; CN1;m = j) = P (CN1;n = ijCN1;m = j)P (CN1;m = j)| {z }
1

m
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0 i 6= j; i � m; j � m

1
n

i = j; i � m

0 i = j; i > m

(4.3)

We can compute the entropy of CNm1;m2
:

H(CNm;n) = �
m2X
i=m1

P (CNm1;m2
= i) log2 P (CNm1;m2

= i)

= �
m2X
i=m1

1

m2 �m1 + 1
log2

1

m2 �m1 + 1

= log2(m2 �m1 + 1) (4.4)

and the mutual information between CN1;n and CN1;m is:

I(CN1;n;CNm;n) =
X
i;j

P (CN1;n = i; CN1;m = j) log2
P (CN1;n = i; CN1;m = j)

P (CN1;n = i)P (CN1;m = j)

=
X

i6=j;i>m;j�m

1

nm
log2

1=nm
1
n

1
m

+
X

i=j;i�m

1

n
log2

1=n
1
n

1
m

=
m

n
log2m (4.5)

Now consider a local network G0 = (V 0; E 0), where V 0 = f1; 2; � � � ; ng. Let Ecut

be any cutset that separate G0 into two connected subgraphs: G1 = (V1; E1) and

G2 = (V2; E2), and without loss of generality, we assume V1 = f1; 2; � � � ; mg and

V2 = fm + 1; � � � ; ng. Then we have V 0 = V1 [ V2 and E 0 = E1 [ E2 [ Ecut.(See

Figure 4.2)

Equation 4.5 tells us that to lower the uncertainty of the election result by

m
n
log2m bits, the entire local network must be informed of the set fQ1; Q2; � � � ; Qmg

if the \virtual centralized\ approach is taken, or fCN1;m; QCN1;m
g if the \di�using

computation\ approach is chosen. Assuming the 
ooding algorithm is used, and
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Figure 4.2: Distributed Central Node Election

the optimal lower bound is achieved, then the communication overhead required

is:

jV1j(jV
0j � 1)| {z }

updating G1 to G0

= m(n� 1) packets (4.6)

for the \virtual centralized\ approach, and

jV1j(jV1j � 1)| {z }
updating within G1

+ jV2j|{z}
update election result to G2

= m(m� 1) + n�m packets (4.7)

for the \di�using computation\ approach. We can now compute the overhead

e�ciency of both approaches:

�vc(m;n) =
m
n
log2m

m(n� 1)
bits/packet (4.8)

�dc(m;n) =
m
n
log2m

m(m� 1) + n�m
bits/packet (4.9)

Since overhead e�ciency depends on both m, the size of the G1, and n, the

size of G0. Then we can de�ne the optimal size m�(n) of G1 for the di�using

computation election as:

�dc(m
�(n); n)

�vc(m�(n); n)
= max

m=1;���;n

�dc(m;n)

�vc(m;n)
(4.10)
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Figure 4.3: Overhead E�ciency for Distributed Election Algorithm

so that maximum gain in overhead e�ciency is achieved. In Figure 4.3, we plotted

fm�(n); n = 5; 10; 15; � � � ; 50g to compare the optimal energy e�ciency achievable

for these two approaches. There are several observations we can make here:

Observation 1 It is more energy e�cient to have local elections and then ex-

change their results than having one single large scale election.

Observation 2 The smaller the size of the election, the higher the energy e�-

ciency(bits/packet).

We can infer from observation 1 that since the division of G0 into G1 and G2 re-

sults in higher overhead e�ciency on G0, then further divisions of G1 and G2 into
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smaller sub-elections should raise the overhead e�ciency on G1 and G2 respec-

tively. Besides gaining e�ciency by exchanging local election results, observation

2 shows us that the smaller the size of a local election, the higher the overhead

e�ciency for that local election. In our algorithm, we attempt to achieve the

highest election e�ciency by allowing local elections to take place between any

two nodes, and let these election results \di�use\ throughout the network.

4.2 Central Node Election Algorithm

Since we assume that for cooperative functions, the data from several sensors are

gathered at a central location for processing, the election of central node and the

construction of a set of paths leading from each sensor to the CN will be the core

objectives. This central node is di�erent from the USER node in the multihop

case in the sense that every sensor node has the potential to be selected as a

central node. The CN election algorithm we propose has three components:

1. Single Winner Election (SWE) algorithm,

2. Spanning Tree (ST) algorithm, and

3. Termination procedure.

The �rst component handles the necessary signaling that facilitates the exchange

of local election results throughout the network to �nd the CN; the second compo-

nent computes a minimum hop spanning tree rooted at the CN; the termination

procedure allows the elected CN to know that the network formation process is

complete so it can initiate the cooperative function. Although it is rather intu-

itive to implement these three algorithms sequentially, by bundling election and
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Figure 4.4: Flow Chart of the Network Formation Process

spanning tree information in a general Elect message, it is actually possible to

combine all three component into one single algorithm. Figure 4.4 shows the


ow chart of the combined algorithm. However, for presentation clarity, we will

describe each component individually and omit the details of the ST algorithm

since it is already well-known.

The formation process uses an Elect message for signaling purposes. Each

Elect message contains the following basic information:

sender ID - identify which neighbor sends this information.

current CN - the CN candidate currently selected by the sender node.

current CN metric - the election metric associated with the current CN.
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election state - the election algorithm can be in one of two states: FINAL or

TENTATIVE, depending on how far the CN election has progressed.

min hop - current minimum hop distance estimate produced by the ST algorithm

with respect to the current CN.

The routing table contains the same basic information as well as the current successor

in the spanning tree and a list of neighbors who are pariticipating in the cooper-

ative function. Each Elect message identi�es a potential CN candidate and a set

of parameters that serve as the election criteria (or metric) by which candidates

are compared.

In the initial stage of the SWE process, each node may impose a voluntary

delay of varying length before annoucing itself as a CN candidate by broadcasting

Elect messages. In response to the �rst batch of Elect messages, those nodes

that received them will start comparing the proposed CN candidates with itself

and respond with a second batch of Elect messages, which carries the result of

this initial comparison. The second batch of message passing will spawn further

exchange of messages. During this process, for each Elect message that presents

a better candidate, the information in the message will be recorded in the registry

and then be forwarded to all neighbors; otherwise the message is discarded. The

continuing exchange and forwarding or discarding of Elect messages represents

a di�usion of local election results, and they will continue until one node emerges

as the winner, as its Elect message propagates throughout the network and

eliminates all other Elect messages. At the same time, a minimum-hop spanning

tree rooted at the winning CN will gradually increase its coverage. By the end of

the SWE process, a minimum-hop spanning tree will completely cover the local
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Figure 4.5: Termination Procedure

network as well.

The termination of the election process can be detected in a distributed fash-

ion by running a simple state machine with two states: fTENTATIVE, FI-

NALg. The default state for each node is TENTATIVE, and it can change to

FINAL when two conditions are met:

Condition A - All neighboring nodes have chosen the same CN candidate.

Condition B - Each neighbor, if it has higher hop distance from the CN candi-

date, is in state FINAL .
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When a node reaches state FINAL, it will notify all neighbors with lower hop

distances from the CN candidate by an elect �nal message. A node in state

FINAL can revert back to state TENTATIVE when either Condition A or B

is violated. When an election process comes to an end, nodes at the periphery

of the local network will reach state FINAL �rst, and start backpropagating

elect �nal messages toward the CN. When the CN itself receives elect �nal

from all neighbors, it will reach state FINAL last. Although some additional

overhead and delay is required, such a termination detection procedure is far more

energy e�cient than polling and more reliable than a time-out scheme. It is also

desirable to end the formation process at CN, because the next phase, which is

the actual execution of the cooperative function, naturally must be initiated by

the CN.

4.2.1 Overhead-delay trade-o�

An energy-delay trade-o� occurs during the CN election process. There are two

factors that can a�ect overhead and delay: (1) the size of the local network that

responds to the target and (2) the overhead e�ciency of the election procedure.

Larger local networks would have more latency and higher communication over-

head because there are more nodes involved in the election process. However, the

average per node overhead can be relatively una�ected if the election process is

scalable.

Overhead e�ciency has to do with the elimination of extra signaling tra�c

generated by nodes that will eventually lose the election, and this can be accom-

plished by making the process more sequential, thus giving better candidates a

head start. As described in Section 4.2, for each node the initiation time of the
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Figure 4.6: SWE without Voluntary Delay

election process is controlled by a voluntary delay timer and the reception time of

the �rst Elect message. If the timer expires �rst, then election is triggered vol-

untarily; otherwise, the process is initiated by winning the �rst election triggered

by the reception of the an Elect message. Thus, by setting longer voluntary

delay on nodes less likely to win the election, it raises the liklihood that they will

receive Electmessages generated by better candidates prior to expiration of their

delay timer, lose the �rst election and therefore be eliminated from contention at

the very beginning. This is the most e�cient way to reduce signaling overhead.

However, building such a delay mechanism into the protocol will increase overall

network formation time as well. We can illustrate this trade-o� by the example

of a simple network.

Suppose a distributed election is conducted without imposing voluntary delay.

Therefore, each node, after declaring membership, immediately broadcasts Elect
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Figure 4.7: SWE with Voluntary Delay

messages to all neighbors. Suppose that node A has the highest SNR, and nodes

B and C have the second and third highest SNR, respectively. After the initial

SNR comparisons, all three nodes win local elections because their SNR values

are locally maximum. At the same time, each node starts to built a minimum

hop spanning tree as well. However, as Elect messages continue to propagate,

further SNR comparison will tear down the spanning trees built by node B and

C. Eventually, node A and its spanning tree will dominate the local network as

illustrated by �gure 4.6. The formation of spanning trees for node B and C can

be consider a \waste\ of energy because they are temporary. To reduce overhead,

we can suppress the election process at node B and node C by taking voluntary

time delay. As illustrated in �gure 4.7, the election process in node A, after being

given a head start, can quickly dominate the network before node B and C have

the chance to build their own spanning trees. Ideally, if the Elect message of
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node A can arrive at B and C before their delay timers expire, then all overhead

will be eliminated from the election process.

However, each node must operate without global SNR information in a dis-

tributed system, so it cannot rule out the possibility of winning or losing the

election. Therefore each node will impose a non-zero but �nite voluntary delay

that is inversely related to its own SNR level, and an initial delay, the period

during which no election activites takes place in the local network, is unavoidable.

Figure 4.8 shows a time diagram of the network formation process. The overhead

e�ciency of our algorithm comes from the delay di�erential that exists among the

competing candidates as the previous example has illustrated, and the larger the

delay di�erential, the lower the overhead. Although the delay di�erential does

not contribute to the latency of the formation process, it will indirectly lengthen

or shorten the initial delay. To see this, we can consider a delay function of the

following form:

D(s) =
Do

s
; s > smin

where smin is the minimum SNR value required to participate in the cooperative

function. If the two best CN candidates have SNR separation �s = s1� s2, then

the initial delay:

Dinit = D(s1) =
Do

s1

and the delay di�erential is:

�D = D(s2)�D(s1) =
Do

s2
�
Do

s1
=
Do�s

s1s2
= Dinit

�s

s2

Therefore we see that given no changes occur to SNR, the initial delay is directly

proportional to the delay di�erential.
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Figure 4.8: Time Diagram of Formation Process

The size of the local network can a�ect the overhead-delay trade-o� in di�erent

ways when the target is either NF or FF. If a NF target has strong signal strength,

the local network will naturally be larger. However, higher SNR nodes still tend to

cluster around the target because the SNR is highly dependent on the line-of-sight

component, which means the delay di�erential required to eliminate competing

CN candidates remains small, and the initial delay should also remain small.

We can expect some overhead increase simply because there are more nodes on

the periphery. However, for a strong FF target, as the local network becomes

larger, higher SNR nodes will tend to be more spread out. In such a case, longer

delay di�erential, therefore longer formation delay, would be necessary to ensure

overhead e�ciency.
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4.2.2 Proof of Correctness

In this section, we would like to present a proof of correctness for our algorithm

by showing a CN and a spanning tree will be built in �nite time, and that the

termination procedure will properly conclude the formation process with the CN

reaching state FINAL last.

De�nitions and Assumptions

1. No topological change occurs during the formation process.

2. Transmission and processing delay per hop is �xed at �t.

3. Let the successor of j with respect to i be denoted as sji ; let the k-hop

successor of j be denoted as sj;ki .

4. Let dj;i be the hop distance from j to i.

5. A non-directed or ND-Path Pj1;jn = fj1; j2; j3; � � � ; jng is one where the hop

distance is non-increasing: 8 n � k > l � 1 such that djk;jn � djl;jn and

acyclic.

6. A directed or D-Path Pj;i is de�ned by predecessor-successor assignment

in the routing table fj; sji ; s
j;2
i ; sj;3i ; � � � ; s

j;dj;i
i = ig. Therefore, we see that

jPj;ij = dj;i.

7. A hybrid path or H-Path consists of two parts:

Pj;i = fj; � � � ; j 0g| {z }
ND-Path outside tree i

[ Pj0;i|{z}
D-Path inside tree i

8. A node enters state FINAL i means it enters state FINAL with node i as

its CN candidate.
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Lemmas and Theorems

Lemma 4.1 8j; i; dj;i(t) is non-increasing if i is the winning CN.

Proof: Since dj;i(0) = 1 by default, it is su�cient to show that if dj;i(t) =

m <1, then dj;i is non-increasing after time t. We know that node j must have

received an Elect message at some time prior to t from its current successor.

This message must have traveled through m� 1 hops to reach node j. Let time

t1 < t be the latest instant prior to t that node j received an Elect message

with min hop = m � 1 from its current successor sj(t). Since we assume the

topology does not change throughout the network formation process, then dj;i(t)

can increase only if node sj(t) reports a hop distance increase. This is clear

because if node sj(t) remains at m � 1 hops, then the ST algorithm will not

update dj;i to a higher value above m.

Let j1 := sj(t), then we note that dj1;i(t1) = m� 1 <1. Applying the same

arguement, we see that there also exists neighbor sj1(t2),t2 < t1, with hop distance

m�2 at time t2 < t1, where t2 is selected in the same fashion as t1. It is also clear

that dj1;i(t1) can increase only if neighbor sj1(t1) reports an increase. Continuing

this argument, eventually we have to conclude for jm�1 = sjm�2(tm�2) that i has to

report an hop distance increase to node jm�1 at some time tm�1 < tm�2 < : : : < t.

This is clearly a contradiction because node i is the root. This proves Lemma 4.1.

Lemma 4.2 8j; if i is the winning CN and i selected j as CN candidate at time

to, then a D-Path Pj;i(t) exists for all t > to.

Proof: Lemma 4.1 shows that dj;i(t) is non-increasing, and therefore satis�es

the Distance Increase Condition(DIC) [34] which is su�cient to guarantee loop
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freedom at all times for all nodes that selected i as the CN candidate. Therefore

the successor assignment for j must reach node i in �nite hops, which represents

a valid D-Path.

Lemma 4.3 Assume prior to time to, a H-Path Pj;i(to) exists and all node in

this path are in state TENTATIVE. If some changes occur on this path at time

to, either some node enters FINAL i or some node changes hop distances, then

there exists a time t1 > to such that if j remains in TENTATIVE until t1, then:

I - A new H-Path Pj;i(t1) exists such that all nodes are TENTATIVE, and

II - i remains in TENTATIVE and Pj;i(t) exists 8t 2 [to; t1].

Proof: As stated by the Lemma, there two possible changes that can occur to

Pj;i(to):

1. Some node, say nk enters state FINAL i at time to. Then it is clear that its

predecessor nk+1, since it did not enter FINAL i, must have decreased its

hop distance to k prior to time to so that condition B in the termination

procedure can be satis�ed. However, this leads to a contradiction because

we assume at time to, node nk+1 is the predecessor of nk. Therefore, such

a change is impossible.

2. Some node, say nk+1 changes its hop distance. Lemma 4.1 tells us that

the distance must be decreasing. Therefore dnk+1;i(to) = k. By the time

to + �t, its previous successor nk will be noti�ed of this change. Since

Lemma 4.2 guarantees that an acyclic D-Path exists at all time for any

node that records �nite hop distance to root i, then a new H-Path Pj;i(to) =
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Figure 4.9: H-Path in Lemma 4.3

Pj;nk+1 [P
0
nk+1;i

(to) is created. (See Figure 4.9) There are two cases that we

need to consider:

(a) If no state change occurs to nk, then the state of i is una�ected by this

change, and at the latest, by time to + k�t, P 0
nk+1;i

can be guaranteed

to be in state TENTATIVE.

(b) If nk enters FINAL i because condition B of the termination procedure

is now valid, then it is possible for nodes fn1; n2; � � � ; nk�1g to enter

FINAL i in succession. Node n1 can enter FINAL i at time t + k�t

at the earliest, and node i will be noti�ed of n1's state change at time

t+ (k + 1)�t. But node i will remains in state TENTATIVE because

P 0
nk+1;i

is already in state TENTATIVE at time to + k�t.

Letting t1 = to + k�t, then we can see that both I and II are true. This proves

Lemma 4.3.

Lemma 4.4 Assuming node i will be the winning CN, it cannot reach state FI-

NAL i before all nodes select it as the CN.
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Proof: Suppose that prior to time t0, there exists a node j that remains in state

TENTATIVE. If we look at the state of the network at the beginning, at time

t = 0, 9 H-Path Pj;i(0) such that all nodes on it are in state TENTATIVE. By

Lemma 4.3, we see that if a change occurs on this path at later time to, then 9

time t1 such that node i remains in TENTATIVE during [to; t1], and 9Pj;i(to) in

state TENTATIVE as well. We can see that during [0; to) [ [to; t1], i remain in

TENTATIVE. If changes occurs to the Pj;i(t1) at time t2, then Lemma 4.3 tells

us that there exists a time t3 so that node i remains in TENTATIVE. Using the

same argument repeatedly, we see that node i will remain in TENTATIVE in

[0; tm] = [0; to] [ [to; t1] [ � � � [ [tm�1; tm] as long as tm < t0.

Let m� be such that tm�+1 � t0 > tm� , and note that the times denoted by

f0; to; t1; t2; � � � ; tm < t0g correspond to the times either some change occurs to

Pj;i, or the time when all nodes in Pj;i have returned to state TENTATIVE.

However, it is still unclear what happens during [tm� ; t0] if node j changes state

at time t0. There are two possibilities:

Pj;i(t
0) in state TENTATIVE - The back propagation of FINAL messages due

to j's entrance to state FINAL i will reach i at t0+d(j; i)�t, at the earliest.

Pj;i(t
0) not in state TENTATIVE - This implies at time tm� a change has

occured but TENTATIVE state has not been fully restored to Pj;i. However,

by examining the argument in the proof of Lemma 4.3, we see that node i

will remain in TENTATIVE as long as the back-propagation of elect �nal

messages caused by node j's entance to state FINAL i did not reach node i.

We see that, if the elect �nal message did reach node i, the earliest time

node i can enter FINAL i is time t0 + d(j; i)�t > t0.
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We can see that in both cases, node i cannot enter FINAL i before t0. This proves

Lemma 4.4, and established an very important fact:

For a CN to reach state FINAL, it must be preceded by the com-

pletion of SWE and ST algorithm.

Lemma 4.5 ST algorithm will converge in �nite time after the completion of

SWE algorithm.

Proof: Note that after the completion of SWE, the formation process is com-

pletely controlled by the ST algorithm, whose convergence can be demonstrated

by the following argument. Let node i be the winning CN and tc be the com-

pletion time of the SWE algorithm. Then Lemma 4.1 shows us that dj;i(t) is

non-increasing for all j and t � tc. If we examing the ST algorithm, we see that

each hop distance decrease must either:

1. cause its predeccessor to decrease hop distance after �t time units, or

2. cause no further changes.

Therefore, we can conclude that as long as the ST algorithm did not converge,

we can observe at least one instance of hop-distance decrease within any window

of observation of length �t. This being so, since we know that after tc there are

only a �nite number of nodes each with �nite hop-distance value to the CN, then

this chain of hop-distance decreases cannot persist longer than �t
P

j dj;i(tc) after

SWE is completed. So we see that the ST algorithm must stop in �nite time.

Theorem 4.1 If node i is the winning CN, then after the formation process

begins, (1) SWE and ST algorithm will converge in �nite time, and (2) node i

will reach state FINAL in �nite time after the completion of SWE algorithm.
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Proof: Let d be the diameter of the network, and assume that at time t = 0,

some node k in the network initiated the formation process by declaring itself as

a CN candidate. There are two possibilities:

1. If i = k, then the propagation ofElectmessages for i will spread throughout

the network before d�t

2. If i 6= k, then node i will declare itself as a candidate either on its own or

after receiving Electmessages from its neighbors. One of these will happen

at or before time dk;i�t. Then since i will be the winning CN, its Elect

message will propagate throughout the network before time (dk;i + d)�t.

Since 8k; d � maxk dk;i, then we know the SWE algorithm will be completed at

time tc � 2d�t. By Lemma 4.5, we know ST algorithm will terminate in �nite

time after SWE algorithm stops. This proves (1).

Lemma 4.4 guarantees that node i cannot reach FINAL before SWE comple-

tion. Therefore it is clear that if it does reach state FINAL, that must take place

after SWE completion. To prove (2), we only have to produce an upperbound

on the time required to reach state FINAL, since we know the ST algorithm will

converge in �nite time after SWE completion. Then we know that after ST con-

vergence, the termination condition B and condition A are both satis�ed for all

nodes who have no higher hop-distance neighbors. The maximum hop-distance

for these nodes, say d� � d is �nite. When they reach FINAL, all nodes at hop-

distance d� � 1 will also reach FINAL after �t time units. We can see that after

(d�� 1)�t time units, all 1-hop neighbors of CN will be at FINAL. Therefore at

the latest, after d��t < d�t time units, node i will reach FINAL. This proves

(2).
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4.2.3 Remark on the proof

At this point, I would like to make a few remarks regarding the above proof.

We have proven that the termination procedure works properly for CN, i.e., that

after election is initiated, the SWE and ST algorithm will converge �rst, then CN

will reach FINAL in �nite time. However, for any node, say node j, that is not

the eventual CN, it has not been theoretically demonstrated that it will never

reach FINAL j. The di�culty we encountered is in Lemma 4.3, where node i is

required to be the CN selected by SWE. If this requirement can be lifted, then

Lemma 4.3 can guarantee that any node j that does not win the SWE can never

reach FINAL j. However, we know that it is the periphery of the network that

will enter state FINAL �rst, due to condition B of the termination procedure.

It is highly unlikely that any node j can reach FINAL j without winning the

election at the periphery of the network, which is usually quickly controlled by

the winning CN who has a head start. Even if there is a temporary domination,

it is highly unlikely that condition A or B are both satis�ed everywhere in the

network at some time instant. These intuitions are con�rmed by simulation

experiments where not one single exception is observed over tens of thousands of

trials.

4.2.4 Failure Recovery

In the event that some link failure occurs, then it is possible that some nodes

may not reach state FINAL because either condition A, condition B or both

(see section 4.2) are violated. This creates a deadlock on the whole termination

procedure. A simple �x can be implemented by requiring the MAC protocol to
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report connection failures. Knowing such a failure occurs, condition A and/or B

can be waived for those neighbors with whom connection has broken down. The

result is that a portion of the local network, those nodes severed from the CN

due to link failures, will not participate in the cooperative function.

If the MAC level protocol cannot provide a quick failure report, then a timer

can be used to allow each node to return to normal, low-duty cycle operation,

while still retaining the sensor data and routing information if memory allows.

At the CN, when this timer expires, it can send a special message to trigger a

re-declaration of membership. At this time, topological information of the local

network will be corrected, and SWE can restart. However, one must consider the

necessicity of such complex procedures according to the signi�cance one attaches

to the target. It might be satisfactory to simply reset the network after timer

expiration and hope to detect the same target again, which is very likely the case

if the target remains active within detection range.

4.3 Simulation Results

To illustrate the energy-delay trade-o� and its dependence on the size of the

local network, simulations were conducted using both NF and FF targets. The

election criterion chosen is the SNR of the target signal, and the voluntary delay

at each node is calculated by a simple inverse relation: D / D0

SNR
time units,

which allows high SNR nodes to start the election earlier than those with lower

SNR. For NF targets, the target position is random, and the received SNR is

modeled by an inverse square law on the distance between the target and each

sensor; for a FF target, a Raleigh random variable is used to capture the e�ect
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of multipath on signal strength. The average transmission delay, including frame

latency and queuing is assumed to be 1 time unit. The non-integer network size

is the result of averaging over many di�erent scenarios.

Figure 4.10 shows the overhead-delay trade-o�s. As expected, overhead de-

creases with longer delay for both FF and NF targets and reached a minimum

quickly. The interesting thing to note is that while in the NF case, the most

modest amount of delay (� 20 units) seems to be su�cient to minimize overhead

regardless of network size, the FF case would required much more delay(40 units

or higher) especially for larger networks(size = 99). This con�rms our speculation

that for FF targets, the dominant CN candidates tend to be separated over longer

hop-distances, and therefore longer initial delay is required for energy e�ciency.

In the NF cases, since deviations of SNR are predominantly controlled by physi-

cal distance, the dominant CN candidates tend to cluster together, regardless of

the absolute signal strength of the NF target.

For NF targets, as long as some voluntary delay is used(Do > 0), for a 227%

increase in network size(from 6.44 to 21.12), the overhead increase is at about

12%. While without imposing voluntary delay(Do = 0), the overhead increase is

nearly 80%. For a FF target, when no delay is used, overhead increase is rougly

93% for a 1500% increase in network size, while when Do = 500, the overhead is

nearly unchanged. The simulation seems to suggest that our algorithm is acutally

more e�cient for FF targets, but that is not really the case. The seemingly lower

overhead is caused by di�erences in SNR modeling, and the delay coe�cient used.

The most interesting behavioral di�erences to note is that for a NF target,

the highest overhead e�ciency is achieved at low latency regardless of network

size. For FF targets, overhead e�ciency is earned gradually; the more delay that
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Figure 4.10: Overhead and Formation Delay

is tolerated, the higher the e�ciency. Again the reason for this di�erence is that

the dominant competing CN candidates are located very close to each other in

the NF case regardless of network size, while for a FF target, the multi-path

e�ect caused the dominant CN candidates to grow farther apart as the network

size increases. In general, Figure 4.11 shows the per node overhead is concave,

and for larger delay becomes nearly 
at. This indicates that the algorithm is

quite scalable, especially in NF cases.
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Figure 4.11: Overhead and Network Size

We also examined the relationship between network delay and size. Fig-

ure 4.12 shows that delay can both increase or decrease with network size. In

the NF case, only when no voluntary delay is used will the delay increase with

network size, otherwise, larger network actually seem to produce lower delay. In

both the NF and the FF cases, the election delay will be roughly proportional

to the round trip transmission delay from CN to the periphery of the network.

When the network size increases, election delay will increase but the initial de-

lay will actually decrease because the maximum SNR is higher when there are
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Figure 4.12: Formation Delay and Network Size

more nodes. Therefore when the initial delay component dominates the forma-

tion delay, the total delay will become inversely related to network size despite

any increase in election delay.
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4.4 Summary

The simulation results basically con�rm the overhead-delay trade-o� that we

expect to see, and we can see that the fundamental performance di�erences be-

tween NF and FF targets have their origin in the separation distances among the

dominant CN candidates. Overhead and delay trade-o� will present the network

USER the choice between latency and energy e�ciency. The degree to which one

favors latency or e�ciency will depend on the requirement of the applications.
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Chapter 5

Extension of Adaptive Local

Routing Algorithm for Coherent

Cooperative Functions

In this chapter, we describe an extension of the network formation algorithm

presented in Chapter 4 that is suitable for coherent cooperative signal process-

ing. While the underlying challenge remains that of energy e�ciency, we make

note of the fundamental di�erences between the coherent and non-coherent cases

and provide details on the modi�cations and additional complexity necessary for

energy e�cient operation.

5.1 Key Di�erences from the Non-Coherent Case

Cooperative signal processing can be viewed as a form of hierarchical information

processing where raw sensor data is �rst collected and processed by individual
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sensors, and then a parametric or compressed representation of the original data

is gathered for a second round of processing at a central node (CN).

The advantage of hierarchical processing is that each level of processing is

a \�lter\ that removes information irrelevent to the next level of processing.

The overhead for information exchange is therefore minimized. The distinction

between coherent and non-coherent processing lies in the degree to which \tempo-

ral\ information is removed from the data waveform. One example would be the

application of appropriate \compressive transformations\ on the raw sensor data

to produce a likelihood function that can be used for target detection purposes.

However, subtle features that are hidden in the high order statistics of the

data set can be lost if too much pre-processing is done at the node level. In

order to extract these subtle features that are necessary for the highest level of

reliability in applications such as target classi�cation, preservation of the sen-

sor data in its raw form is required. This shifts the burden of processing from

the individual sensors back to the central node, and the entire process becomes

more \centralized.\ Being more \centralized,\ coherent signal processing requires

higher communication overhead. The energy expenditure for uploading raw data

from each sensor to the central node will be signi�cantly higher than that needed

for network formation. The focal point of attention for protocol design now shifts

away from algorithmic simplicity to the minimization of energy consumption dur-

ing the execution phase of the cooperative function. Our procedure thus applies

to any local cooperative function for which tra�c loading is dominated by data

transfer rather than overhead in network formation.
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5.2 Network Formation Process

We now consider computation of the minimum energy required for the data trans-

fer in coherent cooperation. Let S denote the set of source nodes (SN), which

will eventually provide the raw-data used in cooperative computation. For each

node i 2 S, there are �i packets of data available for uploading to the CN. Let

Pi;j be the set of paths from node i to j and lk's denote the energy consumption

across one single link. Then the minimum energy path p�i;j 2 Pi;j is the one such

that: X
lk2p

�

i;j

lk = min
p2Pi;j

X
lk2p

lk = m�
i;j (5.1)

Here m�
i;j represents the minimum energy required to send one packet from node

i to node j. The energy required to upload data from all SNs to node j will be:

Ej =
X
i2S

�im
�
i;j (5.2)

The best CN is the j that will minimize Eq 5.2. Therefore the minimum energy

will be:

E� = ECN = min
j
Ej = min

j

X
i2S

�im
�
i;j (5.3)

The network formation process will have to compute the quantities in Eq 5.1,

5.2, and 5.3 in order to optimize energy e�ciency of the cooperative function.

Figure 5.1 shows the general network formation process. The �rst graph

shows the topology of the local network after target detection and membership

declaration. Then through a multi-winner election (MWE) procedure, a subset

of nodes are elected as source nodes (SN), based on some criteria internal to the

cooperative function. During this process, the loading of each SN, f�i; i 2 Sg, is

also broadcasted to the network. By piggybacking transmission power on each
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Figure 5.1: Network Formation for Coherent Cooperative Function

link in the Elect messages, each node j can compute fm�
i;j8i 2 Sg, and Ej at

the end of the process. Finally, a SWE election process will select a node that

optimizes Ej as CN and generate the set of optimal paths that will achieve the

minimum energy E�.

5.2.1 Multi-Winner Election & CN Election

The Multi-Winner Election (MWE) is basically an extension of the SWE. It is

designed to select a subset of nodes from the network based on some criteria. It

helps to limit the number of participating nodes and the tra�c loading, especially

when a target with strong signal strength is present. The basic approach in MWE

is the same as the SWE with the following di�erences:
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Keeping multiple candidates in registry - The SWE algorithm, as it �lters

through each Elect message it receives, only keeps the record of the best

candidate; the MWE algorithm will attempt to keep record for as many as

n(> 1) candidates, where n is the the maximum number of SNs allowed.

Minimum spanning tree uses reverse link power metric - In the coher-

ent case, a simple minimum hop spanning tree is built centered at the

CN. During the SN election, the calculation of fm�
i;j; p

�
i;j8i 2 S; j 2 V g are

required, therefore the spanning tree calculation uses a power metric rather

than hop distance. In CN election, the spanning tree is created for tra�c

that 
ows toward CN; in SN election, the spanning tree is created for tra�c

that 
ows away from SN. So the link power metrics used are those in the

reverse direction.

No termination procedure - The end of MWE process is detected by measur-

ing the frequency of Electmessage propagations. The termination criterion

is simple: a node will determine that the MWE process has ended globally

when its waiting time, which is the idle period elapsed from the last recep-

tion of an Elect message, exceeds a certain length. There are two reasons

why a termination procedure similar to that described in Section 4.2 is not

used here:

1. Complexity - Each winning SN, after reaching state FINAL, cannot

determine whether other SNs have reached state FINAL as well. Ad-

ditional coordination is required so that each SN can be fully informed

of the state of other SNs.
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2. Transiton from SN to CN election - When a CN election ends, the

next phase of operation is the execution of the cooperative function

which is a centralized operation. In this case, it makes sense that the

CN knows the end of the election process with certainty, so that it

can assume control at the proper time. The termination procedure

described in Section 4.2 serves as a transition mechanism from a dis-

tributed process to a centralized process. However to make the

transition from SN to CN elections - from a distributed process to

another distributed process - such a termination procedure is not

suitable.

The MWE is a distributed computational process, and its e�ciency can like-

wise be improved by "sequentializing" the process with voluntary delay. The

computational complexity is approximately n times that of the SWE process if

n is small compared to local network size. At the end of the MWE process, each

node j in the network will have the following information:

� S - the set of SNs selected.

� Ej - the minimum energy required to download data from all SNs to itself.

� fp�i;j; i 2 Sg - the set of minimum energy paths.

CN election

The CN election di�ers from that in the non-coherent case in two ways:

1. Finding the minimum rather than the maximum of an election criterion.

2. Not requiring spanning tree computation since the optimal paths are al-

ready found by MWE.
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These di�erences do not require additional complexity or change to the SWE

algorithm. Election criteria can be mapped by an inverse relationship, turning

the minimum to the maximum, and in fact, having the optimal path already

computed, SWE can even be simpli�ed by removing the ST component. (See

the 
owchart in Figure 4.4) Also note that in CN election, the same termination

procedure as for the non-coherent case will be used.

5.2.2 Latency & Convergence

Latency in the coherent network formation process has more components than the

non-coherent case. In Chapter 4, we showed that algorithmic e�ciency is achieved

by imposing a delay di�erence between the winning and losing candidates. Under

the SNR criterion, the initial delay is directly related to the hop distance between

contending candidates, which, due to di�erent propagation modes, is larger for

FF targets. If the SNs in the coherent case are also elected based on SNR, then

they will have the same spatial separation as the better CN candidates in the

non-coherent case. To minimize energy consumption, we can expect to �nd the

best CN candidates inside the convex hull of the SNs. Therefore we can also say

that initial delay required during the CN and SN election will not be signi�cantly

higher in the coherent case.

However, the most signi�cant source of delay comes from the termination

procedure of the SN election. Since SN election is terminated individually with-

out considering the state of neighbors, there can be large di�erences between

termination times. Theoretically, the discrepency between termination times00

should be bounded by the maximum one-trip delay, which is the time it takes for

Elect message to di�use across the network. However, termination delay is also
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in
uenced by the waiting time duration. Longer waiting time prevents prema-

ture termination but causes longer delay; shorter waiting time raises sensitivity

so that the end of SN election can be detected quickly but such decisions are

likely to be premature in large networks. Lacking global knowledge on the size

of the local network, a longer waiting time duration should be used to ensure the

correct execution of the algorithm in most situations. However, once �xed at a

su�ciently large value, the waiting time becomes a constant component in the

overall delay because it is independent of other scenario parameters. Therefore it

will not interfere with the delay-size-energy dynamics in the formation process.

Another issue is the convergence of the spanning tree computation. While we

have proved the convergence of the ST algorithm when calculating minimum hop

routes, the real necessary condition for convergence is Lemma 4.1 in Chapter 4.

There we see that as long as the link power metric is unchanged during the

network formation process, then the argument in the proof remains valid. Since

link power metric, as well as other routing parameters, are updated only at

the beginning of a computational epoch, we are guaranteed that spanning tree

calculation during local network formation will converge.

5.3 Simulation Results

Although algorithmic e�ciency is no longer the primary design objective, the

path optimality has already been shown by the fact that the ST algorithm and

CN election converge. Therefore, our simulation e�ort is still focused on under-

standing the e�ciency and delay performance of the algorithm. We choose the

number of SN to be less than or equal to 5 for all target types and local network
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Figure 5.2: Overhead and Formation Delay

sizes, and assume that SNR is the SN election criterion. The data length is as-

sumed to be proportional to the SNR at each SN. We used a �xed waiting time

for all simulation runs.

From �gure 5.2, we see the delay-overhead trade-o� is similar to the non-

coherent case. The NF case has the same behavior, yielding good overhead for

a relatively small sacri�ce in delay. For a network with 21 nodes, the over-

head is reduced by roughly 33.3%(from about 900 down to 600 packets). In the
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Figure 5.3: Overhead and Network Size

non-coherent case, the reduction is larger: 50%(from 290 down to 145 packets).

Figure 5.3 shows that the algorithm has fairly good scalability in NF cases. How-

ever, for the FF case, it is less so. Using large delay parameters, Do = 500 there

is a 200% increase in overhead when the network size goes up by one order of

magnitude compared to only a 10% increase in the non-coherent case. Overall,

there is a general increase in overhead and delay, which is the result of adding

the SN election process.
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Figure 5.4: Formation Delay and Network Size

We also study the relationship between delay and network sizes. In both

NF and FF cases, delay increases with network size. In the non-coherent case,

increasing network size may actually shrink the initial delay of the winning can-

didate because the highest SNR value is larger. However, in the coherent case,

CN election is based on �nding the minimum energy E� = minj Ej, larger net-

work tends to make all Ej's larger, which increases the initial delay for all nodes

because now the delay is directly proportional to Ej for each node j. The overall
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delay is also in
uenced by the waiting time duration used for SN election termi-

nation. However, we believed that since it delays each node for a �xed length of

time after processing the last received Elect message, it does not in
uence the

dynamics in algorithmic behavior if it is su�ciently long to separate the SN and

CN elections in time.

5.4 Summary

In general, our algorithm is fairly scalable in NF cases when some delay can be

tolerated, but FF target presents a much tougher challenge. However, we need

not view this loss in scalability as a shortcoming. If good energy e�cient paths

are created for the data transfer between SNs and CN, then the energy required

during setup is well spent. If we factor the potential energy saving accrued during

data upload into the overall energy consumption measurement, the scalability of

the overall process - network formation as well as the execution of the cooperative

function - should be higher.
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Chapter 6

Summary & Direction for Future

Research

6.1 Summary of the Work Done

We have seen signi�cant advances in both the sensing and signal processing �elds

in recent years. As sensor sensitivity approaches their fundamental physical lim-

its, they gradually come to rely on signal processing techniques to enhance their

performance. The use of microphone arrays is one such example. If we take this

notion of a \sensor array\ and simply expand its physical dimension, then we can

get a sense of what a \sensor network\ is capable of. However, to tap into the full

potential of sensor networks, we have to deal with the communication problem.

The best long term solution will be based on an ad-hoc network architecture

because of its ability to operate without infrastructural support. However, the

stringent constraint on energy resources has become the most signi�cant challenge

in sensor network design.
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This dissertation has thus far presented two energy e�cient protocols for

multi-hop routing and the formation of a local network for cooperative signal

processing. We anticipated a set of application level tasks and designed energy

e�cient algorithms to ful�ll their communication needs. One of the application

level tasks is the multi-hop communication between sensors and an information

gathering entity called a USER. Such tasks typically involve lightly loaded traf-

�c which predominately originates from the sensors. There is also the need to

provide di�erent QoS (delay, reliability, etc.) to individual packets according to

the importance of their payloads. In chapter 3, a Sequential Assignment Routing

(SAR) protocol was designed to ful�ll this requirement based on a multipath,

table-driven structure. The multipath component bring welcome attributes such

as robustness and load balancing and lays the foundation for priority service.

The table-driven approach provides e�ciency under low mobility. The SAR al-

gorithm is designed to make e�cient use of limited energy resources. As its name

would suggest, its objective is to raise the overall QoS on the entire \sequence\

of service demand throughout the life time of the network, rather than optimize

the individual communication sessions since the latter approach is only pro�table

without the energy constraint.

A cooperative signal processing function usually takes place among a sub-

group of sensors that detected the signal generated by a common environmental

phenomenon. The membership, location and size of this \group\ can vary greatly.

The speci�c signal processing techniques used can be distributed or centralized.

However, regardless of the degree of computational distribution, a central entity

needs to be selected to direct the computational process and make aggregate

decisions. These cooperative signal processing functions must be supported by
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several networking tasks such as (1) the identi�cation of participating members,

(2) the selection of central node according to appropriate criteria, and (3) the

creation of communication routes between the controller and the individual mem-

bers. In chapter 4, we described a network protocol that ful�lls these three tasks

for the general class of non-coherent cooperative functions that requires minimal

exchange of parameters because most processing is done locally on each node. A

single-winner election (SWE) is the used to facilitate the central node selection

process and at the same time build a minimum hop spanning tree rooted from

the central node to each group member. Since the election process is basically a

distributed contention process, energy e�ciency can be improved by suppressing

the process on each node according to its estimated likelihood for winning the

election. The suppression mechanism, however, will create a delay trade-o�.

When the cooperative function is more centralized, which is typically the case

for coherent processing, raw data transfered from each member to the central node

will become the most signi�cant source of energy consumption. As a result, the

protocol design needed to refocus toward the minimization of energy consumption

on each path. In chapter 5 we described an adaption of the original algorithm

to this new design objective. First, a multi-winner election(MWE) algorithm, as

an extention to SWE, is used to select a limited number of source nodes that

will provide the raw data. During the MWE, each node will estimate the energy

consumption required to connect to each source node. This information can be

used in a SWE process to select the node that has the lowest total energy cost

to be the gathering point for sensor data.
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6.2 Future Research

There are several issues that have not been investigated due to their complexity

and relative newness. One such issue is the development of a good model for

target mobility and statistics. Our interest in this issue stems from the fact

that the sensor network is operating mostly in response to its targets of interest.

The movement and the frequency of appearance of a target naturally generates

a di�erent pattern of activities within the network. In both multi-hop and local

adaptive network formation, the energy e�ciency of our algorithm can be greatly

a�ected by this pattern. Lacking good models, what we have done in the multi-

hop case is to assume the worst case scenario where extreme non-uniformity

occurs. This is modeled by putting all tra�c on a small number of random

locations for long duration, and testing the network's ability to adapt over time.

However, a more accurate model can bring insights into how the network will

behave under realistic situations, and help the designer �nd the actual area that

needs work to make the system better. The same challenge lies in the accurate

modeling of the characteristics of the transmission medium in the sensor domain,

because they can in
uence the quality of sensor data and a�ect the behavior of

the network formation process.

Preliminary work has already begun on designing a MAC level protocol ca-

pable of e�cient mobility management for sensor networks, such as the EAR

algorithm described in [7]. However, the e�ect of USER mobility on routing

cost has not been addressed in this dissertation. While for low mobility systems,

one would expect that a path recomputation is su�cient to keep the USER con-

nected, we have not investigated the e�ciency of such an approach. A crucial
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question to ask is this: below what level of mobility is recomputation adequate?

What steps would be taken if the USER mobility increases above that level?

The scalability of the coherent signal processing function is another area worth

taking an in-depth look. Although using distributed processes and selective sup-

pression, the scalability of the network formation protocol is fairly good given one

is willing to tolerate delay, we believe there is room for improvement. One possi-

bility is to partition the network into smaller subgroups running at low duty-cycle

such that at any given time, only a very small but �xed number of subgroups

are activated to observe target presence no matter how large the actual network

is or how strong the target signal is. This eliminates the need to use the MWE

process to limit the size of the cooperative group. However, mobile NF targets

can penetrate the network undetected if the duty-cycle is too low, and an addi-

tional routing protocol has to join the subgroups together over long distances,

especially in the coherent case where the ine�ciency of the 
ooding technique

is not tolerable. Another possiblity is to add an additional layer of signal pro-

cessing functions on top of the network formation process to determine whether

each target detected is NF or FF, and then suppress or activate subgroups in

the network according to this decision. Whether the additional complexity will

result in an overall energy saving remains to be seen.

6.3 Final Remarks

We believe that this dissertation has addressed some of the fundamental issues

in sensor networks. Throughout the course of this investigation, we have to re-

orient our thinking toward energy e�ciency, since it is one of the most signi�cant
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contraints in network design. It is our hope that the questions raised and the

solutions proposed here will serve as a starting point for future research along

this new direction.
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Chapter 7

Appendix A

7.1 Proof of Lemma 7.1

Lemma 7.1 Let � = (�1; �2; : : : ; �M), � = (�1; �2; : : : ; �M). Let P be the set of

all permutation of f1; 2; : : : ;Mg and C(ij) =
PM

j=1 �j�ij . If �1 � �2 � : : : � �M

and �1 � �2 � : : : � �M , then

C� = min
(i1;i2;:::;iM )2P

C(ij) =
MX
j=1

�j�j

Proof: Consider any permutation ij such that �i1 ; �i2; : : : �iM is not non-decreasing,

9l > k; n > m such that �il = �m and �ik = �n. Then

C(ij) =
MX
j=1

�j�ij

>
MX
j=1

�j�ij + (�k � �l| {z }
>0

)(�m � �n| {z }
<0

)

=
MX
j=1

�j�ij � �k�n � �l�m + �k�m + �l�n

=
MX
j=1

�j�ij � �k�ik � �l�il + �k�m + �l�n
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=
X
j 6=k;l

�j�ij + �k�m + �l�n

= C(~ij);where ~ij 2 P

This implies that 8 permutation ij such that �ij is not non-decreasing, a better

permutation ~ij can be found. QED
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