
UNIVERSITY OF CALIFORNIA

Los Angeles

Channel Coding for Video Transmission over Unknown Channels

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Electrical Engineering

by

Jaehyeong Kim

2002



c
�

Copyright by

Jaehyeong Kim

2002



The dissertation of Jaehyeong Kim is approved.

Kung Yao

Abeer A.H. Alwan

Kirby A. Baker

Gregory J. Pottie, Committee Chair

University of California, Los Angeles

2002

ii



DEDICATION

This dissertation is dedicated to my parents.

iii



Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 Introduction 1

2 Channel Coding 5

2.1 Convolutional codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Trellis coded modulation . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Variable Rate TCM using Rate-1/2 Trellis 20

3.1 Variable rate TCM using rate-1/2 trellis . . . . . . . . . . . . . . . . . 22

3.1.1 Rate-1/2 PTCM . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Rate-2/3 PTCM . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.3 Multidimensional PTCM. . . . . . . . . . . . . . . . . . . . . 33

3.2 Application to PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iv



3.3 Complexity of PTCM . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Simulation and discussion . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Rotationally Invariant Punctured TCM 46

4.1 RI-PTCM based on one coder . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Rate-1/2 rotationally invariant TCM . . . . . . . . . . . . . . 51

4.1.2 Rate-3/4 rotational invariant PTCM . . . . . . . . . . . . . . . 55

4.2 RI-PTCM based on two coders . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 ������� rotationally invariant TCM . . . . . . . . . . . . . . . . . 61

4.2.2 ��� � rotationally invariant PTCM . . . . . . . . . . . . . . . . . 63

4.3 Comparison of two RI-PTCM schemes . . . . . . . . . . . . . . . . . 68

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Unequal Error Protection Codes 71

5.1 Coding gain calculations . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Scheme I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Two dimensional signaling scheme . . . . . . . . . . . . . . . 80

5.2.2 Four dimensional signaling . . . . . . . . . . . . . . . . . . . . 83

5.3 Scheme II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Scheme III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Rotationally invariant UEP . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Simulation results and conclusion . . . . . . . . . . . . . . . . . . . . 91

6 HDTV Systems Development Project 95

6.1 HDTV transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Branch metric calculation in TCM decoder with NTSC interference . . 97

v



6.2.1 Combining maximum likelihood sequence estimation and TCM

decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.2 Noise prediction at the branch metric calculation . . . . . . . . 104

6.3 Effect of fixed point precision on TCM decoder . . . . . . . . . . . . . 108

6.3.1 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.2 Metric rescaling . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Conclusion 122

vi



List of Tables

3.1 Binary representations of 8 cosets. . . . . . . . . . . . . . . . . . . . . 24

3.2 Performance comparisons of rate-2/3 TCM. . . . . . . . . . . . . . . . 33

3.3 Generators(in octal) for the best rate-3/4 punctured code (0 means punc-

tured position). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Generators(in octal) for rate-2/3 PTCM with 8-PSK signalling. . . . . . 39

3.5 Asymptotic coding gains (in dB) of PTCM (QAM signalling). . . . . . 41

4.1 Effects of phase rotation on differentially coded vector at the input of

the convolutional encoder. . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Effects of phase rotation on the state vector. . . . . . . . . . . . . . . . 49

4.3 Effects of phase rotation on four cosets. . . . . . . . . . . . . . . . . . 53

4.4 Effects of phase rotation on the state vector (rate-3/4 PTCM). . . . . . . 56

4.5 Effects of phase rotation on differentially coded vector at the input of

the convolutional encoder. . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Comparisons of ����� � RI and best known rate-1/2 convolutional codes. . 68

5.1 Code search results using S-ZRCS in scheme I-A and I-B. . . . . . . . 82

5.2 Four dimensional set partitioning. . . . . . . . . . . . . . . . . . . . . 83

5.3 Code search results using S-ZRCS in scheme I-C. . . . . . . . . . . . . 84

vii



5.4 Code search results of 16 state convolutional codes for class 1 data pro-

tection in scheme I, II and III ( � ��� � RI and non-RI codes). . . . . . . . 91

5.5 Coding gains for the proposed UEP code family. . . . . . . . . . . . . . 92

viii



List of Figures

2.1 Block diagram of a digital communication system. . . . . . . . . . . . 6

2.2 Four state rate-1/2 convolutional encoder and corresponding code trellis. 7

2.3 Example illustrating the Viterbi algorithm (Numbers on branch indi-

cate branch metrics; accumulated metrics of surviving paths are given

in parentheses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Rate-2/3 trellis and equivalent punctured trellis. . . . . . . . . . . . . . 11

2.5 Mapping of binary codeword into 16-QAM constellation. . . . . . . . . 13

2.6 Set partition of a 16-QAM constellation [31]. . . . . . . . . . . . . . . 14

2.7 Rate-
�����

����� � TCM encoder. . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Example of rate-1/2 TCM on 16-QAM signalling. . . . . . . . . . . . . 16

2.9 Rotationally invariant systems. (a) Ordinary differential encoding/decoding.

(b) Rotationally invariant system with channel coders. . . . . . . . . . . 18

3.1 Rate-2/3 trellis and equivalent punctured trellis; 	�
��
 � are binary values

and “x” means puncturing position. The label 	�� � represents one of the

eight cosets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 32-QAM constellation for rate-1/2 TCM. . . . . . . . . . . . . . . . . 22

3.3 Lattice illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Sample sub-trellises which satisfy constraint 1. . . . . . . . . . . . . . 25

ix



3.5 ��� and ��� out-going branches. . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Sample sub-trellises which satisfy constraint 2. . . . . . . . . . . . . . 26

3.7 Example for illustration of condition 1. . . . . . . . . . . . . . . . . . . 27

3.8 Example of TCM branches and equivalent punctured branches. . . . . . 28

3.9 32-QAM signal constellation with optimal coset partitioning. . . . . . . 30

3.10 Illustration of boundary effect. . . . . . . . . . . . . . . . . . . . . . . 31

3.11 Performance comparisons with rate-2/3 TCM and PTCM. . . . . . . . . 32

3.12 Punctured second and third step branches and equivalent merged trellis. 35

3.13 Illustration of branch metrics in second and third step branches. . . . . . 36

3.14 Branch metric calculations in each group. (a) 8-PSK signal points. (b)

Branch metrics of ��� signals. (c) Branch metrics of ��� signals. . . . . . 38

3.15 Simulation results of uncoded 16-QAM and rate-1/2 TCM (32-QAM

signal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.16 Simulation results of rate-1/2 TCM and rate-2/3 TCM, PTCM (32-QAM

signal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.17 Simulation results of rate-1/2 TCM and rate-3/4 PTCM (32-QAM sig-

nal): SNR is normalized due to the 0.5 bit redundancy gain of rate-3/4

PTCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.18 Simulation results of uncoded QPSK and rate-2/3 TCM, PTCM (8-PSK

signal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Constraint for � degree rotational invariance. . . . . . . . . . . . . . . . 47

4.2 Convolutional encoder structure of RI-PTCM. . . . . . . . . . . . . . . 49

4.3 Merged rate-2/3 trellis. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 32 QAM constellation in RI PTCM and rotation relations among 8 cosets. 51

4.5 New rate-2/3 trellis for RI PTCM. . . . . . . . . . . . . . . . . . . . . 52

x



4.6 Two step heterogeneous rate-1/2 trellis. . . . . . . . . . . . . . . . . . 52

4.7 Output label constraints from ��� � rotation relations of rate-1/2 TCM. . . 54

4.8 Output label constraints from ����� � rotation relations of rate-1/2 TCM. . 55

4.9 Convolutional encoder structure of rate-3/4 PTCM. . . . . . . . . . . . 56

4.10 Labeling of three step trellis structure of rate-3/4 PTCM. . . . . . . . . 57

4.11 Output label constraints from ��� � rotation relations of rate-3/4 PTCM. . 58

4.12 Output label constraints from ����� � rotation relations of rate-3/4 PTCM. 59

4.13 Optimal trellis of rate-3/4 RI-PTCM. . . . . . . . . . . . . . . . . . . . 60

4.14 ��� � rotationally invariant punctured coding system. . . . . . . . . . . . 65

4.15 16-QAM signal constellation for rotationally invariant code. . . . . . . 67

5.1 Four way partitioning in uniform 64-QAM constellation illustrating the

two conditions for ZRCS. . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Four way partitioning on PAM signal constellations. (a) 4-PAM. (b)

8-PAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Signal constellation for scheme I. (a) 16-QAM. (b) 64-QAM. . . . . . . 80

5.4 Code structures of scheme I using two dimensional signalling. (a) Scheme

I-A on 16-QAM. (b) Scheme I-A on 64-QAM. (c) Scheme I-B on 16-

QAM. (d) Scheme I-B on 64-QAM. . . . . . . . . . . . . . . . . . . . 81

5.5 Four dimensional metric structure of scheme I-C. . . . . . . . . . . . . 84

5.6 Code structures of scheme I using four dimensional signalling. (a)

Scheme I-C on 16-QAM. (b) Scheme I-C on 64-QAM. . . . . . . . . . 85

5.7 Non-uniform signal constellation for scheme II. (a) 16-QAM. (b) 64-

QAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi



5.8 Signal constellation for scheme III. (a) 64-QAM constellation. (b) sig-

nal points for class 2 data (the points in the rectangle have the same

parity bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.9 Code structures of scheme III. (a) Scheme III-A(2-D signalling). (b)

Scheme III-B(4-D signalling). . . . . . . . . . . . . . . . . . . . . . . 88

5.10 Signal constellation for ����� � RI scheme III. (a) Class 2 data bit alloca-

tion for � ��� � RI code. (b) Received signal after ����� � phase error. . . . . 90

5.11 Structures of � ��� � RI class 1 data protection code in scheme III. (a) 2-D

signalling. (b) 4-D signalling. . . . . . . . . . . . . . . . . . . . . . . 91

5.12 Simulation of scheme III in 4-D signalling(
���

is 1.32) and ����� � RI 2-D

and 4-D signalling. (a) Uncoded 16-QAM. (b) Class 2 data protection

code. (c) class 1 code (scheme III-B : ��� � RIC on 4-D signalling). (d)

class 1 code (scheme III-A : ��� � RIC on 2-D signalling). (e) class 1 code

(scheme III-B : non-RIC on 4-D signalling). . . . . . . . . . . . . . . 93

6.1 8 PAM constellation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 HDTV Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Receiver structure of NTSC non-interfered case. . . . . . . . . . . . . . 97

6.4 Receiver structure of NTSC interfered case. . . . . . . . . . . . . . . . 97

6.5 Illustration of state splitting to make a partial response(PR) trellis. (a)

Four state ordinary trellis. (b) Eight state partial response trellis. . . . . 99

6.6 Branch metric calculation in PR trellis. . . . . . . . . . . . . . . . . . . 101

6.7 Numerical example of branch metric calculation and ACS. . . . . . . . 102

xii



6.8 Simulation results of TCM in HDTV transceiver with different metrics.

(a) 4 state ordinary TCM without NTSC interference. (b) Combined

MLSE and TCM decoding with ordinary squared metric. (c,d) Com-

bined MLSE and TCM decoding with first and second order noise pre-

dictive metric, respectively (sub-optimal). (e,f) Combined MLSE and

TCM decoding with first and second order noise predictive metric, re-

spectively (ideal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.9 Quantization of 8 PAM. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.10 Modulo structure of two’s complement arithmetic. . . . . . . . . . . . . 109

6.11 Bits location of two’s complement number. . . . . . . . . . . . . . . . 110

6.12 Two possible cases of different sign bit branch metric competition. . . . 111

6.13 Quantization effects of 4 state TCM on 8 PAM signalling. . . . . . . . . 114

6.14 Finite traceback depth effects of 4 state TCM on 8 PAM signalling. . . . 115

6.15 Finite traceback depth effects of 4 state TCM on 8 PAM signalling(

traceback starts from arbitrary state). . . . . . . . . . . . . . . . . . . . 116

6.16 Dynamic range effects of 4 state TCM on 8 PAM signalling. . . . . . . 117

6.17 Quantization effects of 8 state RSSE TCM with NTSC interference. . . 118

6.18 Finite traceback depth effects of 8 state RSSE TCM with NTSC inter-

ference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.19 Dynamic range effects of 8 state RSSE TCM with NTSC interference. . 120

6.20 Performance comparisons of fixed point TCM implementation and ideal

TCM in both NTSC interfered and non-interfered situation. . . . . . . . 121

xiii



ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my advisor, Professor

Gregory Pottie, for his full support, encouragement and guidance. His patience and un-

derstanding relieved me from the rigors of my research and made my school years a lot

easier. I would also like to give thanks to Professor Kung Yao, Professor Abeer Alwan

and Professor Kirby Baker for investing their time to be on my dissertation committee

and for their helpful input.

Fortunately, I had chances to meet several good teachers in my life. Among them

are my junior-high school teacher Jong Yoon Lee and Professor Byeong Gi Lee. Their

guidance at my earlier stage is essential for my academic achievement. I am also in-

debted to Dr. Nambi Seshadri for his support and guidance when I was a summer intern

at AT&T Bell Laboratories.

I am thankful to my colleagues for many helpful technical discussions and friend-

ship. Among them are Victor Lin, Charles Wang, Chris Hansen, Ben Tang, Eldad Per-

ahia, Heung-No Lee, Kathy Sorabi, Dennis Connors and George Kondylis. I would

also like to show my appreciation to Cheon Won Choi and other Korean students for

their guidance in general and friendship. My friend Soung Soo Yi and other people

whom I met in Hershey Hall where I have stayed for five years, I want to thank for their

friendship. They were always with me when I need people to exchange minds with.

I am deeply grateful to the people at Jesus Christ Korean Church and especially to

pastor Chang Hwan Park for their spiritual guidance and prayers.

My appreciation also goes to David Sarnoff Research Center and the state of Cali-

fornia Micro Program who provided financial support.

Most importantly, I would like to thank my parents from the bottom of my heart.

Without their immeasurable love and support, I would not have been what I am. Thanks

xiv



god for bringing so many good people into my life and for giving me the chance and

ability to accomplish this goal.

xv



VITA

Jaehyeong Kim

March 22, 1965 Born, Pusan, Korea

1988 B.S., Electronics Engineering, Seoul National
University, Korea

1990 M.S., Electronics Engineering, Seoul National
University, Korea

1988–1990 Research Assistant, Seoul National University,
Korea

1993–1996 Research Assistant, University of California at
Los Angeles

1993 Teaching Assistant, University of California at
Los Angeles

PUBLICATIONS AND PRESENTATIONS

B.G. Lee, M.G. Kang and J. Kim
Statistical Processing over Acoustic Signals
Seoul National University,Korea, Jan., 1989.

J. Kim and and B.G. Lee
System Recognition Using Cepstrum Coefficients
The second joint conference on Signal Processing,Seoul, Korea,Vol.2, No.1,
pp 150-153, 1989.

J. Kim
Application of Cepstrum Techniques for Acoustic Signal Source
Recognition
M.S. thesis, Seoul National University, Seoul, Korea, Feb., 1990.

J. Kim and G. J. Pottie
On Punctured Trellis Coded Modulation
Proc. of IEEE International Conference on Communications 1995.

xvi



J. Kim and G. J. Pottie
On Punctured Trellis Coded Modulation
IEEE Trans. on Information Theory, VOL. 42, NO. 2, pp. 627-636, March
1996.

N. Seshadri and J. Kim
Coding and Modulation for Simultaneous Voice and Data Transmission
IEEE Communication Theory Mini-Conference 1995.

xvii



ABSTRACT OF THE DISSERTATION

Channel Coding for Video Transmission over Unknown Channels

by

Jaehyeong Kim

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2002

Professor Gregory J. Pottie, Chair

Punctured convolutional codes result in some savings in the complexity of Viterbi

decoders, compared to other codes of the same rate. However, in general use of the

punctured structure in the decoder results in a performance loss for trellis codes, due

to difficulties in assigning metrics. We provide constructions for punctured rate-2/3

codes based on decomposition of the metric into orthogonal components. These show

no loss in performance for trellis coded QAM and PSK. We also provide ����� � and �����

rotationally invariant punctured TCM for QAM signalling.

We have also considered a family of unequal error protection (UEP) codes which use

a four way partitioning in a one dimensional lattice with multilevel codes. These non-

regular set partitionings combined with non-uniform signal constellations provide large

minimum distance and small path multiplicity for the important data. However, in this

case, standard code search techniques do not give us reliable information for estimation

of coding gain. A new code search method is introduced for better estimation of actual

coding gain. We show how to make ��� � rotationally invariant codes by using ����� �

xviii



rotationally invariant rate-1/2 convolutional code and resolving in-phase and quadrature-

phase power.

The original motivation for this work was consideration of possible alternative cod-

ing methods for HDTV systems. While the coder for HDTV has subsequently been

standardized, we have developed a means for improving the decoding reliability beyond

what is anticipated in the standard.
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Chapter 1

Introduction

In video transmission one is often confronted with the problem of a channel which

is unable to transmit enough data to reproduce images of desired quality. Channel coding

provides two possible solutions. It can increase the range for high quality transmission,

or may be used to ensure reliable reception of lower quality images beyond the range

of reliable high-quality transmission. A set of trade-offs in the relative ranges of the

two levels of quality is available. In most modern transmission systems, some form of

channel coding is included to increase the reliability and/or range of the service. The

resulting hardware must be cost-effective for broad customer acceptance. There will be

a wide variety of multimedia networks, potentially each with their own channel coding

methods. The cost and development time for these systems can be reduced if critical

components of the decoder design may be re-used in a variety of applications.

We have investigated new channel coding schemes which make convenient use of

previous decoder designs as well as methods for variable error protection transmission

that extensively re-use a common decoder engine. Techniques based on punctured con-

volutional code (PCC) appear to be very attractive. Punctured convolutional codes need

1



fewer arithmetic operations than ordinary convolutional codes. In addition to the com-

plexity advantage, in a situation where not all bits require equal error protection a family

of punctured codes of variable rate may be used. This allows the use of one basic de-

coder, reducing the area devoted to the decoder in ASIC implementations. Examples

of such re-use include “pragmatic” trellis coded modulation [1] [32]. Punctured trel-

lis coded modulation (PTCM) uses PCC as its component and has the advantages of

PCC. However, in general use of the punctured structure in the decoder results in a per-

formance loss for TCM, due to difficulties in assigning metrics for the decoder. We

provide constructions for PTCM based on decomposition of the metric into orthogonal

components. These show no loss in performance for trellis coded QAM and PSK.

One practical problem with PTCM is the difficulty of providing rotational invariance

or resolving phase ambiguity. To compensate for a phase ambiguity in the receiver, there

are essentially two approaches. We can estimate the phase ambiguity by sending a fixed

sequence of modulation phases to initialize data communication. On the other hand, we

can design trellis codes that are transparent to phase offsets at multiples of the smallest

difference between two modulation angles in the signal constellation. Our concern is

the latter approach and we provide ����� � and ��� � rotationally invariant PTCM for QAM

signalling.

In many speech and image coding schemes, some of the coded bits are very im-

portant while some others are less important from the point of view of the perceptual

quality of the reconstructed signal. In such applications, use of unequal error protection

(UEP) which provides different error protection for different classes of information, may

provide benefits. For example, HDTV (High Definition Television) broadcast allows the

possibility of offering several grades of service. Customers close to the transmitter could

2



receive the full resolution promised by HDTV while those at a larger range would re-

ceive NTSC quality (normal TV quality) images, which can be accomplished by using

multi-resolution codes. Multi-resolution codes could be a subset of UEP in the sense

that NTSC quality information is important and highly protected and the additional in-

formation is not very important but can up-grade the quality of the image if correctly

recovered. In UEP, important information is transmitted at a low rate and the rest at a

higher rate. There are two ways of achieving UEP in a broadcast channel.

The first approach is time sharing or time-multiplexing method, where different rate

signals are in different time slots. This scheme recovers only the signals at the time slot

for low rate data if the channel capacity is low. The generalized time sharing scheme in

which a code of non-zero rate specifies the multiplexing rule rather than using a fixed

multiplexing rule (see Calderbank/Seshadri [3]) is more clever, but is still not the best

we can do if TCM may be employed.

The second approach is superimposing higher rate information and lower rate in-

formation in one signal, where we recover from the signals in all time slots the low

rate information if the channel capacity is low. Cover [50] showed that superimposing

codes may be preferable to time sharing in that for a small reduction in capacity for the

high rate, the low rate information may be better protected. The use of multilevel codes

and multi-stage decoding (see Calderbank [33] and Pottie/Taylor [34]) provides a rather

flexible way of allocating different levels of error protection to various classes of data.

We have designed a family of unequal error protection (UEP) codes based on super-

imposition, which provides good coding gains for both data classes (important data and

less important data) with reasonable complexity. Furthermore, we can easily make ��� �

rotationally invariant codes by using � ��� � rotationally invariant rate-1/2 convolutional

codes and resolving in-phase and quadrature-phase power.
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This dissertation is organized as follows. A brief tutorial description of channel

coding including convolutional codes and TCM is presented in chapter 2. In chapter

3, we discuss PTCM for QAM and PSK. We describe how to construct the punctured

trellis and signal constellation, and describe the decoding methods. ����� � and ��� � rota-

tional invariance of PTCM is discussed in chapter 4. In chapter 5, we propose a family

of unequal error protection code having a rotationally invariant structure. The original

motivation for this work was consideration of possible alternative coding methods for

HDTV systems. While the coder for HDTV has subsequently been standardized, we

have developed a means for improving the decoding reliability beyond what is antici-

pated in the standard. A description and the results of the HDTV systems development

project is given in chapter 6. Concluding remarks are given in chapter 7.
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Chapter 2

Channel Coding

A communication system connects an information source to a user through a

channel as shown in Figure 2.1. The information sequence is first processed by a source

encoder designed to represent the information in more compact symbols called source

codewords. The source codewords might be represented by a group of bits. The chan-

nel encoder transforms a binary information sequence into another sequence called the

channel codeword. The channel codeword is a new, longer sequence that has more re-

dundancy than the binary source codeword. This enables correction of errors introduced

by a noisy channel. The modulator converts the channel codeword into a corresponding

analog symbol from a finite set of possible analog symbols. The sequence of analog

symbol is transmitted through the channel. Because the channel is subject to various

types of noise, distortion and interference, the channel output differs from the channel

input. The demodulator converts each received channel output signal sequence into one

of the channel codeword symbols. Each demodulated symbol is the best estimate of

the transmitted symbol, but the demodulator makes some errors because of the chan-

nel noise. The channel decoder uses the redundancy in a channel codeword to correct
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Figure 2.1: Block diagram of a digital communication system.

the errors in the received words and then produces an estimate of the source codeword.

The source decoder performs the inverse operation of the source encoder and delivers

its output to the user. Since our main concern is channel coding, we will consider the

components in the dashed block in Figure 2.1.

The code rate
���

is defined as �� when the number of encoder output bits per each
�

bit input sequence is � . There are two categories of channel coding. Block codes

have a strong algebraic structure, where a finite length information sequence is encoded

into a finite length encoded sequence. Trellis codes of infinite length can be represented

by a tree and can be decoded by tree searching algorithms. One of the most useful

classes of trellis codes are convolutional codes [49], which can be generated by a linear

shift-register circuit that performs a convolution operation on the information sequence.

The Viterbi algorithm(VA) [18] [47] has gained widespread popularity for decoding

convolutional codes.

2.1 Convolutional codes

A four state rate- �� convolutional encoder and the corresponding code trellis is

shown in Figure 2.2. As shown in Figure 2.2 (a), the binary input data to the encoder is
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(a) Convolutional encoder.

Figure 2.2: Four state rate-1/2 convolutional encoder and corresponding code trellis.

shifted into the shift register which has three stages (one has the present input ��� and the

other two have the past inputs
�
����� � 
������ � � representing the state). If the current state is

�
����� � 
������ � � , the next state is

�
��� 
	���
� � � . There are four possible states (0,0), (0,1), (1,0)

and (1,1) or equivalently, 0, 1, 2 and 3 in decimal notation. The output of the encoder

is determined by the input and the state of the encoder. The code trellis in Figure 2.2

(b) shows their relation. Each state in the trellis has two branches leaving and entering

it. A solid line denotes the output generated by the input bit 0 and a dotted line denotes

the output generated by the input bit 1. All the possible paths in the trellis could be

codewords and the minimum distance between them increases as the number of states

increases for well-constructed codes.

The Viterbi algorithm considers the code to be represented by a trellis, which is a

periodically repeating structure with nodes or states connected by edges or branches

which are labeled by the encoder outputs corresponding to the state transitions. The

VA finds the connected path through the trellis that is closest to the received sequence of

bits or symbols according to the metric or distance measure. For additive Gaussian noise
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as the only channel impairment, the metric is the squared Euclidean distance between

the symbol corresponding to the branch and the received symbol for that time interval.

The VA accumulates the metric along each path, then selects only the branch entering a

state with the lowest accumulated metric, killing the others. These decisions are stored

in memory. After the decoder has proceeded a depth of L branches, it initiates trace-

back, searching back along one surviving path to determine the branch decided upon at

the beginning. The main computational blocks of a Viterbi decoder are metric compu-

tation, the add/compare/selection(ACS) process and path traceback. Among them, in

general the ACS process is more computationally demanding since we require one such

operation for each state.

One simple example of the operation of the VA is illustrated in figure 2.3. We assume

we BPSK (binary phase shift keying) signalling, i.e. we transmit +1.0 when the encoded

output is 1 and we transmit -1.0 when the encoded output is 0. The received signal is

noise corrupted. At time 0, the sequence (0.9,1.2) is received. The decoder computes

the squared Euclidean distance (squared Euclidean distance is an optimal distance mea-

sure under Gaussian noise environment) of the received sequence to the modulated code

words assigned to the two branches out of state 0. This step is shown in Figure 2.3

(b). The numbers in the branches denote the squared Euclidean distance between the

received signal and modulated signal of the corresponding branches, and are called the

branch metric. For example, From Figure 2.2 (b), the codeword of the branch connect-

ing state 0 to state 0 is 00 and the modulated signal is (-1,-1). The squared Euclidean

metric is
�
��� � � � �

� � � � � �
����� � � �

����� ���
���	��
 . In the same way the metric of the

branch connecting state 0 to state 2 is
�
��� � �

��� � � �
����� �

� � �� ��� ��
 . The numbers in

the parentheses denote the accumulated metric of the two paths. The accumulated metric
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is defined as the sum of metrics of all branches on that path. Next, the sequence (0.7,-

1.2) arrives. The decoder now computes four branch metrics as shown in Figure 2.3 (c).

The accumulated metrics of the four paths are again shown in parentheses. Next the de-

coder computes eight branch metrics corresponding to the received sequence (0.6,0.5)

at time 2 (see Figure 2.3 (d)). Two paths enter each state in this figure, of which the

Viterbi algorithm retains the one with the smaller accumulated metric. The other path is

discarded from further consideration. The discarded paths are noted as a dotted line.

At the end of the time 2, state 0 has the smallest accumulated metric. The history of

the state 0 will be chosen as a correct path which is noted as a thick line. As a result, the

correct encoded sequence at time 2 is (1,0,0).

Decoding a rate- � � convolutional code is similar to decoding a rate- �� code, with the

difference that there are � � branches entering each trellis state. The Viterbi algorithm

must therefore select one of these � � branches. The number of comparisons can be

reduced with the use of punctured convolutional codes (PCC) [13]-[15]. Decoding a

rate- �
�

� � convolutional code requires � �
�

� comparisons per state, while a PCC with

the same rate needs only � comparisons in each state. This difference becomes large as

the code rate increases.

The principle behind punctured codes is easily explained using a four state rate-1/2

code and its trellis [19]. If we delete, or puncture, every fourth bit provided by the en-

coder, the resulting code produces three output bits for every two input bits and hence

has rate-2/3. The trellis for this code is shown in Figure 2.4(a), where an x indicates a

punctured output bit. The trellis for the rate-2/3 code shown in Figure 2.4(b) is equiva-

lent to the trellis in Figure 2.4(a), although one stage of the former corresponds to two

stages of the latter.

In addition to the complexity advantage, in a situation where not all bits require
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Figure 2.4: Rate-2/3 trellis and equivalent punctured trellis.

equal error protection (e.g. with voice and video coding) a family of punctured codes of

variable rate may be used. This allows the use of one basic decoder, reducing the area

devoted to the decoder in ASIC implementations.

2.2 Trellis coded modulation

Trellis coded modulation (TCM) is a combined coding and modulation technique

for digital transmission over band-limited channels. The basic principles of TCM were

published in 1982 [31], and some further developments are documented [24]-[30]. In

a bandwidth-limited environment, increased efficiency in frequency can be obtained by

using a larger size signal constellation, but a larger signal power would be needed to

maintain the same signal separation and the same error probability. TCM combines a

multilevel modulation scheme with a convolutional code, while the receiver, instead of

performing demodulation and decoding in two separate steps, combines the two opera-

tions into one.
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In classical digital communication systems, the function of modulation and error-

correction coding are separated. Modulators and demodulators convert an analog wave-

form channel into a discrete channel, whereas encoders and decoders correct errors that

occur on the discrete channel. In conventional multilevel (amplitude and phase) modu-

lation, the modulator maps � binary bits into one of
�

(= � � ) possible transmit signals,

and the demodulator recovers the � bits by making an independent
�

-ary nearest-

neighbor decision on each signal received.
�

-AM,
�

-PSK and
�

-QAM are examples

of the multilevel modulation.

Conventional channel codes operate on binary symbols transmitted over a discrete

channel, and Hamming distance is the measure of distance for decoding. When we use

maximum likelihood decoding, the optimal distance metric in additive white Gaussian

channel is squared Euclidean distance. Thus, in decoding it is desirable to also use

Euclidean distance; This results in nearly a 3 dB gain over use of Hamming distance.

However, when we use BPSK or QPSK signalling, maximizing the Hamming distance

also maximizes the squared Euclidean distance, and thus codes with large Hamming

distance are also effective for the Gaussian channel.

If the channel is band limited, we enlarge the signal set of the modulation system,

i.e. use multilevel modulation. In this case, independent hard signal decisions prior

to decoding may cause a large loss of information, because the Hamming distance be-

tween signal labels can not be made proportional to squared Euclidean distance between

signals. Thus, maximizing the Hamming distance does not necessarily maximize the

squared Euclidean distance of the code. Even if it does, we need soft decisions for

decoding and want to combine the coding and modulation process.

Consider one example. Four bit codewords are mapped into 16-QAM signal set as

shown in Figure 2.5. As a mapping rule, we use the Gray code, where the labels of the
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1000 1001 1011 1010

1100 1101 1111 1110

0100 0101 0111 0110

0000 0001 0011 0010

Figure 2.5: Mapping of binary codeword into 16-QAM constellation.

nearest neighbors differ in only one bit. As we can see in the Figure 2.5, the Hamming

distances and Euclidean distances of codeword pairs are not always the same. The rem-

edy for this problem is soft-decision decoding, where the decoder operates directly on

the unquantized received signal. The idea of using redundant signal sets and directly

optimizing the encoder to get the best Euclidean minimum distance were presented by

Ungerboeck [31]. He proposed a new way of mapping known as mapping by set parti-

tioning. Assume we map � encoded bits into an
� � � � � � point signal set, and label

the encoded bits as
���

�
� � 
 �

�
� � 
 � � � 
 � � 
 � � � . Set partitioning divides a signal set into

disjoint subsets, called cosets, with maximally increasing intra-subset (or intra-coset)

distances
�
��
 	 � � 
 �
 � 
 � � � 
 � . Each partition is two-way and the partition is repeated

�
times until

�
� is equal to or larger than the desired minimum distance �

�
� � of the TCM

scheme to be designed. The least significant (LS) bit is assigned in the first partition

and the next LS bit is assigned in the second partition. The signal points whose label

differs in only the
�

-th LS bit are at least a distance of
�
� � � apart. Therefore, the labels

of the signals contain useful information about how far apart the signal points are. This

is illustrated in Figure 2.6. In this example the squared intra-coset distances are doubled

in each two-way partitioning.
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Figure 2.6: Set partition of a 16-QAM constellation [31].
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If
�
� � � is larger than or equal to �

�
� � , the �

���
most significant bits do not need pro-

tection and can be transmitted without encoding. Rate-
��� �

����� � convolutional coding is

used for the protection of the remaining bits, where the encoder output determines which

of the � � cosets are to be transmitted. The remaining �
� �

bits decide one signal point of

the chosen coset. The encoder structure of TCM is illustrated in Figure 2.7. In decoding

TCM, the Viterbi decoder decides upon the sequence of cosets, and the uncoded bits are

then recovered from the decoded cosets. The branch metric calculation is different from

convolutional codes because
�

output bits are grouped to represent cosets. Thus, the

branch metric must be calculated per coset (in a convolutional code, the branch metric

is obtained per bit). An example of rate-1/2 TCM on 16-QAM signalling is illustrated in

Figure 2.8. There are four cosets � 
�� 
�� 
 and � labeled by two LS bits
� �
� 
 � � � . The

output label of the code trellis in TCM is not the binary value but the label of the cosets.

The branch metric of coset � is the minimum squared distance between the received

signal and the 4 signal points in coset � . The minimum distance ��� among different
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Figure 2.8: Example of rate-1/2 TCM on 16-QAM signalling.

paths in the trellis can be calculated from the code trellis and inter-coset distance rela-

tions. From Figure 2.8 (a), we obtain the inter-coset distances and intra-coset distance

� � . For example, the squared inter-coset distance of coset pairs
�
� 
 ��� and

�
� 
 � � is � � ��

and the squared distance of coset pairs
�
� 
 � � and

�
� 
 � � is � �� . The squared intra-coset

distance of all the cosets is � � �� . At the decoder, first we decide upon sequences of trans-

mitted cosets using Viterbi decoding and then we recover the uncoded bits by picking

up one of the four members of the chosen coset. Thus, the minimum distance of TCM is

the minimum of � � and � � . Because we may adds any number of uncoded bits and keep

the same basic TCM structure, we shall use the shorthand that rate-
� � � TCM implies

use of a rate-
� � � convolutional code.

There have been many investigations of signal sets defined in more than two dimen-

sions [24] [35]-[38]. The advantages of multi-dimensional signalling are as follows.

First, we can pack the signal points more efficiently when the dimensionality is large,

and as a result larger �
�
� � can potentially be obtained. It also provides a great degree

of flexibility in achieving various information rates and in designing rotationally invari-

ant codes [36]. Practically, multi-dimensional signals can be transmitted as sequences

of one or two dimensional (1-D or 2-D) signals. Assume we use an uncoded � � point

constellation. If we want to use TCM, we have to increase the constellation size to
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accommodate one more redundant bit. The signal size will be increased from � � � to

� � �
� � when we use 2N-D signalling and the signal constellation size per two dimen-

sions is � �
� ��� � . Thus, the signal size expansion per two dimensions decreases as �

increases. There is 3 dB constellation size expansion loss when we use 2-D signalling

( �
�

� ) and the loss decreases to 1.5 dB or 0.75 dB when we use 4-D or 8-D signalling,

respectively.

The need for rotationally invariant trellis codes occurs in coherent detection using

suppressed carrier modulation. In QAM signalling, removal of the phase modulation in

the phase circuitry in the receiver may cause a phase ambiguity of ��� � . Either we must

send special sequences to establish absolute phase, or we need to design trellis codes

that are transparent to the phase offset. When we do not use channel coding, differential

encoding, where the phase differences between successive signals are transmitted, can

be used. The operation of differential encoding is explained as follows. Assume we

use M-PSK signalling. The phase addition operator ��� and subtraction operator ���

adds and subtracts the two phases of the operands, respectively. Let 	���
 	 � � 
 �
 � � � , be

the input sequence, which is then differentially encoded to produce the output sequence


 ��
 	 � � 
 �
 � � � , where 
 � can be obtained as


 �
�
	������ 
 ��� � (2.1)

Let 
 � 
 	 � � 
 �
 � � � , be the sequence of received signals after some phase offset � . Then


 �
� 
 ����� � . Assume the adjacent transmitted signals 
 � and 
 ��� � experience the same

phase offset � , then the recovered input 	�� is obtained from the phase subtraction of the

two adjacent signals. This is explained by the following equations.

	��
�


 ������
 ��� �
� � 
 ����� ������ � 
 ��� ����� � �
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Figure 2.9: Rotationally invariant systems. (a) Ordinary differential encoding/decoding.
(b) Rotationally invariant system with channel coders.

� � �
	������ 
 ��� � � ��� ������ � 
 ��� ����� � �

�
	�� �

When we use channel codes, the problem is much more complicated. A considerable

amount of research has been undertaken to design codes which are transparent to phase

offsets [9]-[11] [30] [36]. The basic condition for channel codes having rotationally

invariant structure can briefly be explained in Figure 2.9. The systems in Figure 2.9 (a)

and Figure 2.9 (b) are the same if the dashed block of the Figure 2.9 (b) is the same as

phase rotation block of Figure 2.9 (a). This can be restated as follows. If the modulated

signal
�

is phase rotated, then the decoded signal must be phase rotated version of the

input to the encoder � , i.e. the phase rotation of input to the channel coder is directly

related with the phase rotation of the modulated output. This at minimum requires that

every ��� � rotation of one code sequence is also a code sequence. Design of effective
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channel codes with this property will be described in chapter 4.
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Chapter 3

Variable Rate TCM using Rate-1/2

Trellis

Punctured trellis coded modulation (PTCM) is TCM using a punctured convolu-

tional code. The motivation is the same as in puncturing ordinary convolutional codes,

i.e. reduced complexity and the possibility of variable error protection. When we use

BPSK or QPSK, we obtain the branch metric per bit. Thus PTCM and punctured con-

volutional codes have the same decoding procedure. However PTCM has a different

branch metric from punctured convolutional codes when we use M-ary QAM or PSK.

In this case the branch metric is obtained per symbol and needs to be decomposed when

we use a punctured trellis. This is illustrated in Figure 3.1, where we have to decompose

the squared Euclidean metric � ��� 	�� ��� into the component metrics � ��� 	 � and � ��� � ��� .
In general, use of the punctured structure in the decoder results in a performance

loss for trellis codes, due to difficulties in assigning metrics. Thus, care must be taken

when puncturing to produce a trellis code which can make good use of soft decisions,

when we map more than one encoded bit onto each signal dimension.
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(a) Ordinary rate-2/3 trellis. (b) Punctured rate-2/3 trellis.

i j k i x j k

Figure 3.1: Rate-2/3 trellis and equivalent punctured trellis; 	�
��
 � are binary values and
“x” means puncturing position. The label 	�� � represents one of the eight cosets.

Recently, Chen and Haccoun applied the puncturing technique to TCM for PSK

and achieved simplified decoding and code rate flexibility at the expense of a small

reduction in the coding gain [2]. However this scheme does not provide satisfactory

results for QAM. Another recent application is the pragmatic punctured ( �
�

) trellis

code, consisting of two punctured rate-1/2 convolutional codes mapping one bit per

dimension. �
�

trellis coded modulation leads to more efficient codes than the non-

punctured pragmatic TCM [1]. However, these codes are not rotationally invariant. In

the next chapter, we will investigate two methods of designing ��� � rotationally invariant

PTCM, which retain the optimal branch metric property.

We provide constructions for punctured rate-2/3 codes based on decomposition of

the metric into orthogonal components. These show no loss in performance for trellis

coded QAM and PSK. In section 1, we discuss PTCM for QAM. We describe how to

construct the punctured trellis and signal constellation, and describe the decoding meth-

ods. PTCM for PSK is described in section 2. Simulation results and their interpretation

are presented in section 3.
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3.1 Variable rate TCM using rate-1/2 trellis

In the following, for illustrative purposes we assume that a coded 32 point QAM

signal constellation is used to achieve an effective transmission rate of 4 bits per channel

symbol for two-dimensional codes, and 4.5 bits per symbol for four-dimensional codes.

3.1.1 Rate-1/2 PTCM

Rate-1/2 TCM has 4 cosets and each coset has 8 members. Let the four cosets

be � 
 � 
�� and � , with bit labels 00, 01, 10 and 11 respectively. The trellis for TCM is

obtained from the trellis of the binary convolutional code by replacing the bit labels of

the branches by the corresponding coset labels.

Since squared Euclidean distances among cosets should match the Hamming dis-

tances of the original binary rate-1/2 code, we let the minimum squared distance be-

tween cosets � , � and the minimum squared distance between cosets
�
, � be � � �� . The

resulting optimal coset partitioning in 32-QAM is illustrated in Figure 3.2. The squared
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C D D
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D
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do

Figure 3.2: 32-QAM constellation for rate-1/2 TCM.

intra coset distance is � � �� , which limits the gain of the trellis code to 3 dB if used in an

equal-error protection scheme. Increasing the number of states beyond four will only

serve to further protect one bit per symbol. Thus higher rates are of interest.
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3.1.2 Rate-2/3 PTCM

Rate-2/3 TCM has eight cosets and each coset has four members. There are two

input bits in one symbol interval and so two branches are assigned to each symbol in the

punctured trellis. Since we need 3 output bits, we puncture one of the 4 positions.

In the following, we present good puncturing patterns, a simple method for obtaining

two branch metrics from one optimal branch metric, and a coset partitioning for 32-

QAM constellations suitable for use with PTCM. The solution results in almost the

same performance as the best rate-2/3 TCM reported in the literature [24].

3.1.2.1. Basic constraints of PCC trellis design

In a rate-2/3 trellis, there are 4 in-going branches and 4 out-going branches for

each state. A rule of thumb [31] is that the distances among these branches should be

as large as possible to produce the maximum free distance. We will later show that it

is only for such trellises that Viterbi decoding on the punctured trellis results in optimal

soft-decision decoding.

Let cosets “a, c, e, g” constitute group � � , “b, d, f, h” be the group ��� . The set � �

is a subset of lattice
� � �

while � � is a subset of lattice
� � � � � � . These lattices are

depicted in Figure 3.3.

0

Lattice RZ

Lattice RZ +d

2

2

Figure 3.3: Lattice illustration.

23



Table 3.1: Binary representations of 8 cosets.

cosets binary labels
a 000
b 001
c 010
d 011
e 100
f 101
g 110
h 111

In-going branches and out-going branches should be drawn from one of these two

groups. The binary coset labels are in Table 3.1. Cosets in � � and � � have values 0

and 1 in the last binary digit, respectively. In a punctured trellis, there are two in-going

branches and two out-going branches. The merging of two steps of the punctured trellis

should result in a rate-2/3 trellis with maximum separation of in-going and out-going

branches at each state. To accomplish this, the following constraints should be observed

in puncturing.

In a punctured trellis, every two branches are combined to have one coset output.

“First step” is defined as a group of all the first branches of the two, and “second step”

is defined as a group of all the second branches of the two.

Constraint 1 The second digit of two in-going branches in the second step should

have the same value to make cosets of the same group go into the same state.

Some trellises which satisfy constraint 1 are depicted in Figure 3.4. “ � � ” branches

are defined as branches at the second step which have 0 valued second digit, and “ � � ”
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0 or 1

0 or 1

1 or 0

0 0

1 0

0 or 1

0 or 1

1 or 0

1 1

0 1

1 or 0 1 or 0

Figure 3.4: Sample sub-trellises which satisfy constraint 1.

branches are defined as branches at the second step which have 1 valued second digit.

Constraint 2 The second digit of two out-going branches in the second step should

have the same value, and out-going branches at the first step should connect the same

kind of out-going branches at the second step to make cosets of the same group stem

from the same state.

Figure 3.5 illustrates � � and ��� branches and Figure 3.6 shows some trellises which

satisfy constraint 2.

1 0

0 0

0 0

1 0

1 1

0 1

0 1

1 1

(a) (b)out-going branches. out-going branches.K10K

Figure 3.5: ��� and ��� out-going branches.
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0x

1x

0 0

1 0 

1 0

0 0

0x

1x

0 1

1 1

1 1

0 1

Figure 3.6: Sample sub-trellises which satisfy constraint 2.

3.1.2.2. Optimal puncturing pattern

By constraint 1, the second digit of in-going branches in the second step should

have the same value, which implies that the first digits of in-going branches in the second

step cannot have the same value. Thus we cannot puncture output digits at the second

step. Since the binary outputs of the rate-1/2 trellis at the first step are the same as that

of the second step, the second bits of in-going branches in the first step also have the

same values, and so we puncture them.

3.1.2.3. Obtaining branch metrics at the punctured trellis

We now outline the conditions for which that there is no branch metric distortion

in rate �
�

� � PTCM. A sequence of � outputs in the punctured trellis represents one

coset.

Condition 1 (justification of pre-decision) Each step branch metric is independent

of the previous step decision results.

In Viterbi decoding, we must decide on the most probable branch at every step. If
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dd

d

21

1

[0]

[1]

Figure 3.7: Example for illustration of condition 1.

condition 1 is not satisfied, the decision at every step is not optimal. For example, sup-

pose we have two branches with � � � � � and � � � � � as the first step branch metrics, and with

� � as the second step branch metric. This is illustrated in Figure 3.7. Assume condition

1 is not satisfied. If the upper branch is selected, let � � have value � � � � � . Otherwise, let

� � have value � � � � � . When � � � � � is smaller than � � � � � , we select the upper branch at the

first step as the more probable route and the branch metric at the end of the second step

is � � � � � � � � � � � . If the value of � � � � � is much smaller than � � � � � , then � � � � � � � � � � � could

be smaller than � � � � � � � � � � � , and an error results.

Condition 2 The summation of � step squared branch metrics in a punctured trel-

lis is the squared branch metric of the corresponding coset.

In a rate-2/3 trellis, there are four in-going branches. The outputs of these four

branches are � � cosets a, c, e, g or ��� cosets b, d, f, h. Without loss of generality, we

assume � � cosets. One example of rate-2/3 TCM branches and the equivalent punctured

branches is illustrated in Figure 3.8. The branch metrics � � � � � , � � � � � , � � ��� � and � � ��� � in

Figure 3.8 must be expressed in terms of � � � � , � � � � , � ��� � and � � � � . The subscript “ � ” in

� ��� � � � and � ��� � � � means the branch in the first step connects � � branches in the second

step. � ��� � � � and � ��� � � � are squared branch metrics of the first step when the branch in

the first step connects � � branches in the second step. The values of these metrics will

be obtained later.
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d[a]=d[000]

d[e]=d[100]

d[c]=d[010]

d[g]=d[110]

(a) Rate-2/3 TCM branches. (b) Equivalent punctured branches.

d[10]

d[0] 0

d[1] 0

d[0] 0

d[1] 0

[00]d

Figure 3.8: Example of TCM branches and equivalent punctured branches.

The two dimensional received signal vector �� may be represented as the sum of two

component vectors,

�� � � ���� � � � � �� � (3.1)

where �� � and �� � are mutually orthogonal unit vectors. We define ���� as

������ �� � ���� (3.2)

where � represents an arbitrary coset and �	� is the nearest point of coset � to the received

signal � . ���� can be represented as

���� �
��� ���� � � ��� � �� � (3.3)

The squared metric for coset � , � � � � � , is obtained as follows.

� � � � � � 
 ���� 
 � � 
 �� � ���� 
 �

� 
 � � � � ��� ������ � � � � � � ��� � ���� � 
 �
� � � � � ��� � � � � � � � � ��� � � � � (3.4)

Since � � � � � is the sum of � ��� � � � and � ��� ��� � (by condition 2) and � ��� ��� � must be ob-

tained independently (by condition 1), we can obtain the branch metric of the punctured
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trellis as follows.

� � � � � � � � � � � � � � � � and � � � ��� � � � � � � � � � � �

� � � � � � � � � � � � � ��� � and � � � � � � � � � � � � � � � �

� � � � � � � � � � � ��� � � � and � � � ��� � � � � � � ��� � � �

� � � � � � � � � � � ��� ��� � and � � � � � � � � � � � ��� � � � (3.5)

From the above equations we find that

� � �
�
� � � 
 ��� � � ��� � 
 � � � � ��� � 
 and � � � � ��� �

Cosets � and � have the same coordinate in �� � , which means that the line connecting

cosets � and � is perpendicular to the unit vector �� � and parallel to �� � . Similar conditions

determine how the constellation is partitioned into cosets, so that rate-2/3 PTCM has no

branch metric distortion when the outputs of in-going branches and out-going branches

are cosets in � � . Results for � � are similar. The coset partitioning of a 32 QAM

constellation with no branch metric distortion is shown in Figure 3.9. In this case, the

two orthogonal unit vectors �� � and �� � are

�� � � � �
� � ����

� �
� � ��
	 
 �� � � �

� � ��
�
� �
� � ��
	 (3.6)

where ���� and ��
	 are unit vectors along the horizontal and vertical axes, respectively. The

branch metric calculation has a simple geometric interpretation. Assume that outputs

in some trellis branches are members of ��� cosets. � � � � � is the distance between the

received signal and the nearest line connecting cosets �
�
� . � � � � � is the distance between

the received signal and the nearest line connecting cosets
� � �

. � � ��� � is the distance

between the received signal and the nearest line connecting cosets
� �

� . � � ��� � is the

distance between the received signal and the nearest line connecting cosets
� �

� .
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(100)(001) (111) (010)

(101) (110) (011) (000) (101) (110)

(100) (111) (010) (001) (100) (111)

(011) (000) (101) (110) (011) (000)

(010) (001) (100) (111) (010) (001)

(110) (011) (000) (101)

Figure 3.9: 32-QAM signal constellation with optimal coset partitioning.

Practically we can obtain branch metrics by the following procedure.

First, obtain two components � � and � � of the received signal.

� � � ���� �� � 
 � � � ���� �� � (3.7)

Second, find branch metrics of all the possible cases.

� � � � � � � � � � � � � ��� � 
 � � � � � � � � � � � ��� ��� �

� � � � � � � � � � � � � ��� � 
 � � � � � � � � � � � � � ��� �

� � � ��� � � � � � � � � � � � 
 � � � ��� � � � � � � � � � � �

� � � � � � � � � � � � � � � � 
 � � � ��� � � � � � � ��� � � � (3.8)

Finally, we use � ��� � � � and � ��� � � � as branch metrics for the first step if the branch in the

first step connects � � branches in the second step. Otherwise, we use � ��� � � � and � ��� � � �
as branch metrics for the first step.

The branch metric computation has similar complexity to that of original form of

TCM. However there is a small performance degradation if we do not take into account

30



E

G

E

C

A

C

A

C

G

E

G

E

G

A

C

A

x1

x2

(010)

(000) (110)

(100)

Figure 3.10: Illustration of boundary effect.

the boundary effects in the signal constellation. This is illustrated in Figure 3.10, which

depicts the � � signal points in 32-QAM. When the received signal is x2, branch metrics

of cosets � 
 ��
 �
and

�
are correctly obtained by using equation (3.8). However, when

the received signal is x1, the branch metric of coset � is not the correct value, because

the method in equation (3.8) assumes that there is another point of coset � at
�

, and

the branch metric obtained for coset � is smaller than the real one. So we can not use

equation (3.8) to obtain branch metrics when the received signal is at the boundary of the

constellations. To overcome this effect, we could assign the branch metrics at the second

steps according to the decision results in the first steps, which requires more operations

and some performance degradation. However, simulations reveal the degradation to be

negligible, as illustrated in Figure 3.11. Practically, we can use modulo operations in

branch metric calculations to simplify either TCM or PTCM. PTCM with independent

step branch metrics has the same performance as TCM, when both employ the modulo

reduction technique.
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Figure 3.11: Performance comparisons with rate-2/3 TCM and PTCM.
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Table 3.2: Performance comparisons of rate-2/3 TCM.

Our scheme Best known code [24]
states Generators(octal) � � � � � � � � � �

8 13,2 5 16 5 16
16 31,2 6 56 6 56
32 75,10 6 16 6 8
64 145,4 7 48 7 40

3.1.2.4. Finding generator sequences

We now present our code search results. For a rate-1/2 trellis, the Hamming

distance between two branches going into and stemming from the same state should

be 2 to guarantee maximum free distance. To satisfy constraint 1, we change this rule.

Since the second bits of two in-going branches and two out-going branches are the same,

we must change the outputs of the original rate-1/2 trellis.

We performed a computer search over all rate-2/3 codes satisfying condition 1 and

condition 2. Table 3.2 presents the codes with largest minimum squared distance of the

trellis � � � and minimum number of nearest neighbors � � . As we can be seen, our codes

have almost the same performance as the best known codes.

3.1.3 Multidimensional PTCM.

The procedures for designing rate-2/3 PTCM are easily generalized to � di-

mensional signal sets. The received signal �� is represented by � mutually orthogonal

vectors.

�� � �
�

��� �
� � ���� (3.9)
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where ���� ’s are mutually orthogonal unit vectors. Then

���� � �
�

��� �
��� � ���� (3.10)

The squared metric for coset � , � � � � � is

� � � � � � �
�

��� �
� � � � ��� � � � (3.11)

We must decompose � � � � � into � branch metric components. To satisfy condition 1

and condition 2, � should be no less than � . As a result, we need more than two

dimensional signalling when � is larger than two (i.e. the code rate is larger than
��
).

Wei-type multidimensional TCM achieve high coding gain with rotational invariance

[36]. However applying puncturing to Wei-type multidimensional TCM is not possible

because the particular coset merging procedure used violates condition 1. However,

there are many other situations in which we can implement PTCM for QAM signalling

with arbitrary � which satisfies the two conditions.

3.1.3.1. Rate-3/4 PTCM

With punctured rate-3/4 codes, it is not possible to avoid branch metric distortion

when two dimensional signal sets are used. To avoid branch metric distortion, we pro-

pose 4 dimensional signalling. We transmit two consecutive 32 QAM signals, with 4

cosets � 
 � 
 ��
 � in each constellation. Three steps of the punctured trellis are assigned

per 2 symbols. Since we puncture 2 of 6 output bits, one step is not punctured and

the other two steps are punctured. The non-punctured step has 2 bits which represent

4 cosets and assigned to one signal. The other two punctured steps are combined to

represent 4 cosets, and assigned to one signal.

At the non-punctured first step, two bits represent all the 4 cosets and there is no

problem in branch metric calculation. On the contrary, at the punctured second and
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d[a]=d[00]

d[c]=d[10]

d[b]=d[01]

d[d]=d[11]

[0]d1

d1

[0]d1

d1

d

[0]d2

2 [1]

[1]

[1]

(a) merged trellis of second and third step (b) second and third step branches

Figure 3.12: Punctured second and third step branches and equivalent merged trellis.

third step we should assign branch metrics at each step, i.e. we obtain � � � � � 
 � � � � � 
 � � � � �

and � � � � � from � � � � 
 � � � � 
 � � � � and � � � � . This is illustrated in Figure 3.12. By the same

procedure of rate-2/3 case, we can do this without any branch metric distortion. From

equation (3.4), we can derive that

� � � � � � � � � � � � � � �� � � � � � � � � � � ��� � � � � � � � � � � � �
� � � � � � � � � � � � � � �� � � � � � � � � � � ��� � � � � � � � � � � � �
� � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �� � � � � � � � � ��� ��� � � � � � � ��� � � � � (3.12)

From the above relations we find that

� � �
�
� � � 
 � � � � � � � 
 � � � � ��� � 
 � � � � ��� � �

Thus � � � � � is the distance between the received signal and the nearest line connecting

cosets �
� � �

�
� �

. � � � � � is the distance between the received signal and the nearest

line connecting cosets �
� � �

�
� � . � � � � � is the distance between the received signal

and the nearest line connecting cosets �
�
�
�
�
�
� . � � � � � is the distance between the

received signal and the nearest line connecting cosets
� � � � � � � . This structure is
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Figure 3.13: Illustration of branch metrics in second and third step branches.

illustrated in Figure 3.13. The signal points with 0 as a first digit are in one line and the

signal points with 1 as a first digit are in another line. In the same way, the signal points

with 0 as a second digit are in one line and the signal points with 1 as a second digit are

in another line. In this case, the unit orthogonal vectors �� � and �� � are expressed as

�� � � ��
	 
 �� � � ��
� �

We can observe in Figure 3.13 that the relations in equation (3.12) are satisfied. This

must be true because �� � and �� � are orthogonal in two dimensional space. The optimal

generator and punctured position in the 4D rate-3/4 PTCM scheme may be obtained

from the literature on optimal rate-3/4 punctured convolutional codes [15], since for this

geometry Euclidean and Hamming distances are simply related. The optimal rate-3/4

36



Table 3.3: Generators(in octal) for the best rate-3/4 punctured code (0 means punctured
position).

number of states generators punctured position* � � � � �
8 15,17 11-10-01 4 464

16 25,37 11-01-01 4 128
32 43,65 11-01-01 5 512
64 121,173 11-01-01 5 192

punctured convolutional codes are in Table 3.3. This construction is the same as the

�
�

TCM proposed in [1]. Since there are 4 cosets in one constellation, the intra coset

distance is � � � which is smaller than � � � � � in two-dimensional rate-2/3 codes. This

limits the coding gain when the number of states is larger than 16. However, rate-3/4

PTCM with four-dimensional signalling has a throughput of 4.5 bits per symbol while

rate-1/2 and rate-2/3 with two-dimensional signalling have a throughput of 4 bits per

symbol: we may alternatively view this reduced coding redundancy as a 1.5 dB gain

[24].

3.1.3.2. High rate PTCM

We may also construct punctured rate-4/5 codes on four-dimensional signal sets

by using an 8-way partition on one of the two 2-dimensional signal sets, and applying

the rules of the previous sections. The extension to higher dimensional sets is obvious,

although the increased values of � � makes this of doubtful utility.
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3.2 Application to PSK

Chen and Haccoun have provided a PTCM construction for PSK. However they

employ an approximation which reduces the metric separation, leading to slightly de-

graded error performance [2]. In this section, we apply our procedure for obtaining

optimal PTCM in QAM to PSK.

Assume that we use 8-PSK. Each signal point represents one coset because there are

8 cosets. We classify the 8 signal points into 2 groups ( � � and � � ) as in Figure 3.14.

Then constraint 1 and constraint 2 should be satisfied and so that the puncturing

position is the same as that of QAM. The branch metric and optimal coset partitioning

can be obtained by the procedure we have used in QAM. As a result we change the order

of signal points from � 
 � 
 � 
 �
to � 
 ��
 � 
 �

and from
� 
 � 
 � 
�� to

� 
 � 
�� 
 � . Newly

ordered signal points in each group and the corresponding branch metrics are depicted

in Figure 3.14, where the notation for branch metrics is the same as in section 1.2. In

this scheme, condition 1 and condition 2 are satisfied and so there is no performance

degradation due to puncturing. Now consider the optimal generator. A circular shift

=
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Figure 3.14: Branch metric calculations in each group. (a) 8-PSK signal points. (b)
Branch metrics of � � signals. (c) Branch metrics of ��� signals.
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Table 3.4: Generators(in octal) for rate-2/3 PTCM with 8-PSK signalling.

states � � shift generators � � � � � � � � Ungerboeck [31]
8 ��� � 15,2 4.59 1 4.59

16 ����� � 31,4 5.17 1 5.17
16 � � 23,4 5.76 6 5.17

of � � signals does not change the above conditions, but it does change the distance

structures among all the cosets. So we fix the � � signals as a reference and make circular

shifts ( ��� � 
 ����� � 
 ��� � � and zero shifts toward counterclockwise) of � � signals to create

a new labeling. In each shift, we tried all the possible generators and found the best one.

As a result, we obtained the optimal generator sequences and circular shifts of the � �

signals. The results are in Table 3.4.

3.3 Complexity of PTCM

It is also instructive to compare the complexity of traceback and ACS operations

in punctured codes for the different rates. These are exactly the same for all the mem-

bers of the family, with the arithmetic precision in the ACS units also having the same

requirements. However, the traceback depth is greater in the straightforward imple-

mentation for the punctured code than treating it as an ordinary rate-
� � � code. This is

because we must store transitions for each of the
�

binary branches in order to re-use the

same traceback unit for all members of the family. We need traceback depth of
���

when

the traceback depth of the ordinary decoder is
�

. However, we can do much better with

slight modifications to the path storage procedure. If the number of states is � , then

the traceback depth can be reduced to
�

in the punctured trellis by adding � memories.

This is explained as follows.
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Define one unit of the rate-
� � � punctured trellis be

�
steps through the trellis. This is

identical to one step of an ordinary rate-
� � � trellis. We note that in a rate-

� � � punctured

trellis, if the number of state is no less than � � , we know the input and output sequence

of one unit (
�

step trellis) from the information of the first and the last state in the unit.

This follows from the observation that there are � � possible routes from the first state to

the end of one unit. Therefore, there is a one-to-one mapping between the first and the

last states of one unit when the number of states is no less than � � . Consequently, we do

not need the intermediate state transition in the traceback process if the number of state

is no less than � � . We need � memories to trace the state transitions in one unit. We

put the state transition into the traceback memory every
�
-th step and do the traceback

process and decode
�

information bits. As a result, the traceback depth of the punctured

trellis is the same as that of the corresponding ordinary trellis.

A rate-
� � � code has � � branches leaving or entering each state, and requires � �

different branch metrics to be computed. A punctured code of the same rate is treated

as
�

steps of a binary-branching trellis to perform the basic computation. Thus we must

perform � � � ACS operation for the regular form of the trellis, and � � � operations in

the punctured form. Thus, treating the code in its punctured form results in considerable

complexity savings in metric accumulation and branch comparison operations for higher

rate codes.

3.4 Simulation and discussion

We have designed rate-2/3 and rate-3/4 PTCM for both QAM and PSK. We found

the optimal position for puncturing, generators for the rate-1/2 trellis, branch metrics and

coset positioning in QAM and PSK. As a result, we obtained very good rate-2/3 PTCM
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Table 3.5: Asymptotic coding gains (in dB) of PTCM (QAM signalling).

number of states rate-1/2 rate-2/3 rate-3/4
8 3.01 3.98 4.52

16 3.01 4.77 4.52
32 3.01 4.77 4.52
64 3.01 5.44 4.52

codes. Table 3.5 lists the asymptotic coding gains for PTCM signals. Rate-3/4 PTCM

has 1.5 dB redundancy gain over the other schemes because there is one redundant bit

per 4-D signal. The simulation results for rate-1/2 TCM, rate-2/3 TCM,PTCM and rate-

3/4 PTCM with 32-QAM are shown in Figure 3.15, Figure 3.16 and Figure 3.17.

As expected, rate-1/2 TCM has about 3 dB gain over uncoded 16-QAM (6 dB gain

due to increased squared minimum distance and 3dB constellation expansion loss), and

rate-2/3 TCM has increasing gains as the number of states becomes large and as the re-

quired probability of error decreases. Rate-2/3 PTCM has the same performance as that

of rate-2/3 TCM using the same code, since there is no distortion in the branch metric

calculation in PTCM. Rate-3/4 PTCM shows increased performance as the number of

states increases. Even though the asymptotic coding gain of rate-3/4 PTCM are all the

same independent of the number of states as we can see in Table 3.5, the decreased path

multiplicity at increased number of states gives better actual coding gain. The simula-

tion results for rate-2/3 TCM, PTCM with 8-PSK is shown in Figure 3.18, where TCM

and PTCM schemes have the same performance.

In general, whenever the metric can be decomposed into orthogonal components a

punctured code can be constructed which apart from negligible boundary effects has no

performance loss with respect to the equivalent original TCM scheme.
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Figure 3.15: Simulation results of uncoded 16-QAM and rate-1/2 TCM (32-QAM sig-
nal).
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Figure 3.16: Simulation results of rate-1/2 TCM and rate-2/3 TCM, PTCM (32-QAM
signal).
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Figure 3.17: Simulation results of rate-1/2 TCM and rate-3/4 PTCM (32-QAM signal):
SNR is normalized due to the 0.5 bit redundancy gain of rate-3/4 PTCM.
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Figure 3.18: Simulation results of uncoded QPSK and rate-2/3 TCM, PTCM (8-PSK
signal).
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Chapter 4

Rotationally Invariant Punctured TCM

To compensate for a phase ambiguity in the receiver, there are two basic ap-

proaches. We can estimate the phase ambiguity by sending a fixed sequence of modu-

lation phases to initialize data communication. On the other hand, we can design trellis

codes that are transparent to phase offsets at multiples of the smallest difference between

two modulation angles in the signal constellation. The latter approach is the subject of

this section.

To provide ����� � invariance is relatively easy with linear codes. However, ��� � invari-

ance requires more complexity. We investigate two methods of designing ��� � rotation-

ally invariant PTCM, which retain optimal branch metric calculations. In the following,

we outline the basic problems in constructing rotationally invariant PTCM, and offer

two possible approaches. The basic conditions to satisfy to make RI (Rotationally In-

variant) TCM are :

Condition 3 ( conditions for making RI code ) [6] :

1. If � is the number of input bits to be differentially encoded, then the tolerable phase
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rotation is any multiple of ��� / � � radians.

2. The rule of equal rotation : If the differentially encoded � -tuple input to the con-

volutional encoder is rotated by � ��� / � � radians, the corresponding output is a � ��� / � �

radians rotated version of the original signal. This is illustrated in Figure 4.1 [20]. An

input rotation of � results in an output rotation of � , where
� � � � is a function which maps

inputs to corresponding outputs of convolutional codes. ��� and
� � are � degree rotation

operators for the input and output signals, respectively. � � � �
�
� � 
 � � � 
 � �� � is the � bit

input for the convolutional encoders and � � is output signal, where � � � 
 � � � 
 � ������ � 
 �
	
and the superscript 	 is time index. From Figure 4.1, the following equation must be

θRr θ

f

f

r θ θR
f-1

f-1

C )i

A i C i

A i( ) (

Figure 4.1: Constraint for � degree rotational invariance.

satisfied for rotational invariance.

��� �� � � � � � � � � � � � (4.1)

where � can take on only the values � ��� / � � radians.

3. All the signal elements in each set obtained by set partitioning should be associated

with the convolutional encoder output bits.

4. Any set of signal elements that have the same radius but are � ��� / � � radians apart

have to be assigned the same combinations of encoder output bits that are not used in

the coset labeling.
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Table 4.1: Effects of phase rotation on differentially coded vector at the input of the
convolutional encoder.

Phase Rotation(deg.)
�
�
� �

�
� 0 90 180 270

0 0 00 01 10 11
0 1 01 10 11 00
1 0 10 11 00 01
1 1 11 00 01 10

Two possible approaches for having rotationally invariant codes are discussed in

the following sections. The first scheme is based on the previously described PTCM

structure and the second scheme is based on using two convolutional coders.

4.1 RI-PTCM based on one coder

Having a RI-PTCM code satisfying both condition 3 and the earlier constraints

without any performance loss or complexity increase for any number of states is quite

difficult. First, we illustrate the problems with 8 state rate-2/3 codes. There are two

input bits � �� and � �� going into the convolutional encoder, where the superscript � is the

time index. From the first item of condition 3, we can see that a ��� � RI code is possible

because there are two differentially encoded input bits. One input bit is for each step,

i.e. � �� is input for the first step branch and � �� is input for the second step branch.

Now consider rotation of code states. We have an 8-state code convolutional encoder

structure described in Figure 4.2. As we can see from Figure 4.2, input rotation changes

the state, which changes the output. Equation (4.1) describes an important condition for

the code to be a rotationally invariant. When the input is rotated by � , the corresponding
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Figure 4.2: Convolutional encoder structure of RI-PTCM.

Table 4.2: Effects of phase rotation on the state vector.

Phase Rotation(deg.)
� � � � �

�
� � � 0 90 180 270

0 0 0 000(0) 101(5) 010(2) 111(7)
0 0 1 001(1) 110(6) 011(3) 100(4)
0 1 0 010(2) 111(7) 000(0) 101(5)
0 1 1 011(3) 100(4) 001(1) 110(6)
1 0 0 100(4) 001(1) 110(6) 011(3)
1 0 1 101(5) 010(2) 111(7) 000(0)
1 1 0 110(6) 011(3) 100(4) 001(1)
1 1 1 111(7) 000(0) 101(5) 010(2)

output must be � rotated version of the original output. Input rotation is directly related

with state rotation as we can see as follows.

We can derive the phase rotation of code states from the phase rotation of 2 bit

inputs in Table 4.1. The state level is ( �
�
� �
� � �
� �

� � �� ) in Figure 4.2. From Table 4.1, � �

is complemented under
�

� and

�
�

� rotation. The value of � � under rotation depends on

the value of � � . For example, consider a ��� � rotated version of state 000. Since the ��� �

rotated input pair( � � � � ) 00 is 01, �
� � �
� �

� � �� is 01. �
�
� is 1 because � � is flipped under

��� � rotation. Thus state 101 is a ��� � rotated version of state 000. The resulting phase

rotation relations on the state vector are in Table 4.2. Now we want to check whether

our PTCM structure fits into this RI code framework. The merged rate-2/3 trellis from

the two step punctured trellis is in Figure 4.3. The signal constellations and rotation
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Figure 4.3: Merged rate-2/3 trellis.

relations among cosets are in Figure 4.4, where the first two bits represents uncoded bits

and the remaining three bits represents cosets.

For the previously proposed rate-2/3 PTCM to be rotationally invariant, the state

rotation (or the input rotation) and corresponding output rotation must be matched. From

Figure 4.3, the outputs from state 0 to states 0,2,4 and 6 are � 
 � 
 � and E, respectively.

From Table 4.2 and Figure 4.4, the ��� � rotated versions of the above state transition is

from state 5 to states 5,7,1,3 and the corresponding outputs are � 
 � 
 � 
�� , respectively.

Since � 
 � 
 � and � are ��� � rotated version of � 
 � 
 � and � , this case keeps ��� �

rotational invariance. After considering all the possible cases in the same way, we have

found that there are two cases of mismatch in the trellis of Figure 4.3. The outputs of

the state transition 1 to 0,2,4,6 are � 
 � 
 � 
 � . The ��� � rotated version of the above state

transition is from 6 to 5,7,1,3 and the corresponding outputs are � 
 � 
 � 
 � which is not

a ��� � rotated version of the output � 
 � 
 � 
 � . Thus the output label of state transition 6
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Figure 4.4: 32 QAM constellation in RI PTCM and rotation relations among 8 cosets.

to 5,7,1,3 must be
� 
 � 
�� 
 � instead of � 
 � 
 � 
 � to keep the ��� � rotational invariance.

For the same reason, the output of the state transition 4 to 5,7,1,3 must be � 
 � 
 � 
 �
instead of

� 
 � 
�� 
 � .

According to the above results, we change the state 4 and 6 at the left side of the two

step trellis. The procedure is illustrated in Figure 4.5, and corresponding rate-1/2 two

step heterogeneous trellis is in Figure 4.6. We have also designed rate-1/2 RI-TCM and

rate-3/4 RI-PTCM. Both codes need 4 dimensional signalling and each 2-D signal has

4 cosets.

4.1.1 Rate-1/2 rotationally invariant TCM

Since there is only one input bits to the convolutional encoder, there is only one

differential encoded bit and we do not have a ��� � RI code. To solve this, we use 4-

dimensional signaling, where two consecutive input bits are differentially encoded and

put into the convolutional encoder. As in the case of rate-2/3 PTCM, two steps are

considered as one unit of RI transition, and so the convolutional encoder state structure
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Table 4.3: Effects of phase rotation on four cosets.

Phase Rotation(deg.)
cosets 0 90 180 270

A 00 01 11 10
B 01 11 10 00
C 10 00 01 11
D 11 10 00 01

related with differential encoder is the same as that of rate-2/3 RI-PTCM. The effect of

phase rotation on the state vector is the same as that of rate-2/3 as presented in Table

4.2.

When we consider the two step trellis as one unit, there are 16 possible output labels

in the trellis (one 2-D signal has 4 cosets, and the possible number of 4-D output is

��� � �
� � ). The coset partitioning in 32-QAM is illustrated in Figure 3.2. The binary

representation and rotational relations of the 4 cosets are in Table 4.3. For the rate-1/2

PTCM having RI structure, the trellis has some constraints on its output labels. This is

explained as follows, with reference to the two step trellis. Let the output label assigned

from state 0 to 0 be the reference. Consider the constraints from the ��� � RI relations,

which are illustrated in Figure 4.7. In Figure 4.7, we label the 16 branches at each step.

There are two labels in each branch. The first value is the label of the branch, and the

second value in the parenthesis is the label of the branch which must have ��� � rotated

output.

For example, the transition from state 0-0-0 has outputs �
�
�
�
������� � . The ��� �

rotated version of the state 0 is 5. The output corresponding to the transition from state

5-2-5 must have output �
�
�
�
� ��� ��� which is a ��� � rotated version of the output �

�
� .

The labels of the branches between state 5 and 2 in the first step and between state 3
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0 -> 10 -> 5 -> 15 -> 0
1 -> 11 -> 4 -> 14 -> 1
2 -> 12 -> 7 -> 9 -> 2
3 -> 13 -> 6 -> 8 -> 3

(0,4) -> (10,14) -> (1,5) -> (11,15) -> (0,4)
(2,6) -> (8,12) -> (3,7) -> (9,13) -> (2,6)

Notation ( label 1 -> label 2  ) : 
output at label 2 is 90 degree 
rotation of output at label 1.

First step branch rotation

Second step branch rotation

0(10,14)

2(8,12) 4(10,14)

6(8,12)
8(3,7)

12(3,7)

14(1,5)

3(9,13)
7(9,13)

11(0,4)13(2,6)

15(0,4)

 

0

1

2

3

4

5

6

7

0(10)

1(11) 2(12)

3(13)
4(14)

5(15)
6(8)

7(9)

8(3)

9(2)
10(5)

11(4)
12(7)

13(6)14(1)

15(0)

5(11,15)
10(1,5)

1(11,15)

9(2,6)

Figure 4.7: Output label constraints from ��� � rotation relations of rate-1/2 TCM.

and 5 in the second step are 10 and 10, respectively. The value in the parenthesis of

the branch 0 in the first step and 0 in the second step are 10 and 10, respectively. The

meaning of this is that the output of the branch 10 is a ��� � rotated version of the output

of the branch 0. Consider the two step transition from state 1 to 0 (1-0-0: corresponding

branch label is 2 in the first step and 0 in the second step) – ��� � rotated state is 6 to

5 (6-3-5: corresponding branch label is 12 in the first step and 14 in the second step).

From this, we know that, in the second step, the branch 14 is also a ��� � rotated version

of the output of the branch 0. That is why we have two labels in the parenthesis in the

second step. Furthermore, the second step branch 10 and 14 must have the same output

label.

By the same procedure, we can obtain all the output constraints in the trellis for ��� �

RI codes. We can use the same methods for the ����� � and � ��� � RI constraints. The output

label constraints from � ��� � rotational relations are illustrated in Figure 4.8.
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Figure 4.8: Output label constraints from � ��� � rotation relations of rate-1/2 TCM.

As we can see in the Figure 4.7 and Figure 4.8, the same outputs are merging into the

same state at the second step, which reduces the coding gain. By means of a computer

search, the best code satisfying the above constraints shows � � � of 4 and path multiplicity

of 16 (The optimum 8 state rate-1/2 TCM has � � of 6 and path multiplicity of 64).

4.1.2 Rate-3/4 rotational invariant PTCM

As for ��� � rotationally invariant rate-1/2 PTCM, rate-3/4 PTCM uses 4 dimen-

sional signaling. We use the same signal constellation shown in Figure 3.2. Three con-

secutive input bits are going into the convolutional encoder. Three steps are considered

as one unit of rotational invariant transition. Since we need two differentially encoded

input bits, the second and third input bits are differentially encoded. The convolutional

encoder structure is illustrated in Figure 4.9. The resulting phase rotation relations on
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Figure 4.9: Convolutional encoder structure of rate-3/4 PTCM.

Table 4.4: Effects of phase rotation on the state vector (rate-3/4 PTCM).

Phase Rotation(deg.)
� � � � �

�
� � � 0 90 180 270

0 0 0 000(0) 010(2) 100(4) 110(6)
0 0 1 001(1) 011(3) 101(5) 111(7)
0 1 0 010(2) 100(4) 110(6) 000(0)
0 1 1 011(3) 101(5) 111(7) 001(1)
1 0 0 100(4) 110(6) 000(0) 010(2)
1 0 1 101(5) 111(7) 001(1) 011(3)
1 1 0 110(6) 000(0) 010(2) 100(4)
1 1 1 111(7) 001(1) 011(3) 101(5)

the state vector are in Table 4.4. To obtain the optimal trellis output label, we could

apply the same method we have used for rate-1/2 RI-PTCM. However the rate-3/4 trel-

lis has some differences from the rate-1/2 trellis. We assign only one bit as an output

for each of the second and third step branches. To obtain the rotational invariance, we

have to consider the second and third steps at the same time. That difference induces

the following design constraint on rate-3/4 RI-PTCM.

constraint 3 The output bit label of the third step branch stemming from the same

state must have the same value.
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The labeling of branches in the three step trellis is shown in Figure 4.10. Consider

the state transition 0-0-0-0 and 0-0-0-4 (corresponding second and third step branch

labels are 0-0 and 0-4, respectively). The ��� � rotated version of this state transition is
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Figure 4.10: Labeling of three step trellis structure of rate-3/4 PTCM.

2-1-4-2 and 2-1-4-6 (with the corresponding second and third step branch labels being

6-2 and 6-6, respectively). Thus, the output of the second step and third step branches

labeled by 6-2 and 6-6 must be ��� � rotated versions of the second and third step branches

0-0 and 0-4. Assume now that the output label of the third step branch 0 and 4 are

different, for example, the branch 0-0 and 0-4 have outputs 00 and 01, respectively.

Since a ��� � rotated version of these are 01 and 11, the branches 6-2 and 6-4 must have

outputs 01 and 11. However, the branch 6 at the second step can not be labeled by both

0 and 1.

By the constraint 3, we can merge the second and third step trellises and label them

as illustrated in Figure 4.11 and Figure 4.12. Then we can use the same method we have
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Figure 4.11: Output label constraints from ��� � rotation relations of rate-3/4 PTCM.

used in rate-1/2 RI-PTCM. In Figure 4.11 and Figure 4.12, The value in the parenthesis

is the label of the branch which must have 90 and ����� � rotated output of the corre-

sponding output, respectively. The optimum trellis found in a computer search under

constraint 3 is shown in Figure 4.13. The resulting � � � is 3 and the path multiplicity is 48.

In the optimal 8 state PTCM, � � � is 4 and path multiplicity is 224. From Figure 4.13, the

output label of the state transition 0-0-0-0 and 0-0-0-4 have the same value. This is due

to the constraint 3 and the reason for the performance loss in RI-PTCM. By increasing

the number of states (i.e. more than 8 states), we can obtain the same asymptotic coding

gain as the optimal rate-3/4 PTCM.

We have found the best RI code under condition 4. As a result, swapping the trellis

is not necessary and we change the output labels of the PTCM trellis. However, � � , the

minimum distance among different paths in the trellis, is worse than the non-RI code
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Figure 4.12: Output label constraints from ����� � rotation relations of rate-3/4 PTCM.

with the same number of states. Considering the squared intra-coset distance is 4, we

need at least 4 states in the optimal rate-1/2 TCM because � � � is 5 in 4 state trellis. On

the contrary, � � � is 4 in 8 state rate-1/2 RI TCM. For rate-3/4 codes, � � � is 4 in 8 state

non-RI PTCM and � �� is 4 in 16 state RI-PTCM. Thus we need double the complexity

to achieve the same coding gain and ��� � rotational invariance.

4.2 RI-PTCM based on two coders

We have designed PTCM for various code rates. Rate-2/3 PTCM has 8 cosets per

two dimensions and has large intra-coset distance. In this case, we classify the 8 cosets

into two groups and design a new punctured trellis, i.e. new puncturing positions and

generators.

There is another way of designing PTCM which uses existing optimal punctured
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Figure 4.13: Optimal trellis of rate-3/4 RI-PTCM.

convolutional codes and has 4 cosets per two dimensions for all the code rates. We

assign two output bits of the punctured convolutional encoder to every two dimensional

signal, one bit per dimension. Thus we have 4 cosets per two dimensions. Then the

branch metric for each bit can be obtained independently when we use the orthogonal

signal constellation in Figure 3.2, which we have used already in rate-3/4 PTCM. In

this case, we can use the existing optimal punctured convolutional code because the

Hamming distance of the labels is proportional to squared Euclidean distance, and each

bit independently contributes one component of the squared distance. As a result, we

can design any rate of PTCM without changing the signal constellation structure. When

the code rate is � � � , we need
�

dimensional signalling per � step trellis.

This scheme has worse performance than the previous one for rate-2/3 PTCM be-

cause this scheme has smaller intra-coset distance due to the smaller number of cosets.
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However, we can construct various rates of PTCM without changing the metric struc-

ture. This scheme will be used for the ��� � rotationally invariant code structure described

in this section.

The ��� � RI-PTCM designed in the previous section is a non-linear code which uses

ordinary punctured coding and then swaps state labels according to the condition 3, but

we face the situation that the trellis is not exactly the same at each step, and the labels to

swap depend on the rate and the number of states. Thus, designing a compatible family

of codes appears problematic. Furthermore, the minimum distances of these codes are

worse than the minimum distances of the best non-RI code at rate-1/2 and 3/4.

There is another way of implementing ��� � RI-PTCM without swapping the trellis or

decreasing the minimum distance. This scheme needs separate PTCM for the in-phase

and quadrature-phase components. All we need is for the original rate-1/2 code to be

����� � invariant. We first consider ����� � RI-PTCM with BPSK signalling and extend the

concept up to ����� RI-PTCM with M-QAM signalling.

4.2.1
�������

rotationally invariant TCM

Consider rate-1/2 � ��� � RI-TCM with BPSK signalling, which is a rate-1/2 ����� �

RI-convolutional code. Define the time sequence space � such that � � � if and only

if

� � � � � 
 � � 
 � � 
 � � � 
 � � 
 � � � 	 
 � � � �
	 
 � 
 �
	��
where the subscript � is the time index. The binary time sequence space � is a sub-

space of � which does not have 	 as its element. “ � ” is bit flipped result of � , i.e. it

changes the values from 0 to 1, from 1 to 0 and from 	 to 	 .
�� ��� � � is a rate-1/2

convolutional encoder function, with corresponding decoder function,
� � � � � � � � .
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Thus
� �
� � � ���

�
 � � � 
 and
� � � ��� �
 � �� �

� �

where
�
� 
 � � and � are elements of � .

�
must be a one-to-one function, otherwise

it cannot be used as an encoder, and thus
� � � exists. Since

�
is a ����� � RI-code, from

equation (4.1)
� � �

�

�
� � � � �

�

�����
�
 � �� � (4.2)

�
�

�
� � is � .

�
�

� ���
�
 � � � � is

� �
�
 � � � because we use BPSK signalling. Thus the

following relation is derived when
�

is a ����� � RI-code.

� �
� � � ���

� 
 � ������
� �
� � � � �

�
 � � � (4.3)

Define the function of the punctured convolutional encoder as �
� � � � � and decoder

� � �
� � � � � such that

�
�
� � � ���

�
 � � � 
 and � � �
���

� 
 � �� �
� �

�
� and

� � cannot have 	 at the same time index. When there is a 	 , we do not send

any signal.

Fact 1 Puncturing does not affect ����� � rotational invariance of a convolutional code.

Proof We have to show that � is ����� � rotationally invariant if
�

is ����� � rotationally

invariant, when � is a punctured version of
�
.

� �
� � � ��� 
 ��� 
 � 
 � 
 � � �

Then

�
�
� � � ��� 

	 � 
 � 

	 � �
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where

���
�
��� �� 	�� 
 	��� � �

	 
 	 � � �

� � �
��� �� 
 � 
 	��� � 	

	 
 	 � � 	

� � and � 	 are subsets of non-negative integers which indicate the punctured time in-

dex of output
�

and � , respectively. We have to show that if
� �
� � � � � 
 � � then

�
�
� � � � � 
 	 � .
Let �

�
� � � � ��� 
 	 � � , then by definition of �

�
�
�
�
��� �� 	�� 
 	��� � �

	 
 	 � � �

� �
�
�
��� �� 
 � 
 	��� � 	

	 
 	 � � 	

Since 	 is 	 ,
��� � �

and 	
� �

	 �
.

We extend ����� � rotational invariance up to ��� � rotational invariance by using two

����� � RI-codes in the next section.

4.2.2 	 � � rotationally invariant PTCM

Calderbank and Mazo proposed a ��� � RI-TCM scheme, where the incoming bit

stream is split into two streams and a separate trellis encoder is used for each stream [30].

The output symbols of each encoder separately modulate the in-phase and quadrature-

phase carrier components. Then the set of all possible such pairs have ��� � rotational
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Table 4.5: Effects of phase rotation on differentially coded vector at the input of the
convolutional encoder.

Phase Rotation(deg.)
Label � � � � 0 90 180 270

0 00 00 01 11 10
1 01 01 11 10 00
2 11 11 10 00 01
3 10 10 00 01 11

symmetry. This idea and the PTCM scheme described in the previous section will be

used in designing ��� � RI-PTCM.

To achieve ��� � RIC, we needs 2 bits of inputs going into a differential encoder. The

input bit rotations and labels are in Table 4.5. Consider 4-QAM signalling with labels as

in Table 4.5. The input and output have the same rotation relations (i.e.
� � � � � ). The

rotation pattern is expressed by the rotation function
� � � � � � � � defined as follows.

� � ��� 
 � � � ��� 
 � �
���
�
��� 
 � � � �

� 
 � �
�

�

��� 
 � � � � � 
 � �
��� �
�
��� 
 � � � �

� 
 � � (4.4)

Figure 4.14 illustrates the system. I � � and J � � are information bit sequences.

A � � and B � � are the differentially encoded results of I and J.

�
� � �

�
� 
 � � 
 �

� �
�
�

� 
 � �
where the function

� � � 
 � � � � � � � � � is a one to one function of differential encoders

and its inverse function is the differential decoder function
� � � 
 � � � � � � � � � defined
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Figure 4.14: ��� � rotationally invariant punctured coding system.

as

�
� � �

�
� 
 � � 
 � � �

�
�
� 
 ���

Signal 1 and signal 2 are transmitted alternately, and each has 4 points which can be

expressed by two dimensional binary time sequences
���

� 
 � � � and
��� � 
 � �� , respec-

tively.

Since there are two identical punctured convolutional encoders, we define the punc-

tured convolutional encoder function as
�
� 
 � � � � ��
 � � � � � � 
 � � � such that

�
� 
 � � � � 
 ��� � �����

� 
 � ��� 
 ��� � 
 � �� � (4.5)

where �
�
� � � ���

�
 � �� and �
�
��� � �

� �
 � �� . The inverse function
�
� 
 � � � � exists

and is
�
� � � 
 � � � � .
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Fact 2 the system described in Figure 4.14 is ��� � rotationally invariant.

Proof From equation (4.1), we have to show that

�
� 
 � � � � � � � 
 ��� � � � � �

� 
 � � � � 
 ���
� � � � ��� �
 � ��� 
 ��� � 
 � ���� (4.6)

� � and
� � are the same because the input and output have the same rotation relations.

Since rotation of two consecutive signals is the same as two consecutive rotated signals,

we have
� � � ��� �
 � ��� 
 ��� � 
 � � � � � � � � ��� �
 � � � 
 � � ��� � 
 � ���� (4.7)

Thus we need to show that

�
� 
 � � � � � � � 
 ��� � � � � ��� �
 � � � 
 � � ��� � 
 � ���� (4.8)

There are two kinds of operations in
� � , i.e. exchange of two positions and bit flipping.

From equation (4.5), exchange of � and � induces exchange of
�

and � . By the ����� �

rotational invariance of � , a bit flip of � or � induces bit flip of
�

or � , respectively.

Thus the relation of equation (4.8) is true.
�

We have used 4-QAM signalling and showed it is ��� � RIC. We can extend the size of

the signal constellation. We illustrate 16-QAM in Figure 4.15, showing that the 4 kinds

of cosets keep their rotational relations. The 16-QAM constellation can be decomposed

into two 4-PAM constellations as described in Figure 4.15. Every first bit of signal 1

and signal 2 is from one convolutional encoder and every second bit is from the other

encoder. Thus the output label in the trellis is expressed by two bits which are from

different signals. The branch metric is obtained from the two consecutive signals, one
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Figure 4.15: 16-QAM signal constellation for rotationally invariant code.

for each dimension. Since there is only one bit per dimension and the distance between

1 and 0 is 1 as we can see in Figure 4.15, the squared Euclidean distance is the scaled

Hamming distance. So, we can use the same kind of branch metric calculation in both

the punctured and non-punctured trellis.

The intra-coset distance � � is the minimum distance among the points expressed by

the same binary labels at the trellis. Considering two bits labels in each branch are

independent and the distance between the same binary labels in each dimension is 2, � ��

is 4 in both punctured and non-punctured trellis.

Consider the minimum distance of the code trellis ��� . Since the squared branch

metric is the same as Hamming distance, the convolutional code performance is the

same as that of a ������� rotationally invariant binary convolutional code.

In this scheme, all we need is for the original rate-1/2 convolutional code to be � ��� �

invariant. Then if a two dimensional differential encoder is used, all punctured versions

of the code will be invariant. Thus we may continue to use the the same decoder structure

for all members of the family.

Good ����� � rotationally invariant rate-1/2 convolutional codes that lead to suitable
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Table 4.6: Comparisons of ����� � RI and best known rate-1/2 convolutional codes.

best known code [19] � ��� � RI-code
states Generators(octal) � � � � � Generators(octal) � � � � �

4 5,7 5 1 4,7 4 2
8 15,17 6 1 13,15 6 2

16 23,35 7 2 23,31 6 1
32 65,57 8 1 51,67 8 2
64 133,171 10 11 133,171 10 11

punctured higher rates and best known rate-1/2 codes are compared in Table 4.6. When

we use 4-QAM constellation, the performance bottleneck is not the intra-coset distance.

Therefore we can improve code performance by increasing the number of states.

4.3 Comparison of two RI-PTCM schemes

We have considered two kinds of ��� � RI-PTCM. Denote the scheme which uses

a non-linear coder by RIC-I and two convolutional coder scheme by RIC-II.

The brief characteristics of scheme RIC-II are as follows. The squared intra-coset

distance for all code rates is 4, which confines the ACG (asymptotic coding gain) to be

less than or equal to 3 dB for rate-1/2 codes, or 6 dB as the rate goes to 1, considering

the effect of reduced code redundancy. We can use the � ��� � RI linear convolutional

codes in Table 4.6. We may use a family of punctured codes of different rates, all with

the same basic decoder. However, two convolutional coders are necessary, doubling

decoding delay.

Consider the performance and complexity of both schemes for rates-1/2, 2/3 and

3/4. Both rate-1/2 schemes need 4 dimensional signalling and have squared intra-coset

distance of 4. For � � � being no less than 4, we need at least 8 states in scheme RIC-I, but
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only 4 states are needed for scheme RIC-II. The coding gain is limited to 3 dB.

Rate-2/3 RI-PTCM shows different characteristics. Scheme RIC-I needs two di-

mensional signaling and has 8 cosets which results in squared intra-coset distance of 8.

Scheme RIC-II uses 6 dimensional signaling and needs 8 states for � � � being no less than

4. For the 8 state codes, � � � of scheme RIC-I is 5 and � � � of scheme RIC-II is 4. However

we have to swap the trellises in scheme RIC-I.

In rate-3/4 RI-PTCM, both schemes have the same squared intra-coset distance of 4.

Scheme RIC-I needs a 16 state trellis for having � � � no less than 4, while scheme RIC-II

needs two 8 state trellises, which are decoded at half the speed.

Consider the throughput of rate- � � � � � ��� RI-PTCM in scheme RIC-II where � � � �
��� dimensional signalling is used. Assume we use ��� -QAM. We need �

� � uncoded bits

per 2-D constellation. The number of information bits per � � � � ��� -D is � � � � � � ��� � �
�

�� � � � � ��� �
� � and the number of output bits per � � � � � � -D is � � � � � � � � � � ��� � �

�
�� � � � � ��� � . The code rate per � � � � ��� -D is �

� � � ��� � �
�
� � � ��� . The code rate of scheme RIC-I

is � � �
�

per 2-D in rate-1/2 and 2/3, and
�

� � ��
�

per 4-D in rate-3/4. Both schemes have the

same throughput for rate-1/2 and 3/4, and scheme RIC-II shows better throughput for

rate-2/3. Thus there is no redundancy penalty in scheme RIC-II even though it is using

two convolutional coders.

Even though we use 2 convolutional coders in scheme RIC-II, both schemes have

almost the same number of trellis steps per 2-D signal. Thus the number of computations

for scheme RIC-II is less because it needs half the number of states of scheme RIC-I.

In summary, scheme RIC-I does not need two convolutional coders but needs more

states compared with scheme RIC-II. The rate-2/3 PTCM of scheme RIC-I shows better

performance but needs swapping of the trellis.

69



4.4 Discussion

We provided two types of ��� � RI-PTCM for QAM signalling. ��� � invariance

requires non-linear codes when the cosets are two-dimensional. This may be accom-

plished by using ordinary punctured coding and then swapping state labels, or rearrang-

ing the branch labels which decreases the minimum distance. On the other hand, we

may use separate PTCM for the in-phase and quadrature components, where the origi-

nal rate-1/2 code must be ����� � invariant and all punctured versions of the code will be

invariant. Thus we may continue to use the the same decoder structure for all members

of the family.

@
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Chapter 5

Unequal Error Protection Codes

In broadcast systems, the channels for each customer are different. With analog

transmission, the result is a variable quality of reception, which depends roughly on the

range from the transmitter. In digital systems by contrast, the design usually guarantees

a uniformly good quality of service up to a given range, after which point the service

rapidly deteriorates. For example, in digital HDTV, forward error correction coding will

be used to increase the range of high quality service. However, it is possible to perform

coding such that customers may receive a lower resolution signal even when the high

definition part of the signal is lost, so that a quality of service comparable for example to

NTSC can be obtained out past the range of ordinary analog transmission. Unequal error

protection (UEP) codes give more protection to the low-rate important information, and

thus are suitable for similar broadcast systems.

Cover [50] has considered the maximum achievable capacity over broadcast chan-

nels that may have differing capacities. Two forms of transmission (time sharing and

superimposing) were considered, with superimposition shown to be better than time

sharing in terms of channel capacity.
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Time sharing allocates time slots to different rates of transmission. In time sharing

for UEP, two or more coded modulation schemes provide different levels of error pro-

tection for different class data in different time slots. Generalized time sharing where a

code of non-zero rate specifies the multiplexing rule has been proposed [3]. Additional

important bits can be transmitted in this scheme.

In the superimposition technique, information for all the classes is sent at the same

time. The low-rate data is recovered when the channel is not good enough to recover all

the information. Uncoded non-uniform constellations where there are several clusters

(or groups) of signal points and the inter-group distance is larger than the intra-group dis-

tance have been considered for a simple superimposing scheme [44]. Wei has proposed

a UEP code which has ��� � rotational invariance [5] [36]. In his scheme, the rotation-

ally invariant (RI) code is used only for important data because the phase rotation does

not change the non-important data decoding results. However the non-important data

coding gain is not satisfactory. Calderbank and Seshadri have proposed various kinds

of UEP codes for different ratios of important to less important data by using multilevel

codes which can allocate the available redundancy in a rather flexible manner [3] [20]

[34]. They have used a non-standard set partitioning as well as non-uniform signal con-

stellations to reduce the path multiplicity. The coding gain reduction of non-important

data due to non-standard set partitioning can be compensated by using other coders.

We consider extensions of this work on superimposition of class 1 (important bits)

and class 2 (less important bits) data. Ordinary TCM on QAM has an innate capability

in this regard. Consider rate-1/2 TCM as an example. The squared minimum distance

of the 16 state rate-1/2 convolutional code is 7 and the squared minimum distance of the

uncoded bits is 4. We can easily achieve two level UEP by using the convolutional coder

for class 1 data. However the standard set partitioning causes a large path multiplicity
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which reduces the class 1 coding gains significantly.

TCM based on PAM signalling results in convolutionally coded bits with larger � �
�
� �

and much lower path multiplicity. However, this 1-D signalling scheme is not power

efficient. We propose to compensate for this inefficiency by locating the signal points

for less important data on another 1-D axis. In this case, a standard code search does

not give us reliable information on � �
�
� � and corresponding path multiplicities because

the code is not geometrically uniform. New code search methods will be introduced for

better estimation of the actual coding gain. All the schemes we are considering have the

same basic structure as mentioned above.

Our schemes can have ��� � rotational invariance by using a ����� � RI rate-1/2 convolu-

tional code for class 1 data and then resolving the in-phase and quadrature-phase power.

Like the Wei UEP code scheme, the coders for class 2 data do not have to be RI coders.

The chapter is organized as follows. In section 1, we discuss coding gain calcula-

tions. The UEP code family based on set partitioning on one dimensional lattices will

be discussed in sections 2, 3 and 4. Methods to design ��� � rotationally invariant codes

are discussed in section 5. Some concluding remarks are presented in section 6.

5.1 Coding gain calculations

Coding gain is a function of various factors including redundancy, constellation

expansion, constellation power penalty, minimum distance and path multiplicity. The

path multiplicity � � is the number of nearest neighbors and the normalized path mul-

tiplicity ���� is � � per 2 dimensions. ����
�
� ��� � when we use 2N dimensional sig-

nalling. Denote by � � the penalty due to large path multiplicity. If � �� is less than 4 we

have gains due to small path multiplicity, because � � for uncoded QAM is 4. Using the
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rule of thumb that doubling � � causes a 0.2 dB degradation at error probability ��� ���

[24],

� �
�

��� � ����� � � � ��� � � (5.1)

Let � be the average power of the proposed scheme and ��� and �
	 be the in-phase and

quadrature-phase components of the average power, respectively. Then �
�

��� � ��	 .

Let an uncoded M-QAM of average power �
 � � be the reference scheme. Then the

power penalty ��� can be obtained as

��� �
���
����� �

�� � � (5.2)

Let
�

be the bit rate per 2-D signalling, the rate loss � is defined as
� � �����

�
�

. Then

the penalty due to rate loss ��� is ��� � ��� . The asymptotic coding gain � is obtained in

equation (5.3).

�
�

���
����� � �

�
� � �

��� �
��� (5.3)

Consider the minimum distance property of binary convolutional codes. Let ��� be

a set of binary codewords. Since convolutional code are linear, for all � ��
 ��� � ��� there

exist � � � ��� such that � ��� ��� � � � , where � is bitwise modulo 2 addition. Then,

�! �
� ��
 ��� � �#"  �

� � �
� �! �

� � 
 � � � (5.4)

where �! is the Hamming distance,
"  is the Hamming weight and � � is the all-zero

codeword. Assume � � is a reference codeword, �$ � ( 	 � � �
and �� �&% �! '� , if 	(% � )

are the possible Hamming distances between � � and other codewords, and � �
� �! � � is

the number of codewords at distance �) � from the reference � � . *(� � is defined to be

the set of elements
� �� � 
 � � � �! � � � . From the equation (5.4), we see that *�� �

� *(� � for

all
�

such that � � � ��� . Thus the convolutional code has the following property [17].

74



Property 1 The set of distances of the code sequences generated up to some stage

in the tree, from the all zero sequence, is the same as the set of distances of the code

sequences with respect to any other code sequences.

From property 1 we can calculate the minimum distance assuming that the all zero

sequence is the input to the encoder. This zero-path reference code search (ZRCS) con-

siderably simplifies the search for codes with large �
�
� � .

Calderbank and Sloane [27], Benedetto et al., [23] and Forney [22] investigated

the conditions sufficient to ensure that a coset code [24] is distance-invariant, so that

�
�
� � and path multiplicity of the code do not depend on the transmitted code sequence.

Except for the boundary region of the constellation, ordinary TCM based on standard

set partitioning of regular lattice satisfies the property 1, and we can use ZRCS without

much error. If a code do not have that property, the code search is quite complex and

we need to find a better way. For that purpose, we also derive the sufficient conditions

which allow ZRCS in TCM code search, introducing notation which will be convenient

for discussing search procedures when ZRCS is inaccurate.

Let � be the set of cosets such that � � � � � 
 � � 
 � � � 
 ��� � � 	 , where
�

is the number

of cosets. Let � � � � ��
 � � � be the squared Euclidean distance between cosets � � and � � and

the kissing number �
� � � 
 � � � be the number of signal points in coset � � which are at the

distance � � � � � 
 � � � to coset � � .
Let ��� be a set of codewords in TCM. The codeword � � � ��� is a sequence

of cosets and is expressed as � �
� �

� � � 
 � � � 
 � � � � , where � � � � � 
 � � � �
. ��� is a

homomorphic set of � � and there is a one to one mapping �
� � � between the codewords

� � � ��� and � � � ��� , such that �
�
� � � � � � and � � �

�
� � � � � � . Every �

� � �����
�

� �
bits of � � are grouped to be a binary label of coset sequences in � � . The operation � in
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the set � � is defined as follows.

� � � � �	� �
� � �

�
�
� � � � �

�
� � ���

The distance between codewords can be obtained as follows.

� � � � ��
 � � � �
�

�
� � �

� � � � � � 
 � � � � (5.5)

where
�

is larger than the largest codeword.

Unlike the binary codewords in convolutional codes, codewords in TCM may have

multiple paths when each coset has more than one member. Define �
�
� ��
 � � � to be the

number of paths of �&� at the distance � � � � ��
 � � � to � � . Then,

�
�
� � 
 � � � �

� � ��
� � �

�
�
� � � 
 � � � � � (5.6)

Assume � � is a reference codeword, and � �� ( 	 � � �
and � �� % � �� , if 	�% � ) is the

possible squared Euclidean distance between � � and any other codeword and � �
� � �� �

is the number of codeword paths at distance � �� from the reference � � . � �
� � �� � can be

obtained as follows.

� �
� � �� � � �

� � � ����� �	� � � � �

�
�
� � 
 � � � (5.7)

* � � is defined as the set of element
� � �� 
 � � � � �� � � when � � � ��� is a reference code-

word. If * � � is * � � for all � � � ��� , we can use ZRCS for the code search. The suffi-

cient conditions for ZRCS in TCM can be derived from the fact that for all � � 
 � � � ���
there exists � � � ��� such that � � � � � �

� � � � � , in other words, for any cor-

rect codeword � � and error codeword ��� pair, there exists a matching pair � � and

� � . So, if the metric structures of the pairs
�
� � 
 � � � and

�
� � 
 � � � are the same, i.e.

� � � � ��
 � � � � � � � � � 
 � � � and �
�
� ��
 � � � � �

�
� � 
 � � � , we can use ZRCS. The sufficient

conditions for ZRCS are described as follows.
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For all � � 
 � � 
 � � 
 � � � � such that � � � � � � � � , where � � is a coset with all-zero bi-

nary notation, if the following conditions are satisfied, we can use ZRCS.

Condition 4 � � � � ��
 � � � � � � � � � 
 � � � .
This is derived from the condition � ��� � ��
 � � � � � ��� � � 
 � � � .

� � � � � 
 � � � � � � � � � 
 � � �
from equation (5) �

�
�
� � �

� � � � � � 
 � � � � � �
�

� � �
� � � � � � 
 � � � �

� � � � � � 
 � � � � � � � � � � � 
 � � � � 
 where � � � � � � �
�
� � � � � � � �

Condition 5 �
� � � 
 � � � � �

� � � 
 � � � .
This is derived from the condition �

�
� ��
 � � � � �

�
� � 
 � � � .

�
�
� � 
 � � � �

�
�
� � 
 � � �

from equation (6) �
�
�

� � �
�
�
� � � 
 � � � � � �

�
� � �

�
�
� � � 
 � � � �

�
�
� � � 
 � � � � �

�
�
� � � 
 � � � � 
 where � � � � � � �

�
� � � � � � � �

If there is more than one member per coset, the values of � � � � ��
 � � � and �
� � ��
 � � �

might depend on a specific choice of members in each coset. For example, the kissing

numbers of cosets at the boundary and inside of constellation could be different. In this

case, the two conditions are quite difficult to satisfy. However, when we use ordinary

TCM with large signal constellations, we can design the code such that most of the signal

points satisfy the conditions so that ZRCS can be used without much error. Standard four

way set partitioning on uniform 64-QAM constellation is illustrated in Figure 5.1, where
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Figure 5.1: Four way partitioning in uniform 64-QAM constellation illustrating the two
conditions for ZRCS.

condition 4 is satisfied for all the points but condition 5 is not satisfied for some points

at the boundary of the constellation. However, most of them satisfy the both conditions

and we can use ZRCS without much error.

For non-standard partitioning, we may instead use a statistical modification of ZRCS

(S-ZRCS), where the all-zero path is still used as a reference but the squared dis-

tances and kissing numbers of cosets are varied depending on the transmitted code-

word or in a random manner. Suppose that � � � � � � � � , � � � � ��
 � � � �� � � � � � 
 � � � and

�
� � � 
 � � � �� �

� � � 
 � � � . The metric
�
�
� � � � and kissing number �

� � � � of the branch la-

beled � � are � � � � � 
 � � � and �
� � � 
 � � � , respectively if � � is transmitted, or they are � � � � ��
 � � �

and �
� � � 
 � � � if � � is transmitted. In general, � � � � � 
 � � � and �

� � � 
 � � � may have different

values for different signal points in coset � � . Thus, we choose a signal point of cosets

in an equiprobable manner and assign the corresponding values to the distance metric
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Figure 5.2: Four way partitioning on PAM signal constellations. (a) 4-PAM. (b) 8-PAM.

and kissing number. In the code search, we use many different codewords as a refer-

ence and obtain the possible distances and corresponding average path multiplicities.

Consider two examples of TCM on PAM signalling. In Figure 5.2 (a), there are 4

cosets � 
 � 
 � 
 � (with binary labels 00, 01, 10, 11, respectively) and each coset has

one member, where we do not have to consider the condition 5. Since � � �
�
� but

� � � � 
 � � �� � � � � 
 � � , this does not satisfy condition 4. When we use ZRCS, the metric

of the branch labeled � ,
�
�
�
� � , can be � � � � 
 � � or � � � � 
 � � . When the transmitted

coset is � or � ,
�
�
�
� � is 9. Otherwise,

�
�
�
� � is 1.

In Figure 5.2 (b), each coset has two members. Suppose coset � is transmitted,

then
�
�
�
� � and �

�
� � do not have unique values. If the negative signal is transmitted,

�
�
�
� � is 9 and �

�
� � is 1, and if the positive signal is transmitted,

�
�
�
� � is 1 and

�
�
� � is 2. By the same way, when coset � is transmitted, then �

�
� � � � �

�
� 
 � ��� is 1

or 2 if the signal is negative or positive, respectively. Since each pair of cosets
�
� 
 � �

and
�
� 
 � � has the same metric structure, we do not have to consider the case when

coset � or � is transmitted.

From the previously described code search, we obtain the possible squared Eu-

clidean distances � �� ( 	 � � �
and � �� % � �� if 	 % � ) and corresponding average

path multiplicities � ��
� � �� � per 2-D. Then, the component coding gain � � , 	 =0,1,2,..., is

defined as � �
�

���
����� � �� �

����� ����� �
�
� ��

� � �� �
� � (5.8)
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Figure 5.3: Signal constellation for scheme I. (a) 16-QAM. (b) 64-QAM.

A code search finds the generator sequence which maximizes the value � ��� � � We define

the actual coding gain � � as

� �
� ����� � � ���

�
	��� � ��� �
��� �

��� (5.9)

A family of multilevel UEP codes using set partitioning on one dimensional lattice

will be considered. The uncoded 16-QAM is considered as a reference scheme in coding

gain calculations and simulations.

5.2 Scheme I

We use 16 QAM and 64 QAM in both 2 and 4 dimensional signal constellations.

The coset partitioning and signal constellations are shown in Figure 5.3, where we can

change the in-phase distance between signal points by changing the value of
�
.

5.2.1 Two dimensional signaling scheme

Code structures using 16-QAM and 64-QAM are shown in Figure 5.4. There

are two schemes (scheme I-A and scheme I-B) for 16-QAM and 64-QAM. The code
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Figure 5.4: Code structures of scheme I using two dimensional signalling. (a) Scheme
I-A on 16-QAM. (b) Scheme I-A on 64-QAM. (c) Scheme I-B on 16-QAM. (d) Scheme
I-B on 64-QAM.

structure of scheme I-A is illustrated in Figure 5.4 (a) and (b). Scheme I-A uses 16

state rate-1/2 TCM for class 1 data, where the signal looks like 4-PAM or 8-PAM with 4

cosets (A, B, C and D). The code search follows the procedure of the previous section.

In both cases, the squared minimum distance( � � � ) of code � � is 11. The code search

results using S-ZRCS are given in Table 5.1. The class 2 is protected by 8 dimensional

rate-3/4 punctured TCM, where one output bit of a rate-3/4 convolutional code is as-

signed for each 2 dimensional signal. � �
�
� � of code � � is � � � .
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Table 5.1: Code search results using S-ZRCS in scheme I-A and I-B.

Average path multiplicity
Signal size � �

�
����� � �

�
� � � � �

�
� � � � �

�
� � � � �

�
� 
�

16-QAM 0.13 0.50 1.82 2.03 2.78
64-QAM 0.95 2.54 7.15 9.29 9.43

For example, we calculate the coding gains when
� �

is 1. In scheme I-A on 16-QAM,

� = 1.25(
� � � � ��
 ), ��� = 0 and ��� = 3.75 dB. Thus,

� �
�
�
	��  � �

� � � � ��� � � � (dB) �
�
�

�
����� � � � ��� ��
 � ������� � dB � �

� �
���
�����
� � � � ��� ��
 � � � ��� � dB � �

For 64-QAM, � = -0.75(
� � � � ��
 ), ��� = 6.23 dB and ��� = -2.25 dB.

� ���
�
	��� � �

� � � � ����� ��� (dB) �
�
�

�
����� ��� � � � ��� � ��� � 
 � � � � 
 � dB � �

� �
���
�����
� � � � ��� ��
 � ��� � � � dB � �

Consider another scheme(scheme I-B) which shows better performance. The code

structure is illustrated in Figure 5.4 (c) and (d). The difference here is that for protecting

the class 2 data, we use a 16 state rate-1/2 convolutional code which assigns one output

bit per 2 dimensional signal and also a single parity check code to improve the intra-

coset distance. In this case, we assign 1 bit for class 1 data and 1.5 bits for class 2 data

in 16-QAM signalling or 2 bits and 2.5 bits for each classes in 64-QAM signalling. The

minimum distance of class 1 data is not changed and the minimum distance of class 2

data � �
�
� � � � � � is � �
� � � � � 
 � � � � . The value �

� �
comes from the fact that the minimum

distance of the 16 state rate-1/2 convolutional code is 7.
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Table 5.2: Four dimensional set partitioning.

4-D types
4-D sub-lattice parity bit 0 parity bit 1

0 (00) (AA) (CC)
1 (01) (BD) (DB)
2 (10) (AC) (CA)
3 (11) (BB) (DD)

For example, we calculate the coding gains when
� �

is 0.7. In 16-QAM signalling,

� = 1.5(
� � � � 
 ) ��� = 4.5 dB, and ��� = -0.71 dB. Thus,

�
�

�
����� ��� � ��� � � � � ��
 � ������� � dB � �

� �
� �
����� � �� � ��� �� � ��� � � � ��� 
 � ��� ��� � dB � �

For 64-QAM signalling,

�
�

�
� ��� ��� � 
�� 
 � � ����
 � � ��
 � dB � �

� �
� �
����� � �� � ��� �� � 
���
�� � � � 
 � ��� � � � dB � �

Adding a single parity check code on the class 2 data gives us more gain.

In both schemes, we can trade-off the coding gains of the two classes by changing

the value of
�

, i.e. a large value of
�

gives more gain for class 2 data while increasing

the power penalty and thus reducing class 1 coding gain. From now on, we use scheme

I-B for class 2 data protection.

5.2.2 Four dimensional signaling

The code structure is shown in Figure 5.6. Four dimensional set partitioning

can increase � �
�
� � of class 1 data. The 4-D coset labels are given in Table 5.2, and the
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Figure 5.5: Four dimensional metric structure of scheme I-C.

4-D metric structures of 16-QAM and 64-QAM signalling are illustrated in Figure 5.5.

When we use 16-QAM, only the signal points in the dashed rectangle can be considered.

In 64-QAM signalling, the right upper triangle part and the left lower triangle parts have

the same metric structure. So we obtain the metric values for the 16 signal points using

the upper triangle. The code search results are in Table 5.3. The code structure is shown

in Figure 5.6.

Table 5.3: Code search results using S-ZRCS in scheme I-C.

Average path multiplicity
Signal size � ��

�
� � � � ��

�
� � � � ��

�
��� � � ��

� � � � � ��
� ��� �

16-QAM 7.92 16.34 21.98 37.12 54.98
64-QAM 26.44 80.0 152.34 288.81 452.53
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Figure 5.6: Code structures of scheme I using four dimensional signalling. (a) Scheme
I-C on 16-QAM. (b) Scheme I-C on 64-QAM.

Consider 16-QAM. � �
�
� � for class 1 data is increased from 11 to 14 but the path

multiplicity is also increased by using the 4-D set partitioning. From the code search

result,

� ���
�
	 �  � �

� � � � ������� � (dB) �

When
� �

= 0.7, the class 1 data coding gain is

�
�
�

��� � � � � ��� � � � � ��
 �
��� � � � dB � �

� is the same as for 2-D. For 64-QAM,

� ���
�
	��� � �

� � � � ����� � � (dB), and

�
�

�
� ��� ��� � 
�� 
 � � ����
 � � � ��� � dB � �

By using the the 4-D lattice, we can increase the � �
�
� � of the class 1 code. However, the

increased path multiplicity reduces some part of gain obtained by increased � �
�
� � .
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Figure 5.7: Non-uniform signal constellation for scheme II. (a) 16-QAM. (b) 64-QAM.

5.3 Scheme II

Using non-uniform signal constellation may increase � �
�
� � in TCM [43]. The

code structure of scheme II is the same as scheme I apart for those non-uniform signal

constellations, as illustrated in Figure 5.7. � is another variable we use for the trade-off

of class 1 and class 2 coding gains. Large � gives more gain for class 1 data and less

gain for class 2 data. For example, we set �
� ��� � and

� � �
� � 
 . In 16-QAM signalling,

� �
�
� � is increased from 11 to 26. � �
� � �

� � � � � ��� � � (dB) ( � � � is 26 and � �
� � � � is 1.5).

We pay a power penalty when � and
� �

are larger than 1( ��� = 2.43 dB). Then

�
�

�
� � �	� � � ���	� � � � ��
 �

����
 � dB � �
� �

���
����� � � ����
� � ���	� � � � ��
 � ������� � dB � �

For 64-QAM, ��� = 8.89 dB and � ��� � �
� � � � � � � � 
 (dB) ( � �

� � � � is 3.94). Then,
�
� is 6.76 dB and � is 2.82 dB . We have some gains from using non-uniform signal

constellations in 16-QAM signalling by increasing � �
�
� � without increasing � � .

We have also considered 4-D set-partitioning in this scheme. In this case, � �
�
� � is
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Figure 5.8: Signal constellation for scheme III. (a) 64-QAM constellation. (b) signal
points for class 2 data (the points in the rectangle have the same parity bits).

increased from 26 to 29. The calculated coding gains are as follows(
� � �

����
 , � = 2.0).

In 16-QAM, � ��� � �
� � � � � � � � � (dB) ( ����

� ��� � is 4.0) and
�
�
�

��� � � dB. In 64-QAM,

� �
� � �
� � � � � � � ��� (dB) ( � ��

� ���� is 9.02) and
�
�
�

��� � dB. We have some gains

over the 2-D scheme. However, for 64-QAM, the constellation expands too much in the

Q-phase axis, causing a major power penalty.

5.4 Scheme III

In the previous schemes, the coding gains for 64-QAM are not as good as for 16-

QAM. Here we trade a lower rate for important data against coding gains. The signal

constellation and coset partitioning is shown in Figure 5.8. The code structure for 2-D

signalling is shown in Figure 5.9 (a), where � �
�
� � � � � and � �
� � �

� � � � � ��� � � (dB)

( � �
� � � � is 7.42). Unlike the previous schemes, the coding for class 2 data is not only a

function of
� �

but also confined by the minimum distance of the parity check code, i.e.

� �
�
� � � � �
� �

� 
 � � � � . Thus the asymptotic coding gain of class 2 data is maximum when
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                   single parity check code.
Code C2 : 16 state rate-1/2 convolutional code.
                   single parity check code.
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4-D parity code

2-D

   rate-1/2
convol. code

code C1

2-D

dmin
2
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Figure 5.9: Code structures of scheme III. (a) Scheme III-A(2-D signalling). (b) Scheme
III-B(4-D signalling).

� � �
� ��� . In this case, ��� �

��� ��� dB and coding gains are obtained as follows.

�
�

�
� ��� � � �

��� � � � ����
 � ��� � 
 � dB � �
� �

���
�����

�
�
��� � � � � � 
 � ����� � � dB � �

Thus this code structure gives good coding gains to the two data classes with reasonable

complexity (we use 16 state rate-1/2 convolutional code for each class and single parity

check code for class 2 data protection). Furthermore, we can trade-off the two coding

gains by changing the value of � .

We can further increase � �
�
� � for the class 1 code by using a 4-D set partitioning.

The code structure for 4-D signalling is illustrated in Figure 5.9 (b). The code search

result shows that � �
�
� � � ��� and � �
� � �

� ��� � � � � � � (dB) ( ����
� � � � is 330.71) and

�
� is

8.22dB. Unlike the previous schemes, using 4-D signalling does not give us additional

coding gain because of the big path multiplicity at the squared distance 34.

The actual coding gain of class 2 data is less than � because of path multiplicity.
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When we let
� � �

� � � , a large � � for the rate-1/2 convolutional code for class 2 data

contributes to the total � � , which causes a large coding gain degradation. In a real

situation, we may use a little bit larger value of
� �

to reduce the path multiplicity of the

class 2 coder. Using the value of
� �

slightly larger than 8/7 can reduce � � and increase

the coding gain of class 2 data with the cost of a power penalty. For example, let
� �

= 1.32. There is an additional power penalty of 0.29 dB and
�
� is 7.86 dB in the 2-

D scheme and 7.93 dB in the 4-D scheme. � is 2.92 dB. Even though the asymptotic

coding gain is reduced by 0.29 dB, the actual coding gain of class 2 data is increased by

reducing � � .

5.5 Rotationally invariant UEP

For the previously described codes to be ����� � rotationally invariant, only the class

1 data protection code needs to be ����� � RIC by assigning bit labels for class 2 data in

a ����� � symmetric manner such that a ����� � phase rotation does not change the decoding

results of the class 2 data. The bit labels for class 2 data with and without ����� � phase

rotation are illustrated in Figure 5.10.

Now, consider having ����� � RI class 1 coders. In 2-D codes, flipping the output bits

of the rate-1/2 convolutional code causes ����� � rotation of the cosets by assigning two

bit labels 00, 01, 10, 11 to cosets A, B, C, D, respectively. Thus using ����� � RI rate-1/2

convolutional codes for class 1 data protection makes both components of the UEP code

����� � rotationally invariant.

This can be applied to 4-D codes. In Table 5.2, a bit flip of the output label cor-

responds to ����� � rotation of 4-D types and thus a bit flip of parity bits. For example,

consider a 4-D type signal ( � 
 � ) which is ����� � rotated: we decode ( � 
 � ). Then the
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π rotation

Bit label = b1 b2 b3 b4 b5 b6.
Coset label = b1 b2
Parity bit = b3
Convol. coded bit = b4(1 for black dot and 0 for white dot)
Uncoded bits = b5 b6

0000 0100 0010 0110

0001 0101 0011 0111

1001 1101

1000 1100

1011 1111

1010 1110

1111 1011 1101 10010110 0010 0100 0000

1110 1010 1100 10000111 0011 0101 0001

(b)

D

C

B

A

D

C

B

A
               

0000 0100 0010 0110

0001 0101 0011 0111

1001 1101

1000 1100

1011 1111

1010 1110

1111 1011 1101 10010110 0010 0100 0000

1110 1010 1100 10000111 0011 0101 0001

0001 0101 0011 01111000 1100 1010 1110

0000 0100 0010 01101001 1101 1011 1111

1110 1010 1100 10000111 0011 0101 0001

1111 1011 1101 10010110 0010 0100 0000

0000 0100 0010 01101001 1101 1011 1111

0001 0101 0011 01111000 1100 1010 1110

1110 1010 1100 10000111 0011 0101 0001

1111 1011 1101 10010110 0010 0100 0000

Bit label in the following constellation = b3 b4 b5 b6

Figure 5.10: Signal constellation for ����� � RI scheme III. (a) Class 2 data bit allocation
for ����� � RI code. (b) Received signal after � ��� � phase error.

output label is bit flipped from 00 to 11 and the parity bit is flipped from 0 to 1. In

this case, we need one more ����� � differential coder for the parity bits. The class 2 code

structure is the same as for two dimensions. The structures of the ����� � RI class 1 codes

are illustrated in Figure 5.11.

We can make our code ��� � rotationally invariant by using the fact that the in-phase

average power ��� and the quadrature-phase average power � 	 are different. At the

receiver, we measure the average power of the I and Q-phase directions and decide the

polarity of the signal constellation. The remaining ����� � phase ambiguity can be resolved

by using the previously described � ��� � RI codes. The code search results for the � ��� �

RI codes are in Table 5.4. In all the schemes but II-B and III-B, the best generators have
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per 4-D
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Figure 5.11: Structures of ����� � RI class 1 data protection code in scheme III. (a) 2-D
signalling. (b) 4-D signalling.

Table 5.4: Code search results of 16 state convolutional codes for class 1 data protection
in scheme I, II and III ( ����� � RI and non-RI codes).

best code ����� � RI-code
Scheme Generators(octal) � �

�
� � Generators(octal) � �

�
� �

scheme I-A,B(2-D) 23,8 11 23,8 11
scheme I-C(4-D) 23,8 14 23,8 14
scheme II-A(2-D) 23,8 26 23,8 26
scheme II-B(4-D) 34,2 29 25,13 26
scheme III-A(2-D) 23,8 26 23,8 26
scheme III-B(4-D) 34,2 29 25,13 26

a ����� � RI structure. Thus we do not have to pay more to make these codes rotationally

invariant. Coding gain calculations are summarized in Table 5.5.

5.6 Simulation results and conclusion

The simulation results for scheme III codes are in Figure 5.12. In this simulation,

we fix the value of
� �

to 1.32 to reduce the path multiplicity of the class 2 code. Scheme

III-B shows about 7 dB gain for class 1 data and about 2 dB gain for class 2 data at a

��� ��� bit error rate. This scheme pays about 0.4 dB to have a ��� � RI structure. Scheme

III-A having an RI structure shows about 0.3 dB less gain than scheme III-B without

rotational invariance. However, scheme III-A could be the best choice if we want to
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Table 5.5: Coding gains for the proposed UEP code family.

Scheme
     Signal
Constellation

   Class 1
coding gain

   Class 2
coding gain

I-A

I-B

I-C

II-A

III-A

(2-D)

(4-D)

(2-D)

(2-D)

II-B
(4-D)

         16-QAM
36.36% class 1 data
       rate = 2.75

         64-QAM
42.11% class 1 data
       rate = 4.75

         16-QAM
40.0% class 1 data
    rate = 2.5-1/L

         64-QAM
44.44% class 1 data
    rate = 4.5-1/L

         16-QAM
40.0% class 1 data
    rate = 2.5-3/2L

         64-QAM
44.44% class 1 data
    rate = 4.5-3/2L

         16-QAM
40.0% class 1 data
    rate = 2.5-1/L

         64-QAM
44.44% class 1 data
    rate = 4.5-1/L

         16-QAM
40.0% class 1 data
    rate = 2.5-3/2L

         64-QAM
44.44% class 1 data
    rate = 4.5-3/2L

(2-D)

III-B
(4-D)

         64-QAM
22.22% class 1 data
    rate = 4.5-1/L

         64-QAM
22.22% class 1 data
    rate = 4.5-3/2L

Γa = 7.27 dB

Γa = 6.85 dB

Γa = 7.23 dB

Γ = 6.38 dB
Γa = 6.50 dB

Γ = 7.67 dB
Γa = 7.47 dB

Γ = 7.43 dB
Γa = 6.89 dB

Γ = 7.22 dB
Γa = 7.50 dB

Γ = 6.76 dB
Γa = 6.76 dB

Γ = 7.69dB
Γa = 7.69 dB

Γ = 7.23 dB
Γa = 7.00 dB

γ = 2.27 dB

γ = 2.04 dB

γ = 3.11 dB

γ = 2.87 dB

γ = 3.11 dB

γ = 2.87 dB

γ = 3.28 dB

γ = 2.82 dB

γ = 3.28 dB

γ = 2.82 dB

γ = 3.21 dB

γ = 3.21 dB

k   = 1.02

k   = 0.72

k   = 0.72

k   = 1.52

∆ = 2.0

k   = 1.142

∆ = 2.0

k   = 1.142

∆ = 2.0

k   = 1.52

∆ = 2.0

Γ = 8.33 dB

Γ = 8.80 dB

Γ = 8.33 dBRI
code

non-RI
 code

γ = 3.21 dB

Γ = 6.65 dB

Γ = 6.43 dB

Γ = 6.62 dB

Γa = 8.15 dB

Γa = 8.22 dB

Γa = 7.99 dB

RI
code

RI
code

RI
code

RI
code

RI
code

RI
code

RI
code

RI
code

RI
code

non-RI
 code

non-RI
 code
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Figure 5.12: Simulation of scheme III in 4-D signalling(
� �

is 1.32) and ����� � RI 2-D and
4-D signalling. (a) Uncoded 16-QAM. (b) Class 2 data protection code. (c) class 1 code
(scheme III-B : ��� � RIC on 4-D signalling). (d) class 1 code (scheme III-A : ��� � RIC on
2-D signalling). (e) class 1 code (scheme III-B : non-RIC on 4-D signalling).
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have an RI code with less complexity.

The rotationally invariant UEP scheme proposed by Wei [5] provides good protec-

tion for the important bits, however the less important bits may even be less reliable

than in uncoded transmission. Calderbank and Seshadri [3] suggested two approaches

(generalized time sharing and superimposing) for UEP code design and provided greater

protection for the less important bits than the Wei codes. Based on the simulation re-

sults (25% important bits) in their paper, they have achieved about 6.5 dB gain for the

important bits and about 1.5 dB gain for the less important bits at a ��� ��� bit error rate

when they use time sharing. However, when they use a superimposing scheme, the less

important bits were not protected.

We have considered a family of multilevel UEP codes based on superimposition for

the additive white Gaussian channel. Four way partitioning in a one dimensional lattice

combined with a non-uniform signal constellation provides good coding gains for both

data classes with reasonable complexity (at most, we use 16 state rate-1/2 convolutional

code and single parity check code for each class data protection). Furthermore, we can

easily make ��� � rotationally invariant codes by using ����� � rotationally invariant rate-1/2

convolutional code and resolving in-phase and quadrature-phase power.
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Chapter 6

HDTV Systems Development Project

The purpose of this project was to implement the channel coding and decod-

ing functions of HDTV (High Definition Television) transceiver standard, proposed by

Grand Alliance, in DSP Canvas [16]. DSP Canvas is a group of computer programs that

when used together constitute a powerful computer aided design and development tool.

It allows development teams to work on different modules or aspects of a system with-

out concern for how other parts of the system have been coded or represented. Another

advantage of DSP Canvas is that it permits convenient changes of the arithmetic preci-

sion in individual blocks, enabling systems designers to quickly evaluate which blocks

are most sensitive to finite precision effects. Our simulation tools are presently in use

by engineers at Thompson Consumer Electronics and David Sarnoff Research Center

for HDTV receiver development. As a side benefit of this work, we developed a decod-

ing strategy yielding performance better than that so far presented before the standards

body. This chapter is organized as follows. Section 1 briefly explains the error correc-

tion circuits of HDTV transceiver. Optimum branch metric calculation methods under

NTSC interference will be discussed in section 2. Section 3 addresses the questions of
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Figure 6.1: 8 PAM constellation.

RSData 
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Data
Interleaver

TCM encoder #1

TCM encoder #12

Channel

Figure 6.2: HDTV Transmitter.

the minimum level of quantization, traceback depth and bits for dynamic range in the

Viterbi decoder.

6.1 HDTV transceiver

Figure 6.2 is a reduced description of the HDTV transmitter. We use 8-PAM

signalling as the equivalent baseband form of 8-VSB (Vestigial Side Band). We use

a 4 state rate-1/2 convolutional code in TCM. The four way partitioning of 8-PAM is

described in Figure 6.1, where the label ( � 
 � 
 ��
 � ) denotes the corresponding coset and

the superscript (+ or -) identifies one of the two members in the same coset.

There are two receiving modes corresponding to the NTSC (regular television) in-

terference situations. The interference level is small near a HDTV transmitter, while

we have to consider the NTSC interference at the edge of coverage. Since most of the

energy in the NTSC signal is in three frequency tones, a tone rejection filter can po-

tentially lead to significantly better performance. The receiver decides whether there
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Figure 6.4: Receiver structure of NTSC interfered case.

is significant NTSC interference or not at the first stage. If there is, the receiver is in

NTSC-rejection mode and uses a 1-12D FIR filter, otherwise it is in the normal mode.

The structure of the normal mode receiver and the NTSC-interfered mode receiver are

shown in Figure 6.3 and Figure 6.4, respectively.

6.2 Branch metric calculation in TCM decoder with NTSC

interference

We now describe how to perform branch metric calculations and the ACS (Add-

Compare-Select) operation in the TCM decoder under the condition of NTSC interfer-

ence. Because of the combination of interleaving and the FIR filtering process for NTSC

rejection, the input to the TCM decoder is a partial response signal, i.e. the channel looks
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like a 1-D channel, which can be explained by the following way.

Let � 	 � 
 	 � 
 � � � 
 	�� 
 � � � 	 be the output sequence of the data interleaver in the transmit-

ter. Since two input bits mapped onto one modulated signal, 	 � has two bits of informa-

tion. If 	�� modulo 12 = � , 	�� is encoded by � -th TCM encoder and 	�� � � � will be the next

input of the encoder because of the one-to-twelve multiplexer. Let � 
 � 
 
 � 
 � � � 
 
 � 
 � � � 	
and � � � 
 � � 
 � � � 
 � ��
 � � � 	 be the received sequence and 1-12D filtered sequence, respec-

tively. Then 
 �
�
	�� � ��� and

�
�
� 
 �

� 
 �
� � � , where � � is a white Gaussian noise at

time index 	 . If
�
� modulo 12 = � ,

�
� (
� 
 �

� 
 ��� � � ) is decoded by the � -th TCM decoder.

Since 	���� � � and 	�� are consecutive inputs in the � -th encoder, in the view point of � -th

decoder, the signal
�
� can be considered as a signal resulting from a 1-D partial response

channel with Gaussian noise.

6.2.1 Combining maximum likelihood sequence estimation and TCM

decoding

The optimum decoding strategy in the linear intersymbol interference channel

(ISI) is maximum likelihood sequence estimation (MLSE) [48]. In uncoded systems, it

is well-known that at least asymptotically MLSE never performs worse than ideal deci-

sion feedback equalizer (DFE). MLSE can be implemented with the Viterbi algorithm.

Assuming the length of ISI is � and the modulated signal can have
�

values, then the

number of states in the trellis is
���

. In our system, the number of states is eight (
�

is

8 and � is 1).

We have to use MLSE before the TCM decoder or else suffer a large performance

penalty in demodulating the partial response signal. However, in this case, hard de-

cisions at the TCM decoder input are unavoidable, which results in about 3 dB more
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Figure 6.5: Illustration of state splitting to make a partial response(PR) trellis. (a) Four
state ordinary trellis. (b) Eight state partial response trellis.

performance loss. As an another alternative, we may consider a combined version of

MLSE and TCM decoding, where the number of states required is the multiple of the

number of states in MLSE and TCM.

Eyuboglu and Qureshi have proposed reduced-state sequence estimation (RSSE)

[40] which can achieve nearly the performance of MLSE at significantly reduced com-

plexity. The result was further extended into the combined version of MLSE and TCM

decoding [41]. We have used their schemes and could decrease the number of states

from 32 to 8. The procedure is described as follows. We split the four states in the

original trellis to produce an eight states trellis as illustrated in Figure 6.5. As we can

see in Figure 6.5, only the branches with output � can go to state � � 
� � and only the

branches with output � can go to state �
� 
 � � , etc... That is, the subscript in state label

comes from the coset label of the branches merging in that state.
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All eight states have the previous surviving signals in their memories. For example,

the state � � memory will contain one of the two members of coset � , i.e. � � has one

of � � and �
�

in its memory. The previous surviving signals will be used in the branch

metric calculation in the next extension. The 8 states also have accumulated metrics in

their memories. Thus each state has two values in their memory – accumulated metric

and previous surviving signal.

Now we will describe the branch metric calculation and ACS procedure in general.

Consider two branches from states � � and � � to state � � , and define them as ��� and � � ,

respectively. States � � and � � have previous surviving signals � � and � � , respectively.

From the partial response (PR) trellis in Figure 6.5 (b), we know that the same coset

� labels both branches ��� and � � . Then the branch metrics of the two branches are

expressed as

metric � �
� � �
� ��� �

� 
 � �� � � (6.1)

metric � �
� � �
� ��� �

� 
 � �� � � (6.2)

where
� �
�

� � � � � �
� � � � � 
 � ��

� � � � � �
� � � � �

� �
�

� � � � � �
� � � � � 
 � �

�
� � � � � �

� � � � �

where � is the signal after FIR filtering.

Let � � be � �
or � � which corresponds to the minimum of

� �
� and

� �� and � � be � �

or � � which corresponds to the minimum of
� �
� and

� �
� . Then the surviving signal � � at

state � � is the � � or � � which corresponds to the surviving branch. This can be described

by the following example. Consider two branches merging into state � � . Define the

previous surviving signal at state � � to be �� which can be �
�

or � � , and the previous
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Figure 6.6: Branch metric calculation in PR trellis.

surviving signal at state �
�

to be �� which can be �
�

or � � . Then the branch metric joining

states � � and � � is

� �
� � � � � ��
�
�

� � � 
 � � � ��
�
�
� � � �

and the branch metric joining states �
�

and � � is

� �
� � � � � ��
�
�

� � � 
 � � � ��
�
�
� � � �

The surviving signal at state � � is �
�

or � � which makes the accumulated metric mini-

mum. This example is explained in Figure 6.6. The signal in the parenthesis beside state

labels are surviving signal labels.

More detailed example is illustrated in Figure 6.7. The two values in the parenthesis

in Figure 6.7 are in the format of (accumulated metric, previous surviving signal). We

can see that the accumulated metric and previous surviving signal of state � � are 7.2 and

�
�

, respectively. The accumulated metric and previous surviving signal of state �
�

are

6.8 and � � , respectively. Let the previous received signal be 0.7 and present signal be

1.2, then 1-D filtering results in total of 0.6. � is 0.6. Let the metric of the branch � �
�
� �

be � � , then

� �
� � �
� � � � � ��

�
�

� � � 
 � � � ��
�
�
� � � �

� � �
� � � � � � � �
�

� � � 
 � � � � � �
�
� � � �

� � �
� �
��� � � 
 � ��� � � ����
 � � � � ����
� � � � �

��� � �
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Figure 6.7: Numerical example of branch metric calculation and ACS.
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Since
� � � ��

�
�

� � � is smaller than
� � � ��

�
�
� � � , we put �

�
in the temporary memory

of the branch � �
�

� � . Let the metric of the branch �
� �

� � be � � , then

� � � � ��� � � � � ��
�
�

� � � 
 � � � ��
�
�
� � � �

� � ��� � � � � � � �
�

� � � 
 � � � � � �
�
� � � �

� � ��� � �
��� � � � �

����
� � ����
� � 
 � ��� � � � �
� � 
� � � � ��� 
��� � � �

��� � �

Since
� � � ��

�
�

� � � is smaller than
� � � ��

�
�
� � � , we put �

�
in the temporary memory

of the branch �
� �

� � . Let the metric of the branch � �
� � � be ��� , then

��� � � �
� � � � � ��
�
�

� � � 
 � � � ��
�
�
� � � �

� � �
� � � � � � � �
�

� � � 
 � � � � � �
�
� � � �

� � �
� � �
��� � � ����
 � ����
� � 
 � ��� � � ����
 � � � �

����
��� � � �
� � � �

Since the signal �
�

corresponds to the minimum of the two values, we put �
�

in the

temporary memory of the branch � �
� � � . Let the metric of the branch �

� � � � be � � ,

then

� � � � ��� � � � � ��
�
�

� � � 
 � � � ��
�
�
� � � �

� � ��� � � � � � � �
�

� � � 
 � � � � � �
�
� � � �

� � ��� � �
��� � � � �

����
� � ����
� � 
 � ��� � � � �
� � 
� � � �

� � 
��� � � �
��� � �

Since the signal � � corresponds to the minimum of the two values, we put � � in the

temporary memory of the branch �
� � � � .

We have finished the branch metric calculation of the branches in this example,

and now consider the ACS procedure starting with state � � . We compare 7.2+ � � and

6.8+ � � . If 7.2+ � � has a smaller value, the new accumulated metric and the previous

surviving signal of state � � are 7.2+ � � and the signal in the temporary memory of the
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branch � �
�

� � , respectively. Otherwise, the new accumulated metric and the previous

surviving signal of state � � are 6.8+ � � and the signal in the temporary memory of the

branch �
� �

� � , respectively. Since � � is 0.36 and � � is 1.96, 7.2+ � � has a smaller

value. As a result, new accumulated metric and the previous surviving signal of state � �

are 7.56 and �
�

, respectively.

Consider the ACS in state � � .

� ��� �
��� � � ��� 
 � � � � � � � � � ��� �

��� � � ��� � � 
 � � � � ��� � � � �
��� � �

Since 6.8+ � � has a smaller value, the surviving branch is �
� � � � . As a result, the

new accumulated metric and the previous surviving signal of state � � are 7.16 and � � ,

respectively. The signal � � was in the memory of the surviving branch �
� � � � .

6.2.2 Noise prediction at the branch metric calculation

Our simulation reveals that the combined MLSE and TCM decoding of the signals

after 1-D FIR filtering shows about 3 dB performance loss compared with the original

4 state TCM without filtering. This is mainly due to the 3 dB noise enhancement result-

ing from the 1-D FIR filtering. Use of the noise predictive metric mitigates the noise

enhancement [39]. The noise prediction coefficients under the minimum mean squared

error criterion is derived as follows.

Let �� � � � � � 
 � �
� � 
 � ��
 � � � � 
 � � � 	 be a sequence of white Gaussian noise samples with

variance � � , and let ��
� � � � � 
	����� � 
���� 
���� � � 
 � � � 	 be the received noise sequence after 1-D

filtering. Then, ���
� � � � ����� � and

�
�
�����$� � �

������� ������
� � � if 	 � �

�
�

if

 	 � � 
 � �

� otherwise

(6.3)
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We can estimate the value � � by using the � -th order linear prediction, where we predict

the present value based on a scaled sum of the previous � samples. To be specific, the

predicted value �� � is defined as

�� �
� ��

��� �
� � � � � �

where the � � ’s are prediction coefficients. The prediction error
� � can be obtained as

� � �
� �

�
�� �
�

� �
� ��

��� �
� � � � � � (6.4)

Let � � be 1 and � � � � � , i=1,2,...,P. Then, the minimum mean squared error �
��� �
�
�

is

expressed as

�
� � �
�
� �

�

�� �
� �

� ��
��� �

� � � � � � �
��
� �

� ��
� � �

� � � � � ����
	�
�

�

�� ��
��� �

��
� � �

� � � � � ��� � � � � �	�
� ��

��� �
� �� � �

�
�

� � �
� � �

��� ��

��� �
� ��� � � � �

�
� � � �
� � � ��� �

�

� � �
�

� ��
� � �

� �� � ��� ��

��� �
� ��� � � � � (6.5)

Since �
��� �
�
�

is a quadrature function of variables � � ’s, it has its minimum where�
�
��� �
�
�� � � �

� 
 	 � � � 
 �
 � � � 
 ��	�� (6.6)

We obtain the optimal prediction coefficients � � ’s from the equations (6.5) (6.6) and the

values are � � � �
� 	

� � �

 	 � � �
 � 
 � � � 
 � 	 (6.7)

The resulting mean squared error is

�
� � �
�
� � � �

�

�
�
� �

� � � � ��� � (6.8)
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thus we can see that �
��� �
�
�

approximates the uncorrelated Gaussian noise variance, as

the prediction order � increases.

For this noise prediction, we need the previous noise values, which can be obtained

by subtracting the correctly decoded signal from received signal. However, the decoding

delay in TCM makes the correct estimation of the previous noise sequence difficult. We

did two simulations using the noise predictive metric. One is the ideal case, i.e. it uses

the correct previous noise values. The other uses sub-optimally estimated previous noise

values for the particular branch, where each state needs memory of the previous noise

estimate. In both cases, we have used first order and second order noise prediction. The

simulation results are shown in Figure 6.8. The sub-optimal method of using a second

order predictor shows about 1.4 dB gain over the squared distance metric, while the ideal

case shows about 2.5 dB gain. Other simulations showed that the sub-optimal method

using 10-th order predictor has performance close to that of the ordinary TCM without

1-D filtering (less than 0.5 dB difference).

The enhanced noise power due to the 1-D filter can be suppressed by using noise

prediction. Since we know the correlation information of the noise, we can perfectly

suppress the enhanced amount of noise. However, an infinite length FIR filter is neces-

sary to do inverse 1-D filtering. Linear prediction using a finite length FIR filter approx-

imates the inverse 1-D filtering. A low order noise prediction scheme for the branch

metric calculation has been proposed by Eyuboglu [39]. Considering that the prediction

error decreases as the order of filter increases, we have used a higher order predictor

and obtained good results. By using 10-th order prediction, we can suppress most of

the enhanced noise. As a result, we have an additional 3 dB gain over the performance

normally expected from the standard.
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(d) 2nd order(sub-opt.)
(e) 1st order(ideal)
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Figure 6.8: Simulation results of TCM in HDTV transceiver with different metrics. (a)
4 state ordinary TCM without NTSC interference. (b) Combined MLSE and TCM de-
coding with ordinary squared metric. (c,d) Combined MLSE and TCM decoding with
first and second order noise predictive metric, respectively (sub-optimal). (e,f) Com-
bined MLSE and TCM decoding with first and second order noise predictive metric,
respectively (ideal).
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6.3 Effect of fixed point precision on TCM decoder

While theoretical results for coding assume real arithmetic, of course in practice

fixed point arithmetic is used. This section addresses the questions of the minimum

level of quantization and traceback depth for comparable performance with the ideal

decoding. Another question is how many bits of dynamic range are required when we

are using two’s complement arithmetic to avoid metric rescaling [45].

There are two decoding modes in the HDTV transceiver. One is a decoder with

NTSC interference and the other is a decoder without NTSC interference. In both cases,

we will find the three factors (minimum level of quantization, traceback depth and num-

ber of bits for the minimum required dynamic range) by simulation. We first describe

the quantization method we have used, and explain the way to avoid metric rescaling by

using two’s complement arithmetic. Simulation results will then be presented.

6.3.1 Quantization

We divide the one dimensional 8 PAM signal space into �
��� � � � sections, where

� is the number of quantization bits. We use uniform quantization. One condition to

be satisfied is that the 8 signal points must be located at the center of the section they

belong to. This situation is illustrated in Figure 6.9. From Figure 6.9, there are a total

sectionsk

Figure 6.9: Quantization of 8 PAM.

of �
� � � sections. When we use � bits for quantization, the value of

�
is obtained as
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000(0.0)

001(0.25)

010(0.5)

011(0.75)

110(-0.5)

111(-0.25)

100(-1.0)

101(-0.75)

Figure 6.10: Modulo structure of two’s complement arithmetic.

follows.

�
� � �

� � � � � ��� � � �
�

� �
For example, when we use 6 bits for quantization,

� ��� � ���� � � and when we use 7 bits

for quantization,
� ��� � � ��	� � � � .

6.3.2 Metric rescaling

Without metric rescaling, the accumulated metric will overflow. In the rescaling

scheme, at each iteration the minimum metric is subtracted from all metrics. The use of

two’s complement arithmetic avoids rescaling subtraction due to the modulo structure

of two’s complement arithmetic. This is illustrated in Figure 6.10 when we use three

bits. The values in the parentheses are the corresponding decimal values. Even when a

positive value overflows into a negative value, nothing special happens in binary notation

as the whole binary notation has a modulo structure. The only indication of overflow is

the flip of the sign bit. The bit location of the two’s complement number is in Figure
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sign bit two’s complement magnitude

x

x

<

Figure 6.11: Bits location of two’s complement number.

6.11. We define the two’s complement magnitude 	 to be the binary value of 	 except

for the sign bit. Let � and
�

be two accumulated metrics to be compared, and �
�
� � be

the maximum possible accumulated metric difference such that,



�
� � 
 � �

�
� ��� (6.9)

Then the dynamic range � must be no less than � �
�
� � to avoid performance degradation

due to overflow.

The compare and selection algorithm is explained as follows. When the sign bits

of the two competing branches are the same, the surviving branch is the one with the

smaller value. When the sign bits of two competing branches are different, one of them

overflowed. We can see from equation (6.9) and Figure 6.12 that the one with smaller

two’s complement magnitude overflowed, so we choose the one which has larger two’s

complement magnitude. Two possible cases of different sign bit metric comparison are

illustrated in Figure 6.12 ( ( � � , � � ) pair and ( � � ,
�
� ) pair ). Consider first

�
� � 
 � ��� . � �

overflowed because


� �

� � �

 � �

�
� � , and we choose � � . For the same reason we can

see that � � overflowed in the
�
� � 
 � � � comparison, so we choose

�
� . In both cases, we

choose the one with the larger two’s complement magnitude. The metric comparison

and selection is summarized as follows. When the sign bits are the same, we choose the

one with smaller two’s complement magnitude and when the sign bits are different, we
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sign bit = 0 sign bit = 1
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a a b b12 21

max

Dynamic range

Figure 6.12: Two possible cases of different sign bit branch metric competition.

choose the one with the larger two’s complement magnitude. Given below are several

numerical examples, where we have 5 bits of dynamic range.

i) � = 01001,
�

= 01110 : we choose � because � and
�

have the same sign bits and

�
�
����� ��� % � � ������� � .
ii) � = 10101,

�
= 10010 : we choose

�
because � and

�
have the same sign bits and

�
�
� � � ����� � � ��� ��� � .

iii) � = 10011,
�

= 01010 : we choose
�

because � and
�

have different sign bits and

�
�
��� ����� % � � � � ��� � .

iv) � = 00111,
�

= 11100 : we choose
�

because � and
�

have different sign bits and

�
�
� ������� % � � ������� � .

6.3.3 Simulation results

There are two decoder modes: NTSC interfered and non-interfered modes. We

simulate the quantization effect, finite traceback depth effect and finite dynamic range

effect in both cases. Then we can decide on the minimum required number of quantiza-

tion bits, the traceback depth and the number of bits for the internal arithmetic without

overflow. Two million symbols are transmitted in every simulation.
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First, consider the TCM scheme without NTSC interference. The simulation in Fig-

ure 6.13 is done under the condition of a very large traceback depth and enough dynamic

range, and shows that 6 bits are enough for quantization. Figure 6.14 shows that a trace-

back depth of 15 (five times the constraint length) is enough. To find the starting state

for the traceback, we have to compare the accumulated metrics of all the states. When

the number of states is large, we need more comparisons. We can save that comparison

cost by starting the traceback process from arbitrary states: however, in this case we

need a larger traceback depth. Figure 6.15 shows that the required traceback depth is

almost two times the original one. The results in Figure 6.16 indicate that a 13 bit range

is enough for the internal arithmetic without overflow.

The simulation results for a TCM decoder with NTSC interference are in Figure

6.17, Figure 6.18 and Figure 6.19. 6 bits of quantization, traceback depth 15 and 14 bits

of dynamic range suffices according to the results. This scheme needs a dynamic range

of one more bit than the scheme without NTSC interference because of the 1-D filtering

process.

Finally, we simulate TCM without NTSC interference using 6 bit quantization, trace-

back depth 15 and 13 bits range of arithmetic and the TCM with NTSC interference

using 6 bit quantization, traceback depth 15 and 14 bits range of arithmetic. We trans-

mitted five million symbols in this simulation. These results are compared with the ideal

cases in Figure 6.20. The ideal cases use floating point arithmetic and very large trace-

back depth (here we have used traceback depth of 60). The performance differences are

only about 0.1 dB.

We have considered the effects of fixed point arithmetic in both TCM decoding

schemes. We use two’s complement arithmetic to avoid metric rescaling. Simulation

results show that 6 bits of quantization and a traceback depth of 15 are enough for
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both modes of TCM. 13 bits of dynamic range are enough for the code without NTSC

interference and 14 bits dynamic range are enough for the code with NTSC interference.

The one bit difference is due to the 1-D filtering process. The performance differences

between using these parameters versus ideal operation is only about 0.1 dB.

6.4 Summary

We have developed the optimum decoding method under the HDTV standard

constraints. The receiver has two modes of operation corresponding to the NTSC in-

terference situations. When the receiver is in NTSC-rejection mode, the decoder has to

manage the partial response signal and a 3 dB noise enhancement due to 1-D filtering

in front of the receiver. Those problems were solved by using RSSE and higher order

noise prediction in the TCM decoder. The noise prediction gives us about 3 dB more

gain over the performance normally expected from the standard.

We have found the minimum level of quantization and the smallest traceback depth

for comparable performance with ideal decoding. Another question is how many bits

of dynamic range are required when we are using two’s complement arithmetic to avoid

metric rescaling [45]. Those three factors (minimum level of quantization, traceback

depth and number of bits for the minimum required dynamic range) were obtained by

simulation. Simulation results show that 6 bits of quantization and a traceback depth

of 15 are enough for both modes of receiver. 13 bits of dynamic range are enough for

the code without NTSC interference and 14 bits dynamic range are enough for the code

with NTSC interference. The one bit difference is due to the 1-D filtering process. The

performance differences between using these parameters versus ideal operation is only

about 0.1 dB.
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Figure 6.13: Quantization effects of 4 state TCM on 8 PAM signalling.
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Figure 6.14: Finite traceback depth effects of 4 state TCM on 8 PAM signalling.
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Figure 6.15: Finite traceback depth effects of 4 state TCM on 8 PAM signalling( trace-
back starts from arbitrary state).
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Figure 6.16: Dynamic range effects of 4 state TCM on 8 PAM signalling.
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Figure 6.17: Quantization effects of 8 state RSSE TCM with NTSC interference.
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Figure 6.18: Finite traceback depth effects of 8 state RSSE TCM with NTSC interfer-
ence.
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Figure 6.19: Dynamic range effects of 8 state RSSE TCM with NTSC interference.
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Figure 6.20: Performance comparisons of fixed point TCM implementation and ideal
TCM in both NTSC interfered and non-interfered situation.
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Chapter 7

Conclusion

We have investigated new channel coding schemes which make convenient use of

previous decoder designs as well as methods for variable error protection transmission

that extensively re-use a common decoder engine. Punctured convolutional codes (PCC)

need one basic decoder for different code rates, reducing the area devoted to the decoder

in ASIC implementation. In addition to this, it is less complex than ordinary convolu-

tional codes. Punctured TCM (PTCM) uses PCC as its component and has the usual

advantages of PCC. However, in general, use of a punctured structure in the decoder

may cause some performance loss due to difficulties in assigning the branch metrics.

Furthermore, it is difficult to design rotationally invariant codes.

We have designed PTCM for multilevel QAM and PSK. We found the optimal po-

sition for puncturing, generators for the rate-1/2 trellis, branch metrics and coset par-

titioning in QAM and PSK. In general, whenever the metric can be decomposed into

orthogonal components a punctured code can be constructed which apart from negli-

gible boundary effects has no performance loss with respect to the equivalent original

TCM scheme.
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We provided two types of ��� � RI-PTCM for QAM signalling. ��� � invariance re-

quires non-linear codes when the cosets are two-dimensional. This may be accom-

plished by using ordinary punctured coding and then swapping state labels, or rearrang-

ing the branch labels which decreases the minimum distance. On the other hand, we

may use separate PTCM for the in-phase and quadrature components, where the origi-

nal rate-1/2 code must be ����� � invariant and all punctured versions of the code will be

invariant. Thus we may continue to use the the same decoder structure for all members

of the family.

Unequal error protection (UEP) codes provide a different error protection on dif-

ferent classes of information. HDTV (High Definition Television) broadcast allows the

possibility of offering several grades of service. Customers close to the transmitter could

receive the full resolution promised by HDTV while those at a larger range would re-

ceive NTSC quality (normal TV quality) images, which can be accomplished by using

multi-resolution codes. Multi-resolution code could be a subset of UEP in the sense that

NTSC quality information is important and highly protected and the additional informa-

tion is not very important but can up-grade the quality of image if correctly recovered.

In general, a UEP code could be useful in any transmission over unknown channels with

variable SNR in the sense that only the receiver knows the channel state and then choose

the rate for optimal perceived quality.

Recently a couple of good results on UEP codes were published. Wei has proposed

rotationally invariant UEP codes [5] [36]. Unfortunately, in his scheme, the coding

gain for the less important is not satisfactory. Calderbank and Seshadri have considered

various kinds of UEP codes for different ratios of important to unimportant data [3]. In

their schemes, coding gains for the less-important bits are significantly improved, but

rotationally invariant code structure Were not mentioned. were not included.
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We have proposed a family of multilevel UEP codes based on superimposition for

the additive white Gaussian channel. Four way partitioning in a one dimensional lattice

combined with a non-uniform signal constellation provides good coding gains to the two

data classes with reasonable complexity. Based on the simulation results, our schemes

perform better than the previous published papers. Furthermore, we can easily make ��� �

rotationally invariant codes by using � ��� � rotationally invariant rate-1/2 convolutional

code and resolving the in-phase and quadrature-phase power.

Even though the HDTV standard was fixed, specific methods of designing the for-

ward error correction circuits were not described. We have developed the optimum

decoding method under the HDTV standard constraints. The receiver has two modes of

operation corresponding to the NTSC interference situations. When the receiver is in

NTSC-rejection mode, the decoder has to cope with a partial response characteristic and

3 dB noise enhancement due to 1-D filtering in front of the receiver. Those problems

were solved by using RSSE and the higher order noise prediction in the TCM decoder.

The noise prediction gives us about 3 dB more gain over the performance normally

expected from the standard.

As a real implementation issue, we have addressed the questions of the minimum

level of quantization and traceback depth for comparable performance with the ideal

decoding. Another question is how many bits of dynamic range are required when we

are using two’s complement arithmetic to avoid metric rescaling. Those three factors

were obtained by simulations.

Our main contribution can be summarized as follows. First, we have investigated

possible ways of designing various rates of rotationally invariant PTCM and UEP codes

by using only rate-1/2 trellis. As a result, the critical components of the decoder will
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be re-used for variety of channel coding schemes, which may save the cost, develop-

ment time and the area devoted to the decoder in ASIC implementation. Second, we

have proposed a family of UEP codes which show better performance than the previ-

ously proposed schemes with moderate complexity and even with a rotationally invari-

ant structure. These results have variety of applications (for example, speech and video

broadcasting and transmission over unknown channels, etc). Third, under the HDTV

standard constraints, we have designed the optimum decoding method which shows

about 3 dB more gain over the performance normally expected.

We still have some interesting open problems. It is desirable to investigate the re-

lations between punctured TCM and rotational invariance in the trellis structure. This

may enable a higher degree of decoder components re-use, and might lead to some

computational complexity reduction. Alternatively a surprising number of codes can

be constructed in a punctured fashion; a fundamental investigation of such properties

would be an interesting task. We have considered two level UEP codes and the per-

formance was compared with the simulation results of the previous papers. If we have

UEP codes which have more than two level data protections each with variable portion,

it would be much easier to manage with the problem of transmission over unknown

channels. For a given portion of each class data, it would be an interesting problem, as a

performance reference, to obtain the upper bounds on the performance of different class

data protection.
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