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Professor Gregory J. Pottie, Chair 

 

Continued rapid progress in the development of embedded motion sensing enables 

wearable devices that provide fundamental advances in the capability to monitor and 

classify human motion, detect movement disorders, and estimate energy expenditure. 

With this progress, it is becoming possible to provide, for the first time, evaluation of 

outcomes of rehabilitation interventions and direct guidance for advancement of 

subject health, wellness, and safety. The progress in motion classification relies on 

both the performance of new sensor fusion methods that provide inference, and the 

energy efficiency of energy-constrained monitoring sensors. As will be described here, 

both of these objectives require advances in the capability of detecting and classifying 



xiii 
 

the location and environmental context. Context directly enables both enhanced 

motion classification accuracy and speed through reduction in search space, and 

reduced energy demand through context-aware optimization of sensor sampling and 

operation schedules. There have been attempts to introduce context awareness into 

activity monitoring with limited success, due to the ambiguity in the definition of 

context, and the lack of a system architecture that enables the adaptation of signal 

processing and sensor fusion algorithms specific to the task of personalized activity 

monitoring. In this thesis we present a novel end-to-end system that provides context 

guided personalized activity classification. With a refined concept of context, the 

system introduces interface models that feature a context classification committee, the 

concept of context specific activity classification, the ability to manage sensors given 

context, and the ability to operate in real time using wireless sensors. We also present 

an implementation that demonstrates accurate context classification, accurate activity 

classification using context specific models with improved accuracy and speed. 
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Chapter 1 

Introduction 

 

1.1 Background 

The rapid advance in microelectronics has provided MEMS inertial sensors, low 

power processors, and low cost monitoring systems applicable to human motion 

classification. Many of the most urgent problems in health and wellness promotion, 

diagnostics and treatment of neurological condition and even athletic performance 

advancement are now possible. The wireless health community exploits this along 

with smartphone technologies for integration of monitoring and in field guidance for 

both advancing and evaluating treatment outcomes.  

Recently developed solutions monitor a subject’s physical activity, for example 

walking gait speed monitoring for recovering stroke patients in the field of wireless 

healthcare [1,2]. For many applications, there is also a need for personalized, targeted 

monitoring for specific activities, in specific environments. For example, a stroke 

patient benefits from monitoring of gait speed while in the hospital and then at home 

to ensure that their mobility is sufficient to enable safe passage through urban areas. 
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Also, these subjects benefit from monitoring and guidance for aerobic exercises while 

at home to maximize the effectiveness of recovery routines [3].  

A large body of work has focused on the accurate detection of physical activities, 

using a diverse range of classification and feature extraction techniques [1,2,4,5,6-9]. 

These methods are confronted with the challenge of classification of a specific, correct 

motion among many possibilities at any observation time. As the number of potential 

motions increase, classification reliability is degraded.    

In fields including wireless sensor networking, pervasive computing, and others, the 

concept of context-awareness has been introduced with the objectives of improving 

human machine interaction, and enabling low energy operation while retaining system 

performance. Many architectures have been proposed to bring personalization and 

adaptation to a system [10], and recent attempts have been made to introduce context 

into activity classification [11,12]. These systems experienced limited success due to 

ambiguity in the definition of context, and a lack of an appropriate system architecture 

that is specific to the task of personalized activity monitoring. 

1.2 Aim, Objectives and Contributions 

This thesis aims at integrating context into activity classification, and based on this, 

proposes a novel system architecture for personalized, context-guided wireless human 

motion classification. The objectives of the thesis work cover reliable wireless sensor 
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instrumentation, context detection, activity classification using context, mobile 

platform development, and mass data collection. 

There are four major contributions in the work presented in this thesis. First, in 

addressing the deficiencies outlined in Introduction, a novel end-to-end system 

architecture has been proposed that provides context guided personalized activity 

classification. The novelty of the proposed architecture lies in three areas: 1) The 

ability to accurately detect context with multiple sensing modes; 2) The use of context 

to improve classification accuracy and speed; and 3) The ability to target specific 

physical activities of interest under selected contexts.  

Second, in implementing the proposed architecture, a comprehensive study of the 

Bayesian Networks (BN), and its uses in activity classification have been presented. 

Detailed discussions include: 1) The implementation of BN with corresponding 

message passing inference algorithms; 2) The ability to exploit a BN's visualization 

advantages to better assist domain experts who are otherwise not trained in machine 

learning to construct meaningful models with powerful mathematical machinery as a 

backend; and 3) The difficulties with using inertial data in BNs, and the solution using 

specially designed discretizers that takes into account a BN's structure.  

Third, a number of practical issues have been solved with regards to instrumenting 

multiple unreliable sensors in a wireless environment. Specifically, the thesis describe 

ways to reliably control and collect data from them. 
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Finally, a novel way has been developed to carry out long periods of data collection on 

multiple subjects. Problems surrounding long recording labeling, unreliable labeling, 

and synchronization have been solved. 

1.3 Related Work 

Many investigations in medical science over the last decade have demonstrated the 

critical benefits of activity monitoring for applications ranging from health and 

wellness promotion to disease treatment, to performance advancement and injury risk 

reduction in athletics. One example is the use of motion and sound data sources in an 

application that provides telemonitoring for elderly individuals living independently 

[6]. Here, a method was developed that can detect when a user requires attention (as a 

result of a fall or long periods of inactivity). In another study, accelerometer sensor 

data sources and machine learning algorithms were applied for monitoring 

intervention effectiveness of acute stroke patients [1]. The technology provides 

physicians with the ability to directly measure a patient's activity level, even after 

discharge. This improves on the surrogate laboratory measurements, administered only 

in a clinical setting. An example of applications in athletics was presented in [7], 

where multiple accelerometers were used for ambulatory monitoring of elite athletes 

in both competitive and training environments. For swimmers, the characteristics of 

strokes can be captured and analyzed. For rowers, the addition of an impeller 

combined with accelerometer data was used to recover intra and inter stroke phases for 
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performance analysis. This system was used by Australian Olympic athletes in 

training for competition in the 2004 Olympic Games. 

Using sensors for activity monitoring has been studied extensively. In [8], a system 

using iPhone and Nike+iPod sport kit was proposed for classifying human activities. 

The activities considered include running, walking, bicycling, and sitting. In [4], a 

complex environment with many microphones, video sources and other sensors was 

designed. The study attempted to accurately track movements of arms and hands. 

Activities considered there are bathing, dressing, toileting, eating, and others. Results 

indicated that using one third of the 300 available sensors in the specially designed lab, 

tasks can be detected with an accuracy of 90%. A specially designed glove was 

introduced for activity classification [5]. The glove detects and records objects a user 

touches using an RFID reader. In this system, all the objects being monitored (such as 

utensils, toothbrushes, and appliances) need to have RFID tags instrumented.  

Most of the studies above are restricted in the number of activities they can detect 

accurately. These systems are designed either for a specific set of activities that may 

not be easily modified, or have a high system installation cost with the requirement to 

modify environments and also monitor subjects only when they are present in these 

environments. 

The recognition of user and environment context has been identified as a primary 

capability for advancing the performance and capability of human-computer interfaces 

in many fields [11]. Studies have emerged recently in wireless health that attempt to 
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combine context and activity classification. In [9], a multi-sensor wearable system was 

proposed that enables a context that largely consists of physical activities. There, 30 

sensors were embedded into a garment, with multiple processing nodes responsible for 

distributed processing of sensor data. This study treated physical activities as contexts, 

and focused on the sensor fusion development. A system for a context-aware mobile 

phone named Sensay was developed in [12]. This includes context defined as a set of 

user states (normal, idle, uninterruptable). By introducing light, motion and 

microphone sensors, Sensay is able to detect these contexts and manipulate ringer 

volume, vibration, and phone alerts. At MIT media lab, a system using audio 

information to obtain environmental context is described in [6]. The system adopted 

HMM algorithm to perform the classification, which can classify contexts such as 

office, supermarket and busy street in real-time. 

In the investigations conducted so far, the definition of context has varied significantly 

between investigations. It is particularly important for activity classification systems to 

define contexts such that they do not contain physical activities, as these should be 

classified after a context has been determined. A new definition of context will be 

introduced for the proposed system architecture in this thesis study.   
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Chapter 2  

System Design 

 

This chapter starts with the definition of contexts and scenarios, then presents a high 

level description of the system, followed by describing the system architecture in 

detail. 

2.1 Context 

First, we present the concept of a context, as it is fundamental to the rest of the thesis. 

When addressing context, many investigations use the important definition by Dey 

[13]. While powerful, this definition of context that includes every characteristics of a 

given situation, in terms of both the environment and the user, is very broad. Useful 

for some applications, it is not suitable for leveraging context in monitoring physical 

activities, as in many cases a context contains physical activities that are underlying in 

the definition. There are a number of alternative definitions available in the field of 

pervasive computing, offering different selection of divisions, such as external and 

internal contexts [14,15]. These definitions are usually narrower, but still contain a 

mix of physical activities with other environmental attributes. 
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In this thesis, a context is defined thusly: 

Definition 1: A context is a subset of all attributes that characterizes an 

environment or situation, external to the user  

This definition clearly distinguishes between the external environment, and the user's 

physical activities. By means of this definition, there is a clear guideline for deciding 

which attribute is associated with context and which is associated with physical 

activity. For example, a "meeting" environment is a context, and its characteristics 

may involve certain sound profiles and a set of possible locations. "Sitting in a 

meeting" in contrast is not a context, as it contains the user's physical activity of 

"sitting". 

2.2 Scenario 

The term scenario is used throughout this thesis, and refers to a collection of contexts 

and activities of interest for a particular user. Within each context there is a set of 

activities of interest, and we can build models of these activities. As an example, 

suppose we believe that by using an accelerometer on the ankle and looking at the 

standard deviation in the horizontal direction, we can tell if a person is walking, 

running or standing still. Here the accelerometer on the ankle is a sensor, the standard 

deviation on the horizontal axis is a feature (derived from sensor data), and activities 

(walking, running, standing) are classes. Further assuming that the distribution on the 

standard deviation is Gaussian, we obtain a model that links a feature to a set of 
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classes (and the model has only two parameters: mean and variance). From here, we 

can carry out a number of different methods to distinguish between the classes given 

an observation of the feature set, and these methods are called classifiers. A simple 

example using Naive Bayes classifiers can be found in [16]. 

With this knowledge, a scenario is defined as: 

Definition 2: A scenario consists of a set of interested contexts with a 

model for distinguishing them. Under each context, a model is required 

that describes a set of interested activities . 

Using the concept of a scenario, we can now describe the proposed system. For 

example scenarios, refer to Section 2.9. 

2.3 High Level Description 

High level functionalities of the system can be described by Figure 2.1. Through 

instrumentation of various sensors, we obtain both inertial data which describe 

motions, and environmental data which describe contexts. The data then flow through 

a signal processing pipeline which would determine the user's context, and produce a 

motion classification based on the context and inertial sensor data. The set of contexts 

and motions that are considered, as well as their relationships are determined by a 

scenario fed into the signal processing pipeline. This scenario can be built by domain 

experts in areas such as primary health care and personal training. The final output of 
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the system is a user's current context and motion, which can be consumed by any 

application that requests this data. These two pieces of information provide two 

entirely new dimensions which could enhance the capability of many software and 

applications. 

 

Figure 2.1: High level system description 

2.4 System Architecture 

We propose here an architecture that is able to provide context guided activity 

classification, with the capability for real time online operation and multimodal sensor 

instrumentation. A set of sensors on the user’s side provide data to a core classification 

system. The core system detects a user’s context first, and activity classification 

models are selected based on this. Both the detected context and classified activity are 

returned to the user, ready to be consumed by 3rd party applications. 

To enable such a system, there are a number of integral components: 1) A way to 

interface with various sensors; 2) A way to interface with the main classification 



11 
 

systems; 3) A way to provide visual guide to the end-user with regards to training and 

live feedback of classification results; 4) A core system that provides the inference 

services which would determine a user's context and activity; and 5) A way for 

domain experts to prescribe scenarios for users. 

2.4.1 Client Server Architecture 

If we consider that the models are to be built by domain experts, classifications are 

done by a core system, and the classification results are to be consumed by end-user 

applications, then this is broken down to a well known Client-Server architecture. An 

end-user client can handle the instrumentation of sensors, interface with core systems, 

and provide visual guide. A domain expert client can handle the construction of 

scenarios, and send them to the server. A server can then implement the required core 

systems, and provide a way for clients (both end-user and domain expert) to interact 

with them. Figure 2.2 depicts the architecture of this new system. 

This architecture provides context detection and activity classification, where the 

context information is utilized by an activity classification system, along with inertial 

sensor data. The end-user client application is used for collecting sensor data and 

labels from a user, and also for displaying results. A corresponding web service runs 

on the server, and acts as a gateway between the client and the core system. This 

provides a means for the client to transmit and access data through a network, in a 

structured manner. Domain experts can build scenarios, and assign them to individual 

users through a domain expert client. 
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Figure 2.2: System architecture 

2.4.2 Object Oriented Architecture 

It is important to note that at each step in design and implementation, individual 

subsystems should be modeled with objects, and the entire system be defined by a set 

of interfaces and relationships. Each software interface is characterized by their public 

methods, defined by functionality, expected inputs and expected outputs. By 

implementing an interface, a class agrees to provide all the methods of that interface 

[17]. In this way, each subsystem is developed independently without the requirement 

to reveal its specific implementations, but only that it implements the required 

interface. This allows any part of our proposed system to be overridden by custom 

realizations, allowing for rapid prototyping and evaluation of various algorithms.  
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2.4.3 Message Oriented Architecture 

For communication between clients and the server, a message oriented architecture is 

popular [18]. This decouples the client and server, where both only need to respond to 

messages they understand, and send messages that the other expects. 

Using object oriented concepts and combing with message based client server 

architecture, we can model the system as depicted in Figure 2.2 with interface models 

in Figure 2.3 - 2.6. 

 

Figure 2.3: End-user client interfaces model 

Figure 2.3 describes the end-user client. We see that the SensorData interface provides 

required abstraction for representing both context and inertial sensor data, and the 

message client sends messages according to Figure 2.5. 
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Figure 2.4: Domain expert client interfaces model 

Figure 2.4 describes the client for domain experts. A software is given to them that 

generates scenarios, and these scenarios can then be sent to the server through a 

message client. Again, the messaging structure is in Figure 2.5. 

 

Figure 2.5: Message system interfaces model 

The messaging structure is shown in Figure 2.5. Note that all messages extend a base 

Message interface, which defines the contract for basic functionalities that all 

messages must have. Top half of the figure shows messages a MessageClient can send, 
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and bottom half represents the possible server responses. Through this messaging 

structure, both the end-user and domain expert clients can fully communicate with a 

server implementing the core systems below. 

 

Figure 2.6: Server core systems interfaces model 

This set of interfaces describes the core systems. Both context and activity classifiers 

require features to be extracted by a feature extractor implementing FeatureExtractor. 

The message server implements MessageServer, and delegate appropriate actions. For 
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example, if a TrainActivity message is received, then the InertialData received from 

the message is delegated to InertialFeatureExtractor, and the ActivityClassifier's train() 

method is called. 

As a concrete example of the flexibility using interfaces, consider the 

ContextClassifier interface, which covers the context classifier. Teams can develop 

classifiers independently and optimize them according to particular applications. As 

long as the classifiers provide the getContext method, they can be hot swapped into 

the system to adjust the classification system behavior without affecting the overall 

system. 

2.4.4 Sensor Instrumentation 

One requirement of the architecture on the end-user client is the ability to reliably 

obtain data from external sensors. By reliably, we mean that the client should be able 

to: 1) Automatically detect, connect and control the external sensors (start, stop, record) 

in real time; 2) Know the status of the sensors at all times; 3) Recover from corrupted 

data, missing data, delay; and 4) Be able to run for an extended amount of time (many 

hours) without accumulating error. 

We propose the following air architecture for instrumenting external sensors (Figure 

2.7). 
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Figure 2.7: Sensor instrumentation architecture 

First, the subsystem closest to actual hardware is the AirInterface, its implementation 

should be as simple as possible, supporting only basic read and write operations 

required for sensor control and data recording. This is so that the subsystem can 

execute as fast as possible. Attached to the air interfaces are monitors. There should be 

one monitor per interface, as the sensors being instrumented can be different, thus 

requiring different monitoring. It is the monitor's job to track a sensor's state, and both 

notify upper layer of changes, and take appropriate actions autonomously. For 

example, if it is detected that a sensor has disconnected, the monitor could notify the 
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upper layer about the disconnection, while trying to re-establish connection (through 

the air interface it is attached to). 

Each AirInterface obtains data from a stream established to the target device, and from 

there the data is tagged with a device id, and stored in a central buffer. A processor 

unit (Processor) runs in parallel to all the air interfaces and processes the buffer. It is 

the processor's job to synchronize the data from multiple sensors. This is a standard 

producer-consumer pattern, where the processing unit is decoupled from the recording 

units through a buffer to ensure that the recording units are not blocked waiting for 

processing. It is essential, as we cannot have the sensors hang due to insufficient 

processing speed. Using this buffer, we also have protection against spurious delays. It 

is also important for the processor to monitor the buffer state to make sure it is not 

overflowing, as this is an indication that the processing speed cannot keep up with 

recording speed. In case that the processing speed is not fast enough, measures need to 

be taken, such as having multiple processors running in parallel, or using memory 

storage devices to store the data. 

Abstracting the underlying sensor instrumentation system is the AirInterface 

Controller. This controller offers upper layers the ability to initiate connection to 

sensors, and to obtain synchronized recording data. Figure 2.8 shows the interfaces 

model of this system. 
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Figure 2.8: Sensor instrumentation interfaces model 

Noticeably lacking are specific data related methods on the AirInterface and Processor, 

as well as the lack of read() on Buffer. To maintain maximum flexibility over a myriad 

sensor types, the interfaces here are loosely defined, and the four pieces (controller, air 

interface, buffer, processor) should be implemented as a coherent unit. Only the 

controller needs an interface for abstracting with upper layers. The only 

communication to the upper layers is through messages marked by DataArrived, and 

Notification interfaces. Refer to Section 3.5.1 for a concrete example implementation 

of the system. 

2.5 Context Detection 

Definition 1 is designed to capture a large number of situations, so that users with 

different objectives can define their own sets of useful contexts. They can then 

identify required characteristics, and select necessary sensors. This generalization 
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makes classification difficult, as we need to account for a diverse range of data sources 

such as GPS coordinates, wireless information, audio, and illumination level. For 

example, consider the following datasets (Table 2.1), demonstrating the result of an 

experimental system that combines both audio signal processing on sound detected in 

an environment, along with the Media Access Control (MAC) addresses associated 

with wireless access points detected in the same environment. Here, three locations 

were used, and MAC addresses and peak frequency of the audio power spectral 

density (PSD) were recorded. 

Table 2.1: Example datasets 

Label Wireless MAC address Audio PSD peak frequency 

A {30:46:9a:06:4d:e0, 00:0c:41:6e:1e:f6} 390.01Hz 

B {2e:25:b3:96:d5:f9, 00:b0:d0:86:bb:f7} 80.91Hz 

C {6e:51:f5:c1:11:00, 00:0c:f1:56:98:ad} 120.19Hz 

 

To separate labels A, B and C in this example, a common method is to find thresholds 

that divide them, based on the MAC address and PSD peak frequencies. It is clear that 

the audio peak frequency data for environments can be assembled, and a distinct 

separation between the labels can be found. The proper treatment of MAC addresses is 

less clear. It is challenging to represent these identifier values in a feature space, and to 

define a separation. This difference in data type determines the suitability of various 
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classifiers. For example, classifiers based on SVM are not suitable for treatment of 

MAC addresses, whereas a method such as kNN has been used successfully [19]. 

In order to detect context based on a variety of data sources, there is a need to use 

multiple classifiers for different features. To this end, we propose the development of 

a classification committee consisting of n individual classifiers (Figure 2.9). The 

individual classifiers are trained separately, and after training they can be tested for 

individual accuracy. A voting weight (α) can be determined for each classifier, 

proportional to the perceived accuracy. When an unknown class is encountered, the 

committee performs a linear combination of the individual classifiers, and the context 

with the highest vote is the output. In interface model 2.6, the committee is 

represented by ContextClassifierCommittee, and individual classifiers should 

implement ContextClassifier. They can then be registered by calling 

registerCommitteeMember() method on the classifier committee implementation. 

 

Figure2.9: Context classification committee architecture 

This committee approach not only allows fusion of a number of sensors with various 

data types, but also allows for adaptation of context detection to individuals with 
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varying habits. For the former, it is easy to see that different classifiers can be selected 

to compose the committee, depending on inputs. For the latter, suppose a habitual 

individual exhibits strong patterns in time of day relating to context. The weight of a 

classifier based on time of day will be adjusted during training so that the habitual 

subject would have a time classifier with higher vote weighting (compared to a subject 

that is irregular). 

2.6 Context Guided Activity Classification 

As described in the previous section, the context is determined through the context 

classifier committee. This context decision then determines the model/method used for 

activity classification. We now introduce the concept of a context guided classifier. 

These classifiers allow us to have specifically optimized models that each focus on the 

activities of interest, given context. Unlike conventional activity monitoring, there is 

no single list of comprehensive activities to be built into a monolithic classifier. 

Instead, a basic set of activities common across all contexts can be chosen, and this set 

can then be extended or reduced should the need arise for a particular context. These 

models can be assigned to specific users, giving us the ability to personalize the 

activities being monitored.  

Based on context information, the model selector (Figure 2.2) would select an 

appropriate activity recognition model from the current scenario, and the activity 

classifier can then make a classification based on the model. There are a number of 
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benefits from using this system. First, we can improve classification accuracy and 

speed due to a simplification of feature space. Then, the system allows scenarios to be 

determined by investigators, and a person's monitoring program can be modified. 

Finally, the system gives a user the ability to control his/her privacy. Unlike most 

other monitoring systems that are always on, a user can decide to only allow 

monitoring under specific contexts, for specific activities. 

2.7 Sensor Control 

By having scenarios describing the contexts and activities of interest, we can also 

optimize sensor sampling rate and selectively enable or disable sensors to reduce 

energy demand. For example, in contexts where no upper body motions are monitored, 

the upper body sensors could be disabled or their sampling rate can be reduced. The 

benefits of this are an overall reduction of power, storage and communication usage. 

2.8 Modes of Operation 

There are three modes of operation supported by this framework: 1) Construction of 

models by healthcare professionals such as doctors, registered nurses, personal trainers; 

2) Initial training from individual end-users of the classification system for both 

context and motion; and 3) Live monitoring of the user's context and motion. The first 

mode is straightforward, where an expert simply logs in to the server, construct a 

scenario and assign it to a user. 
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The training scheme required is dictated by underlying classifier implementations, 

some would require individualized training, while others can function with a generic 

training set or none at all. If training is required, then once a scenario has been 

prescribed, an end-user's client would parse this scenario for required parameters, and 

prompt the user to perform a set of activities under certain contexts to collect the 

training data. Visual cuos to guide a user through training should be implemented, and 

the training data can be sent to a server via training messages (TrainContext and 

TrainActivity). For example, a scenario that monitors walking and running while at 

the gym would require the user to perform both activities in a gym.  

After a scenario has been trained, the end-user client can then go into live mode. Data 

are collected autonomously in this mode and sent to a server, where a continuous live 

stream of context and motion classification can be made and returned to the client. 

2.9 Example Scenarios 

Section 2.1 and 2.2 have defined the concepts of context and scenario, now we present 

some example usages to show-case the power of this architecture. In the tables, some 

of the columns such as features and methods will become clearer in subsequent 

sections. 

In primary health care, physicians may often wish to monitor a stroke inpatient's (still 

in hospital) walking speed and also ensure they are intermittently sitting/standing to 
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alleviate deterioration in exercise tolerance [3]. The domain expert here is the doctor, 

and one possible scenario could be Table 2.2. 

Once the patient is discharged, physicians may then wish to monitor the patient to 

make sure that recommended daily activities are performed at home. This could 

translate to a scenario show in Table 2.3. 

Another example is where personal trainers can prescribe personalized training plans 

for different individuals, including activities of interest and their duration and place 

(gym, home, office). Here the activity monitoring system can inform the user of 

his/her training progress, and also track how long the person has stayed inactive 

(Table 2.4). 
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Table 2.2: Example scenario 1 

Context Features Classifier(s) Activity Model Features Classifier Purpose 

Patient room WiFi k-nearest-

neighbour 

(kNN) 

• Sitting 

• Standing 

• Lying down 

 

Accelerometer 

standard deviation, 

gravity direction 

Naive 

Bayes 

Monitor how long a 

patient has stayed 

immobile, assess the risk 

of bed sores and other 

problems 

Rehabilitation WiFI kNN • Aerobic 

exercise 

• Walking Slow 

• Walking fast 

• Fall 

Acceleration peak 

magnitude, standard 

deviation 

Naive 

Bayes 

Monitor patient's 

performance in exercises 

Hall way WiFi, 

Sound 

kNN, 

AdaBoost 

• Standing 

• Walking fast 

• Walking slow 

• Fall 

standard deviation Naive 

Bayes 

Monitor a patient's general 

physical condition, and 

detect falls 
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Table 2.3: Example scenario 2 

Context Features Classifier(s) Activity Model Features Classifier Purpose 

Home WiFi, Time 

of day 

kNN • Aerobic 

exercise 

• Walking slow 

• Walking fast 

Acceleration peak 

magnitude, standard 

deviation 

Naive 

Bayes 

Monitor if the patient is 

following exercise routine, and 

also his physical performance 
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Table 2.4: Example scenario 3 

Context Features Classifier(s) Activity Model Features Classifier Purpose 

Home WiFi, Time 

of day 

kNN • Sitting 

 

standard deviation Naive 

Bayes 

Monitor if the user is 

exercising enough 

Office WiFi, Time 

of day 

kNN • Sitting 

 

standard deviation Naive 

Bayes 

Monitor if the user is 

exercising enough 

Gym WiFi, Time 

of day, 

Sound 

kNN, 

AdaBoost 

• Pushups 

• Weight lifting 

• Running 

Acceleration peak 

magnitude, standard 

deviation 

Naive 

Bayes 

Monitor if the user is 

following the correct routine 

(amount of time at each 

activity etc). 
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Chapter 3 

Implementation 

 

3.1 Language and Framework Choices 

The first design choice is the language to use. For object oriented designs there are a 

number of popular languages such as C++, Java and Python. From a development 

perspective, both Java and Python are much easier to use as they hide away a lot of the 

complexities that a C++ developer must be mindful of. While Java and Python both 

provide ways to robustly implement the proposed architecture, there is no direct 

support for interfaces in Python, and more importantly, development on the mobile 

platform Android requires Java. While we can implement different parts of the system 

with different languages, there is no advantage to be had by implementing parts in 

Python. Also, some areas are computationally intensive, and Java is generally much 

faster than Python [20]. Finally, having a common language (i.e. Java) lets us use 

techniques such as object serialization, which provides an easy way to transmit data 

between client and server (Section 3.2.1). 
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Section 2.4.1 talked about the need for both an end-user client, and a domain expert 

client. For the end-user client, an ideal candidate is a mobile application supported by 

a smartphone for two primary reasons: First, mobile devices are pervasive, which 

makes the client accessible, and we can leverage services off existing network 

infrastructure that is available in the residential, workplace, and clinic environments, 

where the systems reported here are deployed; Second, mobile devices are high 

performance, so they are able to act not only as user interface platforms, but also as 

wireless sensor hubs that can log, process and store data from the wearable sensors. 

The two main contenders here are Apple's iOS and Google's Android. Due to a 

number of restrictions on iOS such as only being able to interface with Apple 

approved Bluetooth devices, Android was chosen as the development platform for 

end-user client. 

Domain expert clients are designed to run on stationary computers (laptops, netbooks, 

desktops), as they are primarily for user management and scenario building. Here Java 

can be used, and Nokia's Qt library [21] is chosen for Graphical User Interface (GUI) 

development for the following reasons: 1) It is newer and has a more friendly 

appearance than Java's native Swing; 2) It is cross-platform; and 3) Qt provides not 

only a GUI library, but also libraries for audio, video, network etc, which allows for 

easy extension development later on. 
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3.2 Server Implementation 

The server serves as a gateway between the client and server for real time 

classification. It also implements the whole automation process.  

3.2.1 Object Serialization and Transfer through Network 

Section 2.4.3 described the message oriented architecture and how it can be used for 

context guided activity classification. In this implementation, the server is also a 

native Java program. This has two advantages, first, the server is able to natively 

interface with all the other core systems, as they are all developed in Java. Also, 

messages from the clients can be sent using a technique known as serialization, by 

which an object is converted into a binary data string that can be transmitted over any 

stream (network stream in this case). Figure 3.1 demonstrates the process of 

serialization. 

 

Figure 3.1: Serialization, deserialization process 
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Here TrainActivity message is constructed at the client (sender) with the 

InertialSensorData and label filled in. This message object is converted into a data 

string, transmitted through the network, and a server simply deserializes to obtain the 

original object exactly, complete with all data members. Without using this technique, 

developers must come up with their own packing formats to pack objects for 

transferring. Note that Java has native support for serialization through the Serializable 

interface [22].  

3.2.2 User and Scenario Management 

A central concept of the proposed architecture is the ability to prescribe scenarios for 

individuals by domain experts such as doctors. This requires a user and scenario 

management system in place on the server. A user logs into the system, and depending 

on the role can either prescribe a scenario through the domain expert client, or choose 

to use one of the scenarios through the end-user client. A number of interfaces in 

Figure 2.5 govern this: Login, GetUsers, GetScenarios etc. 

The server implementation uses a flat-file database system (where data are stored in 

regular files on a hard drive, arranged categorically under a root directory). User login 

and privilege information are stored in a file containing a serialized java 

Map<Username, Password> [23], where the passwords are md5 hashed for security. 

Upon login request, the file is deserialized into the original map, and credentials can 

be checked.  



33 
 

The domain experts have privileges to view a list of users, and prescribe scenarios for 

any of them. When a new scenario is posted, the server receives the untrained scenario 

file and saves it in target user's directory. End-users only have privileges to view a list 

of scenarios linked to them, and use the scenarios. 

3.2.3 Core Classification Components 

Both a context classification committee and an activity classifier make up the core 

system components. These components each have their own section below. 

3.2.4 List of Messages 

Table 3.1 shows the list of messages implemented, their functions and their responses 

(also refer to Figure 2.5). 

3.3 Context Detection 

Context detection is a major part of the work conducted. Using the modular nature of 

the system, we surveyed a number of classifiers. During this process, we discovered 

that certain features are not suitable for certain classifiers. This section starts with a 

survey of classifiers we implemented, then discusses the impact of features on 

classifier selection, and finally describes a committee based approach that combines a 

number of classifiers in a personalized manner for realizing context classification. 
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Table 3.1: Messages implemented 

Request Privilege Response Description 

Login User, 

Expert 

OK, Exception Logs in the user, a dedicated 

server thread will be created to 

handle this user's requests. If 

login unsuccessful, Exception is 

raised 

GetUsers Expert Users, Exception Returns a list of users 

GetScenarios User, 

Expert 

Scenarios, Exception Returns a list of scenarios 

Experts can assign a username 

on the message and that user's 

scenarios are returned 

PostScenario Expert OK, Exception Adds a scenario for a user 

RemoveScenario User, 

Expert 

OK, Exception Removes a scenario from a user 

TrainContext User OK, Exception Trains the context classifier 

committee with the data posted 

TrainActivity User OK, Exception Trains the activity classifier with 

the data posted 

InertialDataMessage User ClassificationResult, 

Exception 

Returns a classification based on 

inertial data 

ContextDataMessage User ClassificationResult, 

Exception 

Returns a classification based on 

context data 
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3.3.1 KNN 

The k-nearest-neighbors (kNN) classifier is an instance based learner [24, 25, 26]. It is 

a lazy learner in that no real work is done when the training sequence is given during 

the training phase, they are simply stored by the classifier. When an unknown class is 

encountered, the classifier looks for the k nearest training samples to the unknown 

class, and a decision is made based on majority vote. 

Other than implementation simplicity, another major advantage of kNN is the ability 

to handle nominal data (discontinuous). This is particularly important for data types 

like wireless SSID, as we will see in Section 3.3.6. To find the nearest training sample, 

we need to define a distance function. As there are timestamps and a set of SSIDs and 

signal strengths per context, we propose a set of custom distance function below. 

𝒕𝑡𝑖𝑚𝑒  −  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡,𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡, 𝑙𝑎𝑏𝑒𝑙 𝑠 

𝑠𝑡𝑖𝑚𝑒(𝑥) −  𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑥 

𝒕𝑤𝑖𝑓𝑖 −  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑙𝑙 𝑆𝑆𝐼𝐷𝑠 

𝒕𝑤𝑖𝑓𝑖(𝑠) −  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑙𝑙 𝑆𝑆𝐼𝐷𝑠 𝑔𝑖𝑣𝑒𝑛 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑠 

𝒛𝑤𝑖𝑓𝑖(𝑥, 𝑠) −  𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑆𝑆𝐼𝐷 𝑥,𝑢𝑛𝑑𝑒𝑟 𝑙𝑎𝑏𝑒𝑙 𝑠 

𝑦𝑡𝑖𝑚𝑒 ,𝒚𝑤𝑖𝑓𝑖  −  𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 
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𝛿𝑡𝑖𝑚𝑒 = arg min𝑠𝑡𝑖𝑚𝑒(𝑡)‖𝑡 − 𝑦𝑡𝑖𝑚𝑒‖ ∀ 𝑡 ∈ 𝒕𝑡𝑖𝑚𝑒    (1) 

𝒃𝑤𝑖𝑓𝑖 = �𝒕𝑤𝑖𝑓𝑖 ∩ 𝒚𝑤𝑖𝑓𝑖�  −  𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑆𝑆𝐼𝐷𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑎𝑙𝑙 𝑙𝑎𝑏𝑒𝑙𝑠 (2) 

𝑙𝑒𝑡 𝑑(𝑠) =  �min(�𝒛𝑤𝑖𝑓𝑖(𝑏, 𝑠) − 𝒛𝑤𝑖𝑓𝑖(𝑏,𝑦)� ∀ 𝑏 ∈  𝒃𝑤𝑖𝑓𝑖) ,     𝑖𝑓 𝑏 ∈ 𝒕𝑤𝑖𝑓𝑖(𝑠)
∞,                                               𝑒𝑙𝑠𝑒

� 

(3) 

𝛿𝑤𝑖𝑓𝑖 = arg min
𝑠

 𝑑(𝑠)        (4) 

Eq. (1) is a kNN classifier that does matching on time. The distance function here is 

just a check to see which label has the closest matching time. Eq. (2) first finds a set of 

common wireless SSIDs between all training data and the unknown class. The class 

with an SSID whose signal strength is closest to the unknown class is then used as 

output. In the case of k nearest neighbor, both Eq. (1) and Eq. (4) pick the top k, and a 

majority vote is performed.  

3.3.2 AdaBoost 

AdaBoost is a class of boosting method [27, 28, 29]. It is a meta learner, meaning that 

it is to be used in conjunction with a base learner. The base learner can be any 

classifier, and is usually straightforward to implement. They can also be very weak: in 

the binary case, a base learner needs only to outperform chance (50%). By forming 

multiple weak classifiers and weighting them on their accuracy, AdaBoost can 

combine the ensemble into a strong classifier. There are a large number of literatures 

describing the operation and algorithm of a number of AdaBoost variants [27, 28, 29]. 
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For this study, we used the AdaBoost.MH algorithm with a decision stump base 

learner. AdaBoost.MH is an earlier variant, and one of the most popular [30]. It is an 

extension of the earliest multiclass AdaBoost.M1 algorithm [27]. A listing of the 

AdaBoost.MH algorithm can be found in [31]. The decision stump is a modified 

binary decision stump that handles multiple classes by creating a binary label set, and 

converting a multi class problem into a binary problem that tests to see if an unknown 

is of class A, or another class. The implementation simply traverses along each feature 

space, and picks the point where the dataset can be separated most distinctly. Figure 

3.2 demonstrates this using two features. 

Each axis on the figure represents a feature of the data, and by plotting feature 2 

against feature 1 we obtain a 2D space from which the decision stump algorithm can 

find the decision region shown in shaded colors. The AdaBoost algorithm runs a large 

number of these, each time putting more weight on the misclassified data to force the 

decision stump to adjust its decision regions. The collection of stumps is then summed 

in a weighted way to form the final classifier. 

 



38 
 

 

Figure 3.2: Decision stump on binary data 

3.3.3 SVM 

Support vector machine (SVM) is another popular machine learning algorithm. As a 

classifier, it finds the support vectors of a training dataset from the training process, 

and from these support vectors a cut is found that produces the maximum separation 

of classes on both sides.  

Figure 3.3 demonstrates this for a binary case. The support vectors are circled, and the 

cut (black line) produces the maximum separation to all the support vectors. 
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Figure 3.3: SVM on binary data 

3.3.4 Decision Table Tree 

Decision Table Tree (DTT) is model that we came up with by observing the datasets 

collected. We observed that wireless information is a strong feature for determining 

location compared to time and sound. As a result, we designed the tree to first attempt 

to make a classification based on wireless information, and only fall back to time if the 

information is not available. Figure 3.4 shows the DTT model. 

During training, the DTT model stores all the data in a database. During classification, 

the DTT first check wireless information using the same distance function as Eq. (4), 

and the closest result is returned as the classification. However if no wireless 
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information can be matched, DTT then tries to see if the timestamp overlaps with any 

time period on record, and return the label as classification. If this also fails, then the 

DTT returns a label whose time is closest to the unknown timestamp, using Eq. (1). 

 

Figure 3.4: DTT model 

3.3.5 Artificial Neural Networks 

Finally, we also implemented an Artificial Neural Network (ANN). A neural network 

involves a network of simple processing elements called neurons [32]. These elements 

can arrange themselves to model a complex behavior, determined by the way 

connections are made between the processing elements, and the weighting on each 

connection. A neural network can also be interpreted as an adaptive machine [33], in 

which it is a massively parallel distributed processor made up of simple processing 

units. These then have a natural ability for storing experiential knowledge and making 

it available for use. 
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Figure 3.5: ANN with 3 layers 

Figure 3.5 shows a 3 layers artificial neural network, with input layer, hidden layer 

and output layer. There are 4 neurons in the input layer, 4 in the hidden layer, and 2 in 

the output layer. Each connection has a weight attached, and the output of a layer 

becomes the input of the next layer. For training, an error back-propagation algorithm 

is one of the most popular, this algorithm contains a forward path and a backward path 

through all the layers. The forward path describes the connections and weights of a 

layer, and is responsible for computing the outputs of that layer. The backward path is 

used for adjusting the weights and biases for each neuron in the network, based on 

final output of the current iteration. 

3.3.6 Features and Classifier Choice 

The classifiers AdaBoost, SVM and ANN work by finding a way to divide the feature 

space into partitions belonging to different classes. It follows then that they only work 

well on data that has separable feature space. Classifiers like KNN and DTT work as 
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long as a custom set of distance functions or rules can be created, making them 

suitable for some data types, as we will present now. 

In our work, we identified time of day, wireless SSID, signal strength, and sound as 

possible features for identifying context. It is easy to see that two wireless SSIDs are 

not related to each other, and it is difficult to represent them on a feature space suitable 

for classifiers. For example, consider the two sets of SSIDs below: 

 Set 1: [30:46:9a:06:4d:e0, 00:0c:41:6e:1e:f6, 2e:25:b3:96:d5:f9] 

 Set 2: [00:11:95:4c:7b:57, 00:26:bb:76:b3:85, 62:2a:19:50:35:79] 

It is difficult, if not impossible to tell how to plot these on a feature space (such as a 

2D space shown in Figure 3.3). We note that this type of data lends itself well for kNN 

and our own rule based DTT, as we can develop custom rules and distance functions 

based on sets. 

Time and sound features on the other hand are continuous and separable in feature 

space. This means that we can use classifiers like SVM and AdaBoost without 

problems. 

Based on the discussion of features and the choice of classifiers, there is a need to use 

separate classifiers to determine context based on different features. In this 

implementation, the committee is made up of 3 classifiers: kNN (k-nearest neighbors) 

with time as a feature; kNN with wireless MAC address and signal strength as features; 
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and AdaBoost with audio peak frequency, peak energy, average power and total 

energy as features (Table 3.2). These features are extracted from raw sensor data 

through a java program implementing the ContextFeatureExtractor interface: time is 

taken from the clock; wireless MAC address and signal strength list is obtained from 

periodic scans; and audio features are obtained by taking periodic recodings 10 

seconds in length, and performing fast Fourier transform. 

Table 3.2: Classifiers and features used for committee 

Classifier Features 

kNN with time • Timestamp 

kNN with wireless • SSID 

• Signal strength 

AdaBoost • Peak frequency 

• Peak energy 

• Average power 

• Total energy 

In Section 2.5, we proposed a classification committee consisting of individual 

classifiers. Figure 3.6 shows the particular construction used in this implementation. 



44 
 

 

Figure 3.6: Classifier committee 

3.4 Activity Classification - Bayesian Networks 

This section first introduces all the concepts required for a discussion on our classifier. 

Sub section 3.4.6 then ties together all the concepts, and presents a coherent 

formulation for a classification system. Throughout this section, full proofs are given 

for all theories discussed for completeness. 

3.4.1 Graphical Models and Bayesian Networks 

3.4.1.1 Theory 

A graphical model is a probabilistic device that embeds conditional relationships of 

random variables. In such a graph (𝐺), random variables are represented by nodes (𝑉), 

edges (𝐸) represent a relationship between the two variables, and the graph can be 

written as 𝐺(𝑉,𝐸). Figure 3.7.a shows an example of one such graph. 
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a. Generic graph                 b. Bayesian network 

Figure 3.7: Graph models 

For a graph to be a Bayesian Network (BN), the edges (𝐸) must be directed (meaning 

each edge has a direction which indicates the starting and ending node), and the graph 

must also satisfy the Markov condition in Definition 4. 

Definition 3: Given a graph 𝑮(𝑽,𝑬) and nodes 𝑿,𝒀. 𝑿 is the parent of 𝒀 if 

there is an edge from 𝑿 → 𝒀, and 𝑿 is an ancestor of 𝒀 if there is a path 

from 𝑿 →  𝒀 (with length > 1, i.e. not an edge). 𝒀 is a descendent of 𝑿 if 

there is a path from 𝑿 →  𝒀 (taking note of the difference between an edge 

and a path). 

Definition 4: Given a graph 𝑮(𝑽,𝑬) and a joint probability distribution 𝑷 

of the set {𝑽}, the graph 𝑮 satisfies the Markov condition if: 

𝑷(𝑿 | 𝑨𝑿,𝑵𝑿) = 𝑷(𝑿 | 𝑨𝑿),∀ 𝑿 ∈ 𝑽 
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Where 𝑨𝑿 is the parent set of 𝑿, and 𝑵𝑿 is the non-descendent set. That is, 

the probability of node 𝑿 given its parents is conditionally independent to 

variables not linked to 𝑿.  

Following the Markov condition we arrive at an important theorem: 

Theorem 1: If a graph G satisfies the Markov condition, then the joint 

probability 𝑷  embedded in the BN is given by the product of all 

conditional probabilities following Definition 4. 

Proof: First order the nodes so that if 𝑌 is a descendent of 𝑋, then 𝑌 follows 𝑋 

in the ordering (ordering being the number given to each node, or the order we 

visit the nodes). E.g. Figure 3.8 can have an ordering [𝐴1 …𝐴𝑛]. 

 

Figure 3.8: Example Bayesian network 

From here, the proof is given by induction.  

Basis step: Assume 𝐴1 is empty (root of the tree has no parent set).  

𝑃(𝑋1) = 𝑃(𝑋1| 𝐴1) 

Induction step: Suppose that for 𝑃(𝑋𝑛 … .𝑋1) the theorem holds: 

𝑃(𝑋𝑁 …𝑋1) =  𝑃(𝑋𝑁 | 𝐴𝑁) …𝑃(𝑋1|𝐴1) 
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We show that: 

𝑃(𝑋𝑁+1 …𝑋1) = 𝑃(𝑋𝑁+1|𝐴𝑁+1)𝑃(𝑋𝑁 …𝑋1)  

First, if any of the 𝑃(𝑋𝑖|𝐴𝑖) = 0, the last equation is 0.  

Next, for 𝑃(𝑋𝑖|𝐴𝑖) ≠ 0, we have 

( ) ( )+ +

+ +

+ +

… = … …
= …
= 

1 1 1 1 1

1 1 1

1 1 1 1

, | ( )
( | ) ( )
( | ) ( | ) ( | )

N N N N N

N N N

N N N N

P X X X P X X X P X P
P X A P X P
P X A P X A P X A

 

Where line two follows from Definition 4 and line 3 follows from the 

induction step. 

Figure 3.9 demonstrates a canonical example of the Markov condition being satisfied. 

 

Figure 3.9 Another example of Bayesian network 

Markov condition requires that ⊥ |B C A . 

From the graphical model, we have =( , , ) ( | ) ( | ) ( )P A B C P B A P C A P A  

From probability theory, we should have =( , , ) ( , | ) ( )P A B C P B C A P A  
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Combining the above two, we have ( , | ) ( | ) ( | )P B C A P B A P C A= , so ⊥ |B C A  and the 

graph is a BN. 

3.4.1.2 Benefits 

Using a Bayesian network has a number of benefits. First, it is easy to visualize a 

graph, and from it the conditional independences between variables. The reverse is 

also true, where given a set of variables, we can identify the relationships between 

them, and from there intuitively construct a graphical model that is backed by 

probabilistic machinery for various computations. Second, a BN is an economical way 

of representing a complex joint probability distribution involving many variables. 

Suppose we have variables 𝐴,𝐵 and 𝐶  constructed as shown in Figure 3.9. If each 

variable has 𝐿 values, then by general probability theory 𝑃(𝐴,𝐵,𝐶) requires 𝐿3 space 

for a lookup table (one 𝐿  per dimension for each variable). Utilizing the Markov 

condition, variables 𝐵 and 𝐶 have 1 parent each (𝑚 = 1), and the required space is 

given by 𝐿1 × 𝑚 × 𝐿2 𝑜𝑟 3 = 𝐿𝑚+1. Assuming 𝐿1 = 𝐿2 = 𝐿3 then in general the space 

required is 𝑛𝐿𝑚+1 for the entire graph, where 𝑛 is the number of nodes in a graph. 

This is much less than 𝐿𝑛 from general probability theory, if the number of parents per 

node can be restricted (thus small 𝑚). 

3.4.2 Pearl's Message Passing Algorithm 

Pearl's message passing algorithm (MPA) originally appeared in the paper by Judea 

Pearl in 1982 [34]. When operating on a tree structured Bayesian network, it 
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determines all probability 𝑃(𝑋|𝑬) exactly, given a set of instantiated nodes 𝑬 (random 

variables whose value we have seen). 

3.4.2.1 Algorithm 

The algorithm can be summarized as follows: 

Algorithm 1: Peal's message passing algorithm 
 

Input: A Bayesian network whose model is a tree, and a set of evidence (𝑬) 
Output: 𝑃(𝑋|𝑬) ∀ 𝑋 ∈ 𝑽 
 
Initialize: 

for 𝑋 ∈ 𝑽 
  𝜆(𝑥) = 1 
for each parent (𝑍) of 𝑋 
 𝜆𝑋→𝑍(𝑧) = 1 
for value r of root R 

𝑃(𝑟|𝒆) = 𝑃(𝑟) 
𝜋(𝑟) = 𝑃(𝑟) 

for each child C of R 
send_π_message(𝑅 → 𝐶) 
 

send_π_message(𝑍 → 𝑋): 
𝜋𝑍→𝑋(𝑧) = 𝜋(𝑧) � 𝜆𝑌→𝑍(𝑧)

𝑌∈𝑁𝑍{𝑋}

 

𝜋(𝑥) = �𝑃(𝑥|𝑧)𝜋𝑍→𝑋(𝑧)
𝑧

 

𝜑(𝑥|𝒆) = 𝜆(𝑥)𝜋(𝑥) 
𝑃(𝑥|𝒆) = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝜑) 
for each child 𝐶 of 𝑋, 𝐶 ∉ 𝑬 

send_π_message(𝑋 → 𝐶) 
 

send_λ_message(𝑌 → 𝑋): 
𝜆𝑌→𝑋 = �𝑃(𝑦|𝑥)𝜆(𝑦)

𝑦

 

𝜆(𝑥) = � 𝜆𝑈→𝑋(𝑥)
𝑈∈𝑁𝑋

 

𝜑(𝑥|𝒆) = 𝜆(𝑥)𝜋(𝑥) 
𝑃(𝑥|𝒆) = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝜑) 
if 𝑋 is not root, and parent 𝑍 of 𝑋 is not in E 
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send_λ_message(𝑋 → 𝑍) 
for each child 𝐶 of 𝑋, 𝑋 ≠ 𝑌,𝑋 ∉ 𝑬 

send_π_message(𝑋 → 𝐶) 
 

update_evidence: 
for each node 𝑁 ∈ 𝑬 

𝜆(𝑛�) = 1,𝜋(𝑛�) = 1,𝑃(𝑛�|𝒆) = 1, 𝑠𝑒𝑡 𝑎𝑙𝑙 𝑒𝑙𝑠𝑒 0 
if 𝑁 is not root and the parent 𝑍 of 𝑁 not in 𝑬 

send_ λ_message(𝑁 → 𝑍) 
for each child 𝐶 of 𝑁, 𝐶 ∉ 𝑬 

send_π_message(𝑁 → 𝐶) 
 

Proof: 

 

Figure 3.10: Division of graph at node 𝑋 

Consider Figure 3.10, let 𝑫𝒙 be the subset of 𝑬 containing all members 

of 𝑬 that are in the subtree rooted 𝑋 (𝑋 ∈ 𝐷𝑋 if 𝑋 ∈ 𝑬). Let 𝑵𝑿 be the 

subset of 𝑬  containing non-descendents of 𝑋  (note that 𝑋  is a non-

descendent of 𝑋, and 𝑋 ∈ 𝑁𝑋 if 𝑋 ∈ 𝑬). 
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We then have 

β

=

=

=

=

=

, )
( , | ) ( )

( , )

( | ) ( | ) ( )
( , )

( | ) ( | ) ( ) ( )
( , )

( | )

( )

( | ) ( )

|

|

(
P x P x

P

P x P x P x
P

P x P

P x P x P p x
P P x

P x P x

x x x

x x

x x

x x

x x

x x x

x x

x x

n
d n

d n

d n
d n

d n n
n

e d

d

d n  

where the 3rd line comes from the fact that 𝒅𝒙 and 𝒏𝒙 are independent, 

and 𝛽 at the end is a factor that contains all the terms not related to 𝑥. 

From this, we define  

λ
π

∝
∝

( ) ( | )
( ) ( | )

x P x
x P x

x

x

d
n

 

And so 

( | ) ( ) ( )x xP xλ π∝e  

Looking at 𝜆(𝑥), we have: 

1. 𝑋 ∈ 𝑬 𝑎𝑛𝑑 𝑖𝑠 𝑥� 

This means that  

𝜆(𝑥) ∝ 𝑃(𝒅𝒙|𝑥) = �0,𝑓𝑜𝑟 𝑥 ≠ 𝑥�
1,𝑓𝑜𝑟 𝑥 = 𝑥�

� 
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2. 𝑋 ∉ 𝑬, and is a leaf 

We have  

𝒅𝒙 = {∅} 

𝜆(𝑥) ∝ 𝑃(∅|𝑥) = 1,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 

3. 𝑋 ∉ 𝑬, and is not a leaf 

We then consider the case where there are two children, let 𝐷𝐿 

be the left child and 𝐷𝑅 be the right child. And since  𝑋 ∉ 𝑬, 

𝐷𝑋 = 𝐷𝐿 ∪ 𝐷𝑅 (Figure 3.11). 

 

Figure 3.11: Division of subtree into left and right branches 

This means that 

λ λ

=
=
=

=

∑ ∑

∑ ∑

| ) ( , | )
( | ) ( | )

( | ) ( | ) ( | ) ( | )

( | ) ( ) ( | ) ( )

(

l r

l r

x P x
P x P x

P l x P l P r x P r

P l x l P l x r

P x L R

L R

L R

d d
d d

d d

d

 

Where the third line comes from: 

=
=

, | ) ( | , ) ( | )
( | ) ( )

(
|

l x P l x P l
P P l x

P x
l

L L

L

d
d

d
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Since the above depends on both 𝑙, 𝑟 and 𝑥, we define messages 

λ λ

λ λ

→

→

=

=

∑

∑

( | ) (( ) )

)( ) ( | ( )

L X
l

R X
r

P l x l

P r x r

x

x
 

Looking at 𝜋(𝑥), we have: 

1. 𝑋 ∈ 𝑬 𝑎𝑛𝑑 𝑖𝑠 𝑥� 

𝜋(𝑥) ∝ 𝑃(𝑥|𝒏𝑿) = �0,𝑓𝑜𝑟 𝑥 ≠ 𝑥�
1,𝑓𝑜𝑟 𝑥 = 𝑥�

� 

2. 𝑋 ∉ 𝑬, and is the root 

We have 

𝒏𝑿 = {∅} 

𝑃(𝑥|𝒏𝑿) = 𝑃(𝑥|∅) = 𝑃(𝑥) 

3. 𝑋 ∉ 𝑬, and is not the root 

We then consider 𝑋 to be the left child of 𝑍, and let 𝑇 be the 

right child. 𝑁𝑋 = 𝑁𝑍 ∪ 𝐷𝑇 (the set of non-descendent is now the 

set of non-descendent of the parent 𝑍, together with the set of 

descendent of 𝑇 , since 𝑋  is only connected to 𝑇  through its 

parent). 
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γ

γ π λ →

=

=
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=
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Where the λ message in the last equality comes from 

λ →

=

=

=

∑

∑

( (

(

| )

( )

| , ) ( | )

| ) ( | )

t

T Z

t

P P

P

z

z z t P t z

t P t z

T T

T

d d

d  

Since 𝑃(𝑥|𝒏𝑿)  depends on values from 𝑇  and 𝑍 , we define 

message 

𝜋𝑍→𝑋(𝑧) = 𝜋(𝑧)𝜆𝑇→𝑍(𝑧) 

And so 

π π →=∝ ∑( | ( | )) ( ) ( )Z X
z

P x P zx x zxn  
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3.4.2.2 Space and Time Complexity 

Let  

 𝑛 = the number of nodes in the tree 

 𝑙 = number of values for a node 

 𝑘 = number of children for a node 

The resulting tree would have 𝑛 − 1 edges, and need to store at most 𝑙2 values in a 

look up table for each pair of nodes (conditional variables), 2𝑙 values in two separate 

1D arrays for the 𝜋 and 𝜆 values, and so the space complexity is given by 𝑂(𝑐𝑙2), 

where 𝑐 is a constant. 

The number of multiplications required to compute a variable's conditional probability 

is 𝑙 to compute the 𝜋 messages and 𝑙2 to compute the 𝜆 messages, 𝑙2 to compute the 𝜋 

values and 𝑘𝑙 to compute the 𝜆 values, giving us a running time complexity of 𝑂(𝑐𝑙2). 

3.4.3 Beta Density 

Up until now, we have assumed that the conditional probabilities are already given. In 

classification problems, they often need to be learned from training data. When 

learning from data, we can either learn from only user training data, or from only 

expert opinion. Using the former, we obtain estimates of conditional probabilities 

specific for a user, ignoring any general trends that may be exhibited by the general 

population. And using the latter, we use trends exhibited by the general population, 
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and ignore specific input from the user. Here we look at ways to incorporate both our 

prior belief of a conditional probability (maybe from what we have observed in the 

general population), and a user's specific behavior (from the user's training data). 

Beta density is a probability distribution. It allows us to start with a prior belief about 

the value of a random variable, and then update this belief with new datasets. To show 

some of its properties, we will provide a running example. 

Suppose we have a binary data transmission channel that randomly assumes one of 

100 states numbered 𝑛 =  1 𝑡𝑜 100 , each with 1/𝑛  chance of corrupting the 

transmitted bit. Let 𝑋 be the outcome from a channel, and 𝐹 be the random variable 

associated with 𝑛 (such that 𝑓 = 1 is associated with the 1st channel and so on). We 

then have: 

𝑃(𝑋 = 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 |𝐹 = 𝑓) = 𝑓 

That is, if we know which channel state we are in (thus which 𝑓), then the probability 

of receiving a corrupted bit is 𝑓.  

Now consider that this is the very first time such a channel is used, then we are more 

likely to set 𝐹 to uniform as there are no prior knowledge. Further consider the case 

where one such channel has been used widely, and we see that the channel's state is 

centered around 𝑛 = 10 (that is 𝑓 =  0.1). For both of these cases, we would want a 

different distribution for 𝐹, and the Beta density family allows us to do that. 
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Definition 5: A beta density describes a binary random variable 𝑭 with 

parameters 𝒂 and 𝒃, and has the form 

− −Γ +
≤= − ≤

Γ Γ
( 1) ( 1)( ) 1

(
( ; , ) (1 ) ,

) ( )
0a ba b f

a b
beta f a b f f  

Where 𝜞(𝒙) is given by: 

−∞ −Γ = ∫ ( 1) (

0

)( ) .x tx e dtt  

Going back to the motivating example, note that 𝑏𝑒𝑡𝑎(𝑓;  1,1)  is uniform, and 

𝑏𝑒𝑡𝑎(𝑓; 5,45) is a bell curve centered around 0.1. Figure 6 shows both of these. 

 

Figure 3.12: Uniform and non-uniform beta densities 
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Worth noting, is that the beta density centers around 𝑎
𝑎+𝑏

, and has its sharpness 

associated with 𝑎 + 𝑏. Intuitively, 𝑎
𝑎+𝑏

 can be seen as the relative frequency of seeing 

𝑎 occurring in 𝑎 + 𝑏 observations, and 𝑎 + 𝑏 shows how many samples we have taken 

(thus how confident we are about the distribution of values around the center). 

Now that the beta density is defined, we establish the relationship of 𝐹  and the 

probability of error 𝑃(𝑋 = 1): 

Theorem 2: Suppose we believe that given beta density, 

( 1| )P X f f= =  

Then 

𝑃(𝑋 = 1) = 𝐸[𝐹] 

Proof:  

= = =

=
=

∫
∫ 

1

0
1

0

( 1) ( 1| ) ( ; , ).

( ; , ).
[ ]

P X P X f beta f a b df

f beta f a b df
E F  
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𝐸[𝐹] can then be evaluated through the integral: 

 

 

Where the 2nd gamma function in line 4 comes from the definition of a beta function: 

− −=
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And the last line comes from the following result: 
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The final result is that 

𝑃(𝑋 = 1) = 𝐸[𝐹] =
𝑎
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Intuitively, 𝐸[𝐹] can be thought as the prior belief of the probability of 𝑋, and we 

want to start with this prior belief, and update it if the new set of data disagrees. For 

example, if we believe the channel behaves with beta(f; 1,1), and after 20 transmission 

there is a 90% error rate, then it is likely this is the wrong estimate for the current 

channel, and our belief needs to be updated. 

Theorem 3: Given a set of independent data 𝒕 = {𝒙𝟏, … ,𝒙𝒏}, let 𝒌 be the 

number of times 𝒙𝒊 = 𝟏, let 𝒍 be the number of times 𝒙𝒊 = 𝟎. We can 

update the original beta distribution to 

( ; , )beta f a k b l+ +  

Proof:  

=

− −

+ − + −

Γ +
− −

Γ Γ

Γ +
−

Γ Γ

Γ + Γ

=

=

=
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+ Γ +

Γ Γ Γ
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Where line 2 relies on the data samples being independent from each 

other. From this, we further obtain 
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Figure 3.13 shows the result of this update on the running example of binary data 

transmission. 

 

Figure 3.13: Initial uniform beta function and the updated result 
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3.4.4 Dirichlet Density 

Whereas all the analysis and examples above only apply to binary variables, Dirichlet 

density applies to multi-nominal variables. The Dirichlet density is a multivariate 

generalization of the Beta density, and is studied here. For a variable that takes on 𝑟 

values, we have for the Dirichlet distribution with parameters 𝑎1, … 𝑎𝑟: 

1( 1

1

) ( 1)
1 1 1

(
,... 1; ,... ) ... 1,

( )

)
( ,0r

i
a ai

r
i

i

r r r i i

i

f a a
a

dir f f f
a

ff− −

=

Γ
− = ≤ ≤

Γ

∑
∑

∏
 

Note that only 𝑟 − 1 number of 𝑓 are needed, as 𝑓𝑟 can be unique determined using: 

1

1
1

r

i
r if f

−

=

= −∑  

Figure 3.14 shows an example of a uniform Dirichlet (a) 𝐷𝑖𝑟(𝑓1,𝑓2; 2,2,2) and one 

that tends towards 𝑓2 (b) with 𝐷𝑖𝑟(𝑓1,𝑓2; 2,4,2). 

 

a. Uniform                                      b.Dirichlet towards f2 

Figure 3.14: Dirichlet functions 
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Following the beta density, Dirichlet density has similar properties regarding expected 

values and updates: 

1

][ i
i

k

r

k

aE F
a

=

=

∑
 

And if 

)( | i iP X i f f==  
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3.4.5 Augmented Bayesian Networks 

An augmented Bayesian network is defined as [35]: 

Definition 6: An augmented Bayesian network is a Bayesian network, with 

the addition of: 

1. For every node 𝑿𝒊 in the graph, there is an auxiliary parent 

𝑭𝒊  and a density function 𝑷𝑭𝒊 . Each auxiliary parent is a 

root, and must only contain an edge to the variable 𝑿𝒊. 
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2. For every node 𝑿𝒊, all values 𝒂𝒊 of the parents 𝑨𝒊 from the 

original graph, and 𝒇𝒊 of 𝑭𝒊, there is a defined probability 

distribution of 𝑿𝒊 conditioned on 𝒂𝒊 and 𝒇𝒊 

For example, Figure 3.15 shows a two node Bayesian network (white) with its 

augmented construction (auxiliary shaded). 𝐹1 is prior belief (beta density) for variable 

node 𝑋1 (which has values 1 and 2), while 𝐹2,1 is the prior belief of node 𝑋2, given 

𝑋1 = 1. Similarly 𝐹2,2 is the prior belief of 𝑋2 given 𝑋1 = 2. 

 

Figure 3.15: Augmented Bayesian network 

If we let all the auxiliary node take on beta densities (initialized to uniform), then a list 

of all functions associated with this augmented BN is listed below (Table 3.3). 

3.4.6 Bayesian Network Classifiers 

We now have all the pieces required to develop a probabilistic classification system. 

There are a number of main components for a complete probabilistic classification 

system: 1) Features measured from raw data; 2) A set of class labels that can be 

separated by features; 3) A model describing the relationship between class labels and 

features; 4) A method for estimating the conditional probabilities from raw data; and 5) 
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An inference engine that queries a model for class label classifications, given an 

observation of features. All of the theories derived above will be used to implement 

these components.  

Table 3.3: Beta densities associated with the augmented BN 

Auxiliary nodes Uniform beta densities 
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Conditionals in the underlying BN 
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Throughout this subsection, we use a running example of determining whether a 

Tennis game has been played, through a number of weather parameters. It is a 

common example, with raw data taken from the University of California, Irvine (UCI) 

Machine learning database [36]. The data is summarized in Table 2. 
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Table 3.4: Example data summary 

 Play = Yes Play = No 

Outlook Sunny 2 3 

Overcast 4 0 

Rain 3 2 

Temperature Hot 2 2 

Mild 4 2 

Cool 3 1 

Humidity High 3 4 

Normal 6 1 

Wind Strong 3 3 

Weak 6 2 

Play 9 5 

 

Components one and two are straightforward. First, features important for a topic of 

interest are determined by experts. Here for example weather data such as sunlight, 

wind strength etc are determined to be important for whether a tennis game goes ahead. 

Then, the class labels are identified such that the topic of interest is cleanly separated. 

For example whether the tennis game plays or not (yes, no are then the class labels). 

The model we use to describe relationships between features and class labels is a 

Bayesian network. Each feature is a node on the graph, and the class label is also 
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represented by a node. The conditional relationship between class node and feature 

nodes are represented by directional arrows. If there are additional relationships 

between the features, then they can also be linked by directional arrows. One of the 

simplest models is the naive Bayes classifier, which assumes dependency between the 

class label and each of the features, but considers features conditionally independent to 

each other. Figure 3.16.a shows the running example represented by a naive Bayesian 

model, while (b) shows one more complex model which introduces dependency 

amongst the features. 

 

a. Naive Bayes model                            b. Tree like structure 

Figure 3.16: Bayesian models 

Once we have a model, dependencies are set by edges and their directions. From this, 

we can go back to the raw data, and estimate these necessary conditional probabilities. 

Section 3.4.4 provides a way for us to incorporate both prior beliefs and user training 

data. Our belief about an individual's behavior can be obtained from a general 

population, and a generic Dirichlet density can be formed. This prior belief can then 

be updated through an augmented Bayesian network once we have seen training 

datasets from the user. In this running example, we may have the match playing and 
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weather statistics from tennis games across the country. This can serve as a prior belief, 

if there is location specific data to a particular tennis arena, then we can update our 

prior belief. Figure 3.17 shows an augmented BN of Figure 3.16.a, and Table 3.5 

shows an example of this update by starting with uniform Dirichlet functions. 

 

Figure 3.17: Augmented Bayesian network of Figure 3.16.a 

Finally, given a model and required conditional probabilities, Pearl's message passing 

algorithm presented in Section 3.4.2 allows us to infer the probability of our class 

label being one of its values, given all the observed features. In our example, suppose 

we observed evidences 𝒆: 

𝒆 = {𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 𝑆𝑢𝑛𝑛𝑦,𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝐶𝑜𝑜𝑙,𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝐻𝑖𝑔ℎ,𝑊𝑖𝑛𝑑 =

𝑆𝑡𝑟𝑜𝑛𝑔}  

then the class probabilities given by Pearl's MPA are 

𝑃(𝑃𝑙𝑎𝑦 = 𝑌𝑒𝑠|𝒆) = 0.280 , or 0.205 without using augmented BN (no 

Dirichlet density update) 
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𝑃(𝑃𝑙𝑎𝑦 = 𝑁𝑜|𝒆) = 0.720 , or 0.795 without using augmented BN (no 

Dirichlet density update) 

Table 3.5 Updated Dirichlet of Figure 3.17 

Feature Updated Dirichlet 

Wind 𝐷𝑖𝑟(𝑓1; 4,7)|𝑌𝑒𝑠 

𝐷𝑖𝑟(𝑓1; 4,3)|𝑁𝑜 

Humidity 𝐷𝑖𝑟(𝑓1; 4,7)|𝑌𝑒𝑠 

𝐷𝑖𝑟(𝑓1; 5,2)|𝑁𝑜 

Outlook 𝐷𝑖𝑟(𝑓1,𝑓2; 3,5,4)|𝑌𝑒𝑠 

𝐷𝑖𝑟(𝑓1,𝑓2; 4,1,3)|𝑁𝑜 

Temperature 𝐷𝑖𝑟(𝑓1,𝑓2; 3,5,4)|𝑌𝑒𝑠 

𝐷𝑖𝑟(𝑓1,𝑓2; 3,3,2)|𝑁𝑜 

Play 𝐷𝑖𝑟(𝑓1; 10,6) 

 

We see that the results above are consistent with those obtained through probability 

theory: 

( | ) ( | ) ( | ) ( | ) ( | )
0.0035

P Yes P Sunny Yes P High Yes P Cool Yes P Strong Yes=
=

e  

( | ) ( | ) ( | ) ( | ) ( | )
0.0206

P No P Sunny No P High No P Cool No P Strong No=
=

e  
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After normalization: 

( | ) 0.2046
( | ) 0.7954

P Yes
P No

=
=

e
e

 

3.4.7 Implementation 

Based on theories explored above, we implemented an activity classification system 

that uses BN for modeling, augmented BN with Dirichlet densities for parameter 

learning, and Pearl's MPA for inference. By using BN, we enable users to visualize 

abstract features as nodes, and let them build complex structures modeling an 

inference problem, based on their domain expertise. By using Dirichlet densities and 

forming augmented BN for parameter learning, we further enable a user to input their 

domain expertise in the form of prior knowledge. Finally by using Pearl's MPA, we 

enable both speed and space efficient inference. The server side component (the main 

classifier) implementation is described here, and the implementation of the model 

maker is covered in Section 3.6. 

3.4.7.1 Overview 

The system's general workflow is described by Figure 3.18. When in training mode, 

the untrained XML model generated by a domain expert client (Section 3.6) is used to 

determine the parameters that need learning, and theses parameters are estimated from 

the training data. The fully trained BN model is then saved as an XML document. In 

live mode, a previously trained BN model is loaded, and observations are inserted into 
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the network as evidences. Carrying out Pearl's MPA will update the network to the 

correct probabilities, and classification can be made. 

 

Figure 3.18: BN server side architecture 

Figure 3.19 shows the interfaces model. 

 

Figure 3.19: BN server side interfaces model 
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3.4.7.2 Parameter Estimation 

When training is conducted, the program needs to finds all conditionals of the graph. 

This is done by carrying out a breadth first search (BFS) using algorithm listed in 

algorithm 2. 

Algorithm 2: Breadth First Search (BFS) 
 

Input: tree 
Output: a list of nodes in the order of visit from left to right, then top to 
bottom 
 
Initialize queue q, List marked 
q.add(root) 
mark root as visited (add to marked) 
while q is not empty 

x = q.leave 
for each child of x 

if child not marked (not in marked) 
mark child 
q.join(child) 

return marked    
 

Using these conditionals, the program then generates a list of uniform Dirichlet 

densities, and updates them based on theories developed in Section 3.4.4. First, the 

counts (l,k...) are determined from the raw data file received. Then, the densities are 

updated. Finally, actual conditionals of each feature node is determined through 𝑎𝑖
∑ 𝑎𝑙𝑙  

. 

3.4.7.3 Inference 

Once the training is complete, inference can be carried out in real time on the server. 

The end-user client would go into live mode, and stream sensor data to the server. 

Depending on the BN model prescribed, different features are derived from the data, 
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and Pearl's MPA is carried out by updating evidences (the observed feature values). 

Results are then streamed back to the client. 

3.4.8 Extension into Activity Classification, Discretization 

The extension of a generic BN structural-wise into activity classification is 

straightforward. There are two types of nodes, one is a class node containing activities 

of interest, and the other is a feature node, containing feature derived from sensor data. 

From there, the construction of a BN is no different to that discussed above. 

In activity classification, almost all features are continuous. For example, the 

distribution of standard deviation of acceleration along any particular axis is usually 

considered Gaussian. This requires that a BN be constructed with continuous variables. 

The inclusion of continuous variables as feature nodes is non-trivial, and is the topic of 

this section. 

While there are a number of theories extending Bayesian networks into the continuous 

domain [37,38], they are usually limited in the distributions that can be used (Gaussian, 

exponential), or the structure of the graph (e.g. must not have continuous parent with 

discrete child). In this work, we have decided to employ a discretizer, and this section 

describes our discretizer, and how to take into account a network's structure when 

discretizing. 
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3.4.8.1 Equal Distance Discretizer 

An equal distance discretizer is the simplest discretizer, but also brings the most 

flexibility as it assumes no prior knowledge of the data or structure. The discretizer 

starts by dividing a continuous data set into n number of bins with boundaries 

1 1...[ ]nbb − , and data points belonging to each bin is replaced by the bin number instead 

of their original continuous values. The two edge bins have range 1( ],b−∞  and 

1[ , )nb − ∞  respectively. The result is a discrete variable whose value [1... ]v n∈ . 

3.4.8.2 Enhancing the Discretizer Output 

A significant drawback with using a discretizer is that if there was not enough data, 

then the output could contain empty bins. This could also occur if we have training 

data that was unfortunate enough to have no data in a bin's range, or if there are too 

many bins. 

 

Figure 3.20: Discretizer output 
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As mentioned before, the distribution being discretized is the features. Figure 3.20 

shows the result of discretization on the feature standard deviation in the horizontal 

axis, and this dataset contains the activities standing, walking and running. It is clear 

that the blue on the left in low bin number represents the samples for standing, as it 

generates the least amount of variance on acceleration. The next two roughly Gaussian 

shaped areas to the right are walking and running respectively. 

It is also clear that bin 53 should contain samples relating to running, however there is 

nothing in the output for that bin. This is because the data set unfortunately does not 

contain any running sample that falls in that bin. When the BN is trained using this 

data, it assigns zero probability to bin 53, and any subsequent query on the network 

using that bin number produces a unknown result. From Figure 3.20, it can also be 

seen that bin 53 is not very close to the tail, so in actual live environments there is a 

fair chance that an observation of the feature would fall into that bin. 

There are a number of solutions, the easiest of which is to increase training dataset 

size. The longer a training dataset is, the less likely that a probable bin (for example 

bin 53 in Figure 3.20) would be blank. However there is no upper bound on how long 

a training set has to be, and users are not likely to accept long periods of training (for 

example asking an end-user to run for 10+ minutes is often difficult). 

We propose that by interpolating a zero bin with nearby bins, and filling it with 

generated data, we can get around the problem of empty bins without requiring extra 

training samples. Algorithm 3 and Figure 3.21 below demonstrate this idea. 
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Algorithm 3: Interpolation 
 

Input: dataIn - discretizer output (array of integers, index is bin number, 
element value is count) 

Output: dataOut - enhanced discretizer ouput 
 

Copy dataIn to dataCopy 
 
For each zero count bin in dataIn with bin number x 

Find nearest non-empty bin to the left, maximum 3 steps, assign steps 
taken to steps, assign count to l, assign samples to s 
Find nearest non-empty bin to the right, maximum 3 steps, add steps 
taken to steps, assign count to r, add samples to s 
new count for bin x is n = floor((l+r)/steps) 

 
For each unique sample class present in s 

generate m new samples of that class, m = 
ceiling(count(class)/size(s) * n) 

end for 
end for 

 

Figure 3.21: Enhanced discretizer output 
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Algorithm 3 requires that extra samples be generated, and this is also non-trivial in a 

BN, as it is highly dependent on the structure. Consider the four possible scenarios in a 

BN in Figure 3.22. 

 

Figure 3.22: Possible node type combinations 

In the case a discrete variable is the parent of a continuous variable (a), we generate 

samples that would fill the empty bin on the continuous variable, whose parent 

variable values are distributed in proportion to the distribution of neighboring bins 

(see Figure 3.21 for an example). In the case of a continuous variable followed by a 

continuous variable (d), both need to be interpolated. Similarly, the case of continuous 

variable followed by discrete variable (b) can be filled by following case (a), and the 

case of discrete variable followed by discrete variable does not need to be handled. 
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3.5 End-User Client 

As per Section 2.4.1, the end-user client handles sensor instrumentation, scenario 

training and then real time classification. 

3.5.1 Sensor Instrumentation 

Both inertial data and context data need to be collected by the end-user client. Context 

data includes sound, time and wireless information, which can be obtained directly 

from an Android device and require no additional sensor instrumentation. This section 

deals with the instrumentation of external Bluetooth accelerometers for inertial data 

collection. 

3.5.1.1 Hardware 

GCDC X6-2mini accelerometers are used in this study. It is a 3-axis accelerometer 

with the following characteristics: 

• ±  2/6g range 

• 12/16 bit resolution 

• 20 - 320Hz sample rate 

• USB and SD card storage 

They originally do not have Bluetooth logging capabilities, and so wireless capability 

is obtained by soldering a RN-42 Bluetooth module [39] onto the serial debugging 

port of the X6-2mini. The RN-42 chip supports RFCOMM communication, and the 
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X6-2mini serial port commands can be found in Appendix I. Figure 3.23 shows a 

picture of the modified accelerometer.  

 

Figure 3.23: Modified X6-2mini 

3.5.1.2 Software 

Based on the debugging console commands from Appendix I, the implemented 

AirInterface outlined in Section 2.4.4 supports: 

• Data logging 

• Battery level check 

• Bluetooth transmission on/off 

Below is an example listing of the data being received, in the format of (relative time, 

x, y, z): 

0.317,-1189,-3392,2130 
0.342,-2745,-5547,1496 
0.367,-2720,-6395,1245 
0.391,-1886,-6210,1161 
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The device reports relative timestamp since the start of sensor. Synchronization is 

carried out by the controller, where a snapshot of all relative timestamps of every 

sensor is taken at a specific time (t ), and subsequent data are tracked with the time t  

being zero reference. Sensor timing drift is avoided in the controller implementation 

by re-synchronizing every n seconds. Figure 3.24 is a flow chart depicting the data 

collection process. 

 

Figure 3.24: Sensor instrumentation system flow chart 

Most parts of the process is self explanatory, worth noting are the "Signal ready" and 

"Wait for other interfaces and Processor" process. To synchronize the controller, 

multiple AirInterfaces and the processor, our implementation uses a cyclic barrier. A 

cyclic barrier is a multithreading control construct with the following behaviors:  



81 
 

1. Two operations are supported on a barrier: signal and wait 

2. A cyclic barrier is initialized with a count 

3. If a process signals the barrier, count decreases by 1 

4. If a process waits at the barrier, it is allowed to proceed only after count 

becomes 0 

5. Once all processes waiting at the barrier clears, the count is reset to initialized 

value (ready to be reused) 

On the controller, there is a cyclic barrier initialized to the number of AirInterfaces + 2 

(controller and processor). This allows all sub systems to periodically wait for each 

other to arrive at certain parts of the process before proceeding onwards again. 

As individual sensors can send data at up to 320Hz ( f ), the data processing rate 

required to achieve buffer stability by the processor unit is: 

28R fn=  

Where f is the sampling frequency of the sensors, n is the number of sensors, and R

has unit bytes per second. 

To provide as much headroom as possible, the processor implements a lookup table 

like data structure with insertion time (1)O , at the expense of memory footprint 

( )O nft , where n is the number of sensors, f  is the sample frequency, and t  is the 

number of seconds between re-sync. At every re-sync, the processor compiles the 



82 
 

table into InertialSensorData and notifies the upper layer with DataArrived. Table 3.6 

shows an example constructed lookup table: 

Table 3.6: Example lookup table 

Time range Sensor 1 Data String Sensor 2 Data String 

0 - 1/f  -1189,-3392,2130 -1886,-6210,1161 

2/f  - 3/f  -2745,-5547,1496 Missing 

4 /f  - 5/f  -2720,-6395,1245 -1790,-4317,1308 

 

3.5.1.3 Robustness 

We observed a number of issues regarding sensor robustness in our experiments, and 

present some of them here. Where applicable, solutions are given. 

The first problem discovered is that the Bluetooth transmission is not reliable and can 

deliver wrong control characters. This is especially problematic when the X6-2mini 

uses single character control commands, as a command character can actually be 

corrupted to another valid command. For example we have observed that d can be sent 

as D, which instead of starting the stream, stops it. This problem is dealt with on two 

levels. First, the AirInterface locks in a loop while trying to start a recording, this 

means that if a d was mistaken for something else, another d is sent. Second, the 

AirInterfaceMonitor tracks the incoming data stream, and senses when it has frozen. 

The AirInterface is not capable of sensing this as it would be blocked on a read 
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operation due to stream errors, and since no data is coming the read will block 

indefinitely. On sensing a frozen stream, the monitor restarts any recording that may 

have been stopped due to erroneous commands, and also unblocks the AirInterface by 

resetting the stream. 

The second problem is corrupted and missing data. As each AirInterface is 

independent of each other and do not keep track of time (the rationale for a simplest 

possible design is presented in Section 2.4.4), they are not able to tell if a data line is 

missing or invalid. The processor however, can detect missing data by looking at 

empty slots on the buffer, and can detect bad data by doing a regular expression search 

on the string [40]. The regular expression required for a validation a data line is: 

\d+.\d+,{1}([-+]?\d+,?){3} 

Missing and corrupted data points are marked, and are interpolated by the processor. 

The interpolation method implemented is a simple repeat of the closest valid value. 

The third problem observed is that re-synchronization can cause brief periods of data 

loss. Consider a system with 3 sensors connected. If sensor 3 is lagging behind, then at 

the end of a re-sync cycle while we are waiting for sensor 3, the other sensors are not 

transmitting. This means that the data in this waiting period does not exist to the client. 

The problem does not affect our system, as the recording requirements can tolerate 

such a delay: 1) Training data requires a maximum of 5 minutes and Section 5.1.1 will 

demonstrate that the time drift is minimum at 5 minutes (thus no re-sync is needed, 
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circumventing the problem); and 2) Live mode does not require classification 

resolution up to the second scale, so a few seconds delay does not cause a problem. 

We would like to note however that this problem could potentially be addressed by 

using a second buffer to take over the extra data during the waiting time. 

Last but not least, there is also the problem of sensors disconnecting. The monitor can 

detect this by catching socket errors on the stream, and attempt to re-establish 

connection. In the case of complete sensor failure, the upper layer is notified of 

disconnection after 3 attempts of reconnection. 

3.5.2 Scenario Training 

When a person starts the client, he/she is first presented by a login screen (Figure 

3.25.a). Once logged in, the client pulls a list of available scenarios, and displays them 

to the user for selection (Figure 3.25.b). If the selected scenario is not trained, then the 

client determines which classes (activities) are present (for example running, walking), 

and guides the user through training each of the activities (Figure 3.25.c). For each 

activity, a three minute session is recorded, and the data is posted back to the server 

for training. 
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              a. Login              b. Scenario selection       c. Training screen             d. Live screen 

Figure 3.25: End-user client 

3.5.3 Live Mode 

If the selected scenario has been trained before, then a user is prompted with the 

screen shown on Figure 3.25.d. Here the user only needs to press Start, and client will 

automatically instrument the sensors, and send data back to the server every 4 seconds. 

This means that a classification result would also be available every 4 seconds. 

3.6 Domain Expert Client 

The domain expert client is responsible for creating scenarios. Recall that a scenario is 

made up of a number of contexts and activities, each with its own model. A domain 

expert start by logging into the program as an expert (to gain the privilege of viewing 

users and creating scenarios), as shown in Figure 3.26. 
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Figure 3.26: Login screen 

The expert would then select a user (Figure 3.27), and add a scenario.  

 

Figure 3.27: User selection 

3.6.1 Context Model Generation 

Context model generation is straightforward, an expert starts with the context name, 

followed by selecting a list of prebuilt context features, and finish by pressing the add 

context button (Figure 3.28). 
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Figure 3.28: Adding context 

3.6.2 Activity Model Generation 

This step requires an intuitive graphical interface that enables an expert to visualize 

the nodes (features nodes and the class node), and make logical connections that are 

later translated into conditions in the underlying BN. There is a prebuilt list of sensors 

and features available to the domain expert client, and an expert would be able to pick 

from this list. 

An expert starts by selecting what activities are of interest, and a root node is formed 

(Figure 3.29.a). From there, additional class nodes and feature nodes can be added 

(Figure 3.29.b), links can be drawn (Figure 3.29.c) and removed (Figure 3.29.d). Once 

finished, the model can be compiled and sent to the server (Figure 3.29.e). Because the 

object graph is constructed using object oriented techniques, it can be saved directly 

into a XML file through object serialization on the server.  
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a. Add root 

 

b. Add features 
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c. Link nodes 

 

d. Delete links or nodes (optional) 
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e. Compile and submit model 

Figure 3.29: Adding activity model 
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Chapter 4 

Data Collection 

 

Apart from the data recorded wirelessly via Bluetooth, some data collection 

campaigns conducted in the thesis study required offline data recording using the 

standard X6-2mini. The data logging and labeling method that this thesis developed 

for supporting these campaigns presents a significant advancement to the available 

technologies currently used in the community. This chapter aims to provide a 

description of the problems facing long data collection campaigns, and describe what 

we developed to address them. 

4.1 Problems 

Data acquisition not only involves collecting sensor data and corresponding 

annotations, but also includes post-processing analysis, where all annotations must be 

matched with corresponding data. Only then are they ready to be used by classifiers.  

While many studies in the area of activity classification provide detailed discussions 

on classifiers and features, they do not address the variety of issues related to data 

acquisition required for essential system training. Studies and practices have shown a 
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number of factors affecting data acquisition accuracy, ranging from end users being 

severely inconvenienced by the equipment they have to carry, to users not being able 

to record properly or meet the annotation demands using traditional pen and paper 

approaches [40-43].  

Another problem we observed in large measurement campaigns is that many time 

references for events are recorded based on different clocks (watches, wall clocks etc), 

depending on where the subject was at the time. These clocks are not synchronized, 

and can be several minutes apart with each other, compared to the sensor system time. 

This phenomenon dramatically reduces the effectiveness of the labeling process. 

Interestingly, while the process of manually labeling long periods of activity data is a 

time consuming exercise, given an already labeled dataset it is easy to verify that the 

labels are correct, as the next Section demonstrates. 

4.2 Context and Activity Data Acquisition and 

Labeling System 

We have designed and implemented a complete data acquisition and processing 

system that includes voice recognition on an Android based client and a centralized 

server-hosted labeling tool. Our system is developed against Android SDK version 2.2 

and the target device may be any Android smartphone (we used an Archos 32 Internet 

Tablet, which has support for wireless and audio recording).  
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The context and activity data acquisition system is displayed in Figure 4.1. While 

collecting data, a user can hold down the "Hold to Speak" button and speak a 

recognized context or activity label (a). Once it has been recognized, the "Start" button 

can be used to either start an activity or context. While recording, the "Status" label 

shows what are being recorded (b). If there is a context currently being recorded, then 

an audio recording and a wireless scan is performed periodically. If there is an activity 

being recorded, then there is a cumulative timer for that activity in the "Total Elapsed 

Time" display (c). This is useful in tracking activities that takes a short amount of time 

to complete, but must be repeated multiple times in order to gather enough data. For 

example, stairs are usually short, so to record walking up stairs for 5 minutes would 

require multiple attempts, and the total elapsed time can be used to see when 5 

minutes of total recording is done. 

To perform a data collection run, all sensors have their time synchronized to the phone. 

For wireless sensors, this is done through wireless control commands from the phone, 

and for non-interactive sensors this is done by synchronizing the sensors and the 

phone with a computer. At the beginning of a recording, the user is required to first 

bundle the sensors together, and shake them repeatedly while indicating to the logger 

that a synchronization marker is in progress (say to the software "Sync"). Once sync is 

performed, a user can carry out the data recording, using the application to make many 

annotations necessary. At the end of the run, we have a toolkit that takes the recorded 

data (merged into a MATLAB file) and annotation file (generated on the phone as 
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annotation.txt), automatically detect the synchronization time series in the data, and 

align this to the sync marker from the annotations. From there, the entire sequence of 

recording is labeled (Figure 4.2.b). 

 

        a. Initial screen                            b. Speak keywords                 c. Logging in progress 

Figure 4.1: Android data collection application 

In Figure 4.2.b, black lines are the start of activities, and red lines are the end of 

activities. We can see from Figure 4.2.a that manually labeling this 1.5 hour long 

recording would be difficult (let alone a 10+ hour recording). However, to check that 

the automatic labeling is correct, we can zoom into individual activities (Figure 4.3). 
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a. Import files 

 

b. Label 

Figure 4.2: Automatic labeling 
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Figure 4.3: Zoomed in waveform with label 

Here the transition on the accelerometer waveform between the activities is clear, and 

the black line is clearly at the correct location. Notice the red lines stop short of when 

the actual activities end. This is because the person recording the data specifically 

ended the annotation before he stopped performing the activity. 

Now manual effort is only needed for quality checking. Compared to the process of 

labeling a day-long dataset after the recording is done, this new process drastically 

reduces the amount of time and effort required for organizing collected data (in our 

system the labeling is done in three clicks). Using this system, we have a robust means 

for supporting large campaigns, where users will be given a kit containing an Android 

(or other smartphone) application and sensors. For activities where the subjects cannot 

label data with hands (e.g. while in sports), a Bluetooth ear piece can be provided 

(most current solutions require a second person to do the annotation).  
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Chapter 5 

System Evaluation 

 

System evaluation is done on a number of levels. First, core components are verified 

individually to make sure that they are working correctly. Then the context guided 

activity classification system as a whole is evaluated with real life data. This is 

followed by evaluations of the performance of the activity classification system under 

different conditions. Finally, limitations of the system are explored. 

5.1 Verification 

5.1.1 Wireless Sensor Instrumentation 

For the wireless sensor instrumentation stack, we are interested in seeing that: 1) The 

collected data streams are in sync and 2) There are no missing data. Figure 5.1 shows 

a plot of instrumenting with two accelerometers. 
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Figure 5.1: Data recorded wirelessly 

This is 5 minutes worth of data collected by leaving the sensors flat on a table, and 

periodically flipping one of the axis (by placing the sensors upside-down). First, we 

see that the two sensors are clearly in sync. Second, we see that there are no missing 

data (the lines are bolded for better visual effects, missing and corrupt data show up as 

holes). 

5.1.2 Bayesian Networks Implementation 

The implementation of the core BN on the server side is tested individually using a set 

of test data from the University of California Irvine's Machine Learning Database [36]. 



99 
 

Table 5.1 summarizes the datasets, while Table 5.2 compares our results against a well 

known implementation of Bayesian networks from Waikato Environment for 

Knowledge Analysis (WEKA) [44]. 

Table 5.1: UCI dataset description 

Dataset Description 

Lens A toy dataset that describes the type of lens a person wear based on a 

number of physical factors. 

monk-problems 

[45] 

A set of data generated by randomly permuting certain attributes to 0. 

Letters A data set used for testing classifiers on their ability to recognize 

English letters. Each letter is divided into sub areas and the pixel values 

are recorded. 

post-operative-

patient 

A number of patients' vital signs were recorded in a hospital, and the 

patients' destination ward was recorded as the class label (intensive care, 

general ward, discharged). 

solar-flares A number of solar flares were recorded, and they are classed based on 

Zurich classes 

weather (tennis) Another toy dataset that is commonly used by a number of text books. 

This set describes the relationship between the tennis game going ahead 

and some weather patterns. 
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Table 5.2: BN results 

Dataset Instance # 

(Train/Test) 

Thesis 

Toolbox 

WEKA 

BayesNet 

Best 

Known 

Lens 24/24 95.83% 95.83% - 

monk-problems  124/432 70.92% 71.29% 94% [45] 

Letters 2000/18000 69.16% 64.17% 69.16% 

post-operative-

patient 
20/90 76.5% 76.67% - 

solar-flares 50/273 72.11% 72.31% - 

weather (tennis) 14/14 92.85% 92.85% - 

 

We see that for most cases the performance is comparable between our toolkit and 

WEKA. This is not surprising as we are also implementing a Bayesian network with 

the same underlying principles. The minor differences are due to our system using the 

Dirichlet density functions for parameter learning. For the monk problem, Bayesian 

networks performed poorly compared to the best known result. This is because the 

dataset is biased towards rule based classifiers (and from [45] we see that all the top 

performers are indeed rule based classifiers). 
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5.2 System Results 

5.2.1 Data Collections 

We have two collections of results. The first collection contains both context and 

activity data, and is used to evaluate the entire system. The second collection contains 

only activity data, and is used to evaluate the performance of the activity classification 

system under different conditions. 

5.2.1.1 Data Collection 1 

Table 5.3 lists all scenarios built for this experimental trial.  

Data acquisition was performed as follows: three subjects carried an Archos Internet 

Tablet and six Medical Daily Activity Wireless Network (MDAWN) devices. The 

tablet supports our Android client, and the MDAWN devices were placed on wrists, 

waist and ankles. The MDAWNs robustly provide trialaxial accelerometer data [46]. 

Each subject was asked to record two sets of data. The first set is for training the 

classifiers, where subjects spent 30 minutes in each context, and performed every 

required activity under that context for at least 5 minutes. The second set is for testing 

purposes, and each subject spent over eight hours across the contexts, collecting all 

data listed.  

In total, we collected six full sets of training and testing data. This was sufficient for 

developing and verifying the overall system, but more data would be needed for any 

clinical inference and for optimization of features, classifiers and sensor selection.  
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Table 5.3: Context guided models 

 Walking Running Walking Upstairs Walking Downstairs Sitting Standing Writing Eating 

Outdoors X X X X     

Cafeteria X    X X  X 

Home X  X X X X   

Class X    X  X  

Meeting X    X X X  

Bus     X X   
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5.2.1.2 Data Collection 2 

The second data collection was designed and carried out by the summer Center for 

Embedded Networked Sensing (CENS) students, and a full description of their 

collection methodology can be found in the report [47]. In summary, they used 14 

sensors set at 160Hz sampling rate and recorded 14 different activities for 5 minutes 

each. The list of activities and the sensor placements are reproduced here for 

completeness. 

 

Figure 5.2: Sensor placements 
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Table 5.4: List of activities 

Motion Based Stationary 

Walk slow Stand 

Walk fast Sit upright 

Run Sit while slouching 

Walk up slope Sit while hunching 

Walk down slope Lying on back 

Walk upstairs Lying on stomach 

Walk downstairs Lying on side 

 

5.2.2 Context Classifiers 

Our new context guided classification method includes the classifier committee 

system, and experimental results directly demonstrate its effectiveness, in the presence 

of complex classification challenges. 

Table 5.5 summarizes the accuracies of the classifier committee and the individual 

classifiers in the committee in percentage of correctly classified instances.  
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Table 5.5: Context classifiers 

 AdaBoost (%) Time kNN (%)  Wireless kNN (%)  Committee (%)  

Bus  80  59 29 80  

Cafeteria 100  35 80 90  

Class  80  87 89 95  

Meeting  100  73 100 100  

Outdoors  85  33 25 85  

Home  100  100 100 100  

 

We see that wireless kNN performs with insufficient accuracy for bus and outdoors. In 

the bus context case, the sensor system detects a large number of wireless access 

points that have not been incorporated into prior training due to the route of the bus. In 

the outdoor context case, the system tends to detect access points that belong to one of 

the contexts at nearby indoor locations. For example, walking near a building causes 

the context to be classified as that of a context inside the building. Time KNN is also 

not sufficiently accurate for a number of contexts, and this is due to the varied nature 

when subjects visit these contexts. For example, subjects visited the cafe and outside 

at different times of the day. AdaBoost using sound features seems to perform well for 

all contexts, but we noticed some cases where a bus driving nearby causes a 

misclassification. Figure 5.3 shows the AdaBoost error percentage vs the number of 
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iterations. We see that the error of classification reduces steadily as the number of 

iterations increase. 

 

Figure 5.3: AdaBoost error vs iterations 

Clearly, this experimental evaluation provides a classification challenge for each 

individual classifier.  However, as shown in Table 5.6, by combining the best of all 

classifiers, our committee is able to achieve high accuracy for all contexts. 

While the final system used the committee shown above, we also surveyed DTT, ANN 

and SVM. We will present the results for these below. Table 5.6 shows the results for 

DTT. We tested 108 samples from all 6 contexts. 

Table 5.6: Accuracy of DTT 

Context Cafeteria Class Outdoors Meeting Bus Home Overall 

Accuracy (%) 100 100 41 77 41 100 90.70 
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The ANN classifier we implemented was not able to produce a result, due to the 

disconnected nature of the wireless features.  

We also implemented a C-SVM model for context detection, based on libSVM 

developed by Chang [48]. Table 5.7 shows the results for SVM, this classifier is used 

only for sound features as wireless features cannot be used on the SVM. We see that 

the SVM classifier classifies many other classes into outdoors. This caused the 

outdoors accuracy to be very high where as the other classes have low accuracy. 

Table 5.7: Accuracy of SVM 

Context Cafeteria Class Outdoors Meeting Bus Home Overall 

Accuracy (%) 67 30 100 79 67 Missing 67.60 

 

5.2.3 Context Guided Activity Classification 

A critical benefit of context guided classification is a direct improvement in accuracy 

for each classifier. This is also demonstrated by experimental results here.  

Results are broken down by context. The "Generic" column shows results from a 

standard classification system with all activities built in. The data in the column are 

produced using UCLA's Wireless Health Signal Processing Toolkit (WHSPT), a 

hierarchical Naive Bayes classification tool [49]. The "Specific" column shows 

accuracy from context guided classifiers. The "Confusion" column shows the top 

confusion matrix entries. 
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Table 5.8: Results for bus 

Bus 

 Generic (%) Confusion (%) Specific (%) Confusion (%) Improve (%) 

Sitting 95.94 Eating (2.2) 100 None 4 

Standing 81.29 Sitting (13.67) 86.33 Sitting (13.66) 6 

 

Table 5.9: Results for outdoors 

Outdoors 

 Generic (%) Confusion (%) Specific (%) Confusion (%) Improve (%) 

Walking 99.29 Running (0.71) 99.29 Running (0.71) 0 

Running 95.79 Walking (4.21) 95.79 Walking (4.21) 0 

Walking downstairs 90.47 Walking upstairs (9.53) 90.47 Walking upstairs (9.53) 0 

Walking upstairs 97.3 Walking downstairs (2.7) 97.3 Walking downstairs (2.7) 0 
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Table 5.10: Results for cafeteria 

Cafeteria 

 Generic (%) Confusion (%) Specific (%) Confusion (%) Improve (%) 

Standing 96.91 Eating (2.1) 98.97 Eating (1.03) 2 

Walking 84.81 Walking downstairs (13.02) 100 None 17 

Eating 1 Sitting (96.5) 1.29 Sitting (98.71) 29 

Sitting 100 None 100 None 0 

 

Table 5.11: Results for meeting 

Meeting 

 Generic (%) Confusion (%) Specific (%) Confusion (%) Improve (%) 

Sitting 91.67 Writing (5.1) 100 None 9 

Walking 97.83 Walking upstairs (2.17) 100 None 2 

Writing 2.5 Sitting (97.5) 69.62 Sitting (30.38) 26.84 times 

Standing 96.84 Eating (3.16) 100 None 3 
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Table 5.12: Results for home 

Home 

 Generic (%) Confusion (%) Specific (%) Confusion (%) Improve (%) 

Sitting 100 None 100 None 0 

Standing 94.12 Eating (5.88) 100 None 6 

Walking 98.47 Walking upstairs 

(0.8) 

96.95 Walking upstairs (3.05) -1 

Walking downstairs 100 None 100 None 0 

Walking upstairs 96.61 Walking downstairs (3.39) 96.61 Walking downstairs (3.39) 0 

 

Table 5.13: Results for class 

Class 

 Generic (%) Confusion (%) Specific (%) Confusion (%) Improve (%) 

Walking 98.56 Walking downstairs (1.44) 100 None 1 

Sitting 87.33 Eating (11.76) 71.04 Writing (28.96) -20 

Writing 3.66 Sitting (95.81) 79.41 Sitting (20.59) 20.7 times 
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We see that in most cases there exists some increase in classification accuracy. This is 

from the context specific models with reduced number of classes and features. In the case 

of writing, we are able to see a large increase in accuracy, from being practically 

impossible (less than 5% accuracy) to decent accuracy (70%). In the case of eating, we 

are seeing an improvement, but the overall accuracy is still very low. We believe that this 

is due to inappropriate feature choice, and further testing can be conducted. We note that 

under the class context, there is a decrease in accuracy for sitting, however the trade off 

here is that we are now able to classify writing with almost 80% accuracy. By using a 

different feature or tree structure, we may be able to stop the decrease for sitting. 

5.2.4 Classification Speed Increase 

Table 5.14 shows the speed increase we are able to achieve. We see that in all cases there 

is a significant increase in classification speed. This allowed us to construct an online 

classification system capable of running in real time. To demonstrate the effectiveness 

with multiple users, the results in the "Specific" column is averaged using time measured 

from 5 simultaneous users on the classification system. The "Generic" column is obtained 

again from the WHISPT. 

5.2.5 Context Guided Classification Energy Usage 

Context guided classification can also offers the capability for selecting optimal sensors 

and schedules for energy and operating lifetime benefits.  This also permits a minimum 

number of sensor systems to be selected (for user convenience) while maintaining 

classification accuracy. 
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Table 5.14: Speed increase using context 

 Generic (s) Specific (s) Improve (# of times) 

Bus 0.119 0.013 9.2x 

Café 0.120 0.019 6.3x 

Class 0.122 0.021 5.8x 

Meeting 0.127 0.024 5.3x 

Outside 0.128 0.022 5.8x 

Home 0.119 0.021 5.7x 

 

Based on models constructed, we produced the sensor requirement chart in Table 5.15. 

Blank cells indicate that a sensor can be safely turned off without affecting the accuracy 

for a given context. For example, in the case of "Bus" (Table 5.3), only the left waist 

sensor is required as we are only interested in monitoring two activities, and the waist 

sensor alone is enough to identify them. 

Using this chart, a sensor policy selector can determine which sensors to shut down. To 

estimate the potential for energy reduction, our analyses are directed to determining the 

improvement in operation time by adopting sensor activation and sampling schedules, as 

determined by context. The analysis was performed offline using manual calculations.  

To indicate the operating time improvement over a range of subject behaviors, two cases 

were taken as examples, a graduate student subject and a subject remaining in a 

residential household. The typical profiles of their daily life are shown in Figure 5.4.a, 
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and the total operating time using continuous sensor system usage, in comparison to 

context guided sensor usage, is shown in Figure 5.4.b. 

Table 5.15: Sensor requirement 

 Left Ankle Right Ankle Left Waist Right Waist Left Wrist Right Wrist 

Bus   X    

Cafeteria X X X  X X 

Class X   X  X 

Meeting  X X   X 

Outdoors X X  X X  

Home X X X    

 

 

 

Figure 5.4: User profiles and their battery life comparison 

a. User profiles b. Battery life comparison 
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5.2.6 Effect of Discretizer on Bayesian Networks Classification 

Accuracy 

The enhanced discretizer described in Section 3.4.8 affects the training phase of a BN, 

and thus the classification results. There are two parameters in the discretizer that would 

affect training: 1) Number of bins used and 2) Whether interpolation is used. In this 

analysis, 10 datasets were used (from collection 2) with classes walking slow, walking 

fast, walking up, walking down, running and standing. Figure 5.5 shows the average 

accuracy achieved with different parameters. 

 

Figure 5.5: Average accuracy vs number of bins used 
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There are a number of observations. First, the maximum accuracy of the BN is not as 

high as the Naive Bayes classifier with continuous variables. This is because some 

observations on the testing set falls in the tails of the distribution, which in the BN are 

empty bins with zero probability. These observations have small probability in the naive 

Bayes method through integration of Gaussian, which is enough to make a correct 

classification. 

Second, the accuracy of the BN decreases with an increase of the number of bins used. 

This is because as more bins are used, there are less number of samples per bin, and more 

and more bins become empty. At very high bin numbers (such as 200), clusters of bins 

where each activity is located only have few elements in them, with holes (blank bins) 

frequently appearing. While interpolation is able to fill in many of them, there are some 

that cannot be corrected. 

Third, the accuracy seems very good at low bin numbers. As long as the distributions of 

the features for each class are roughly Gaussian, have sharp fall offs (low variance) and 

do not overlap each other, very low number of bins can capture the clusters very well. 

Finally, we see that interpolation plays a significant role when the bin number increases. 

This is because more and more holes are being created, and without the interpolation to 

bridge the gap, these blank bins translate into zero probability during training, and 

subsequently produce unknown results during classification.  
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5.3 Limitations of Discretized Bayesian Networks 

Through the work carried out in this thesis, we note a significant limitation of discretized 

BN. The discretized BN is more susceptible to feature distribution shifts than a classifier 

that works with continuous variables (such as Naive Bayes). While both cannot deal with 

significant shifts very well, the BN is much more sensitive to small shifts. This is because 

while a small shift translates in to smaller probability on the Naive Bayes classifier (as 

the probability is computed through an integration of the Gaussian tail), on a discretized 

BN it translates into some observations falling on an empty bin, which are classified as 

unknown. 
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Chapter 6 

Conclusion 

 

6.1 Conclusion 

Activity monitoring appears as a critical need and valuable source of disease intervention 

and guidance in healthcare, personal health and wellness promotion, workplace safety, 

and athletics. In this thesis, we have described the design, implementation, and 

comprehensive evaluation of a novel end-to-end system that integrates context into 

activity classification.  

On the architecture level, we first presented a refined definition of context, and a 

classification committee approach for detecting context of diverse forms. We then 

described how to interface with wireless sensors, and how any current classification 

system can take advantage of the new context guided architecture through the concept of 

a context guided classifier. Finally, we described the potential for real time classification 

through the use of servers and clients that exploit smartphone technologies. The 

architecture also employs an interface model, consequently providing great flexibility in 

the rapid implementation and integration of subsystems.  
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We also presented a realization of the above context guided classification system, where 

an Android client data collection application was able to solve issues relating to robust 

data acquisition and large campaign support. For the core system, AdaBoost, kNN and 

Bayesian network classifiers were all used for context detection and activity classification, 

demonstrating the inherent system flexibility. This has also demonstrated the important 

capability our system provides in enabling a matching of classifier systems to 

applications and the capability for the classification committee to properly combine these 

for optimization of classification accuracy. 

Finally, through a series of experimental field evaluations sampling each of the diverse 

context examples and activities in multiple episodes by multiple subjects, the critical 

benefits of this system were demonstrated. First, it was demonstrated that context guided 

classification has enabled a substantial advance in classification accuracy for many 

activities including upper body motion. Second, it has been demonstrated that context 

guided classification offers a computational throughput advance that may be exploited for 

benefits including the support of real time, high accuracy classification. Finally, it was 

also demonstrated that the context classification capability can be applied to control the 

activation and selection of sensors. This benefit will be exploited in the immediate future 

to enable substantial operating lifetime extension for critical applications. 
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6.2 Future Work 

We end the thesis with some future directions. First, throughout the thesis, we 

consistently felt the need for a standard activity recording database. Many groups work 

on the problem of activity classification, but every group uses their own sets of data, and 

often time little is known about how the data was collected, and how accurate the 

activities were. 

Second, most current researches (including the research behind this thesis) take activities 

of interest from the list of activities of daily living (ADL). The definition of many 

activities such as walking, running, grasping are arbitrary, and different groups have 

different definitions. We believe that by finding a formal framework that could model 

motions, we can provide a unified way to define activities. This could also be the basis of 

a different type of classification method. 

Lastly, we would like to carry out large clinical trials using the system described in this 

thesis, and produce some comprehensive results. 
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Appendix I  

GCDC X6-2mini Serial Port Debugging 
Commands 
 

Command Reference 

'c' configuration 

's' status 

't' yyy-mm-dd hh:mm:ss' - set time 

'P' Power off 

'x' software reset 

'v' Version information 

'r/R' turn On/Off data Recording 

'd/D' diagnostics On/Off 

'+/-' double/halve sample rate 

'm/M' microResolutionr On/Off 
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'u/U' resolUtion 12/16 bits 

'g/G' gain 2/6 g 

'f/F' filter On  
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