

UNIVERSITY OF CALIFORNIA

Los Angeles

Context Guided and Personalized Activity Classification System

for Wireless Health

A thesis submitted in partial satisfaction

of the requirements for the degree Master of Science

in Electrical Engineering

By

James Yan Xu

2011

ii

The thesis of James Yan Xu is approved.

William J. Kaiser

Lara Dolecek

Gregory J. Pottie, Committee Chair

University of California, Los Angeles

2011

This thesis is dedicated to my parents, Dr. Peter Xu and Helen Li, for without their

unwavering support this great adventure would not have been possible.

I would like to thank Professor Gregory J. Pottie and Professor William J. Kaiser, for

their guidance, inspirations, and financial support.

I would like to thank Professor Lara Dolecek, for her exceptional instructions on

topics behind many parts of this thesis.

Incoming fire has the right of way.

Old artilleryman's maxim

iii

Table of Contents

1. Introduction .. 1

1.1 Background ... 1

1.2 Aim, Objectives and Contributions ... 2

1.3 Related Work .. 4

2. System Design .. 7

2.1 Context ... 7

2.2 Scenario .. 8

2.3 High Level Description .. 9

2.4 System Architecture ... 10

2.4.1 Client Server Architecture ... 11

2.4.2 Object Oriented Architecture .. 12

2.4.3 Message Oriented Architecture ... 13

2.4.4 Sensor Instrumentation .. 16

2.5 Context Detection ... 19

2.6 Context Guided Activity Classification .. 22

iv

2.7 Sensor Control .. 23

2.8 Modes of Operation .. 23

2.9 Example Scenarios ... 24

3. Implementation ... 29

3.1 Language and Framework Choices .. 29

3.2 Server Implementation ... 31

3.2.1 Object Serialization and Transfer through Network 31

3.2.2 User and Scenario Management .. 32

3.2.3 Core Classification Components ... 33

3.2.4 List of Messages .. 33

3.3 Context Detection ... 33

3.3.1 KNN .. 35

3.3.2 AdaBoost ... 36

3.3.3 SVM .. 38

3.3.4 Decision Table Tree .. 39

3.3.5 Artificial Neural Networks .. 40

3.3.6 Features and Classifier Choice .. 41

3.4 Activity Classification - Bayesian Networks ... 44

v

3.4.1 Graphical Models and Bayesian Networks ... 44

3.4.2 Pearl's Message Passing Algorithm ... 48

3.4.3 Beta Density .. 55

3.4.4 Dirichlet Density ... 62

3.4.5 Augmented Bayesian Networks .. 63

3.4.6 Bayesian Network Classifiers .. 64

3.4.7 Implementation .. 70

3.4.8 Extension into Activity Classification, Discretization 73

3.5 End-User Client .. 78

3.5.1 Sensor Instrumentation .. 78

3.5.2 Scenario Training .. 84

3.5.3 Live Mode ... 85

3.6 Domain Expert Client ... 85

3.6.1 Context Model Generation .. 86

3.6.2 Activity Model Generation .. 87

4. Data Collection ... 91

4.1 Problems ... 91

4.2 Context and Activity Data Acquisition and Labeling System 92

vi

5. System Evaluation .. 97

5.1 Verification ... 97

5.1.1 Wireless Sensor Instrumentation ... 97

5.1.2 Bayesian Networks Implementation .. 98

5.2 System Results .. 101

5.2.1 Data Collections .. 101

5.2.2 Context Classifiers ... 104

5.2.3 Context Guided Activity Classification ... 107

5.2.4 Classification Speed Increase .. 111

5.2.5 Context Guided Classification Energy Usage ... 111

5.2.6 Effect of Discretizer on Bayesian Networks Classification Accuracy 114

5.3 Limitations of Discretized Bayesian Networks .. 116

6. Conclusion .. 117

6.1 Conclusion .. 117

6.2 Future Work .. 119

Appendix I. GCDC X6-2mini Serial Port Debugging Commands 120

References .. 122

vii

List of Figures

Figure 2.1: High level system description 10

Figure 2.2: System architecture 12

Figure 2.3: End-user client interfaces model 13

Figure 2.4: Domain expert client interfaces model 14

Figure 2.5: Message system interfaces model 14

Figure 2.6: Server core systems interfaces model 15

Figure 2.7: Sensor instrumentation architecture 17

Figure 2.8: Sensor instrumentation interfaces model 19

Figure2.9: Context classification committee architecture 21

Figure 3.1: Serialization, deserialization process 31

Figure 3.2: Decision stump on binary data 38

Figure 3.3: SVM on binary data 39

Figure 3.4: DTT model 40

Figure 3.5: ANN with 3 layers 41

Figure 3.6: Classifier committee 44

Figure 3.7: Graph models 45

Figure 3.8: Example Bayesian network 46

Figure 3.9 Another example of Bayesian network 47

viii

Figure 3.10: Division of graph at node 𝑋 50

Figure 3.11: Division of subtree into left and right branches 52

Figure 3.12: Uniform and non-uniform beta densities 57

Figure 3.13: Initial uniform beta function and the updated result 61

Figure 3.14: Dirichlet functions 62

Figure 3.15: Augmented Bayesian network 64

Figure 3.16: Bayesian models 67

Figure 3.17: Augmented Bayesian network 68

Figure 3.18: BN server side architecture 71

Figure 3.19: BN server side interfaces model 71

Figure 3.20: Discretizer output 74

Figure 3.21: Enhanced discretizer output 76

Figure 3.22: Possible node type combinations 77

Figure 3.23: Modified X6-2mini 79

Figure 3.24: Sensor instrumentation system flow chart 80

Figure 3.25: End-user client 85

Figure 3.26: Login screen 86

Figure 3.27: User selection 86

Figure 3.28: Adding context 87

Figure 3.29: Adding activity model 90

Figure 4.1: Android data collection application 94

ix

Figure 4.2: Automatic labeling 95

Figure 4.3: Zoomed in waveform with label 96

Figure 5.1: Data recorded wirelessly 98

Figure 5.2: Sensor placements 103

Figure 5.3: AdaBoost error vs iterations 106

Figure 5.4: User profiles and their battery life comparison 113

Figure 5.5: Average accuracy vs number of bins used 114

x

List of Tables

Table 2.1: Example datasets 20

Table 2.2: Example scenario 1 26

Table 2.3: Example scenario 2 27

Table 2.4: Example scenario 3 28

Table 3.1: Messages implemented 34

Table 3.2: Classifiers and features used for committee 43

Table 3.3: Beta densities associated with the augmented BN 65

Table 3.4: Example data summary 66

Table 3.5 Updated Dirichlet 69

Table 3.6: Example lookup table 82

Table 5.1: UCI dataset description 99

Table 5.2: BN results 100

Table 5.3: Context guided models 102

Table 5.4: List of activities 104

Table 5.5: Context classifiers 105

Table 5.6: Accuracy of DTT 106

Table 5.7: Accuracy of SVM 107

Table 5.8: Results for bus 108

xi

Table 5.9: Results for outdoors 108

Table 5.10: Results for cafeteria 109

Table 5.11: Results for meeting 109

Table 5.12: Results for home 110

Table 5.13: Results for class 110

Table 5.14: Speed increase using context 112

Table 5.15: Sensor requirement 113

xii

ABSTRACT OF THE THESIS

Context Guided and Personalized Activity Classification System

for Wireless Health

by

James Yan Xu

Master of Science in Electrical Engineering

University of California, Los Angeles, 2011

Professor Gregory J. Pottie, Chair

Continued rapid progress in the development of embedded motion sensing enables

wearable devices that provide fundamental advances in the capability to monitor and

classify human motion, detect movement disorders, and estimate energy expenditure.

With this progress, it is becoming possible to provide, for the first time, evaluation of

outcomes of rehabilitation interventions and direct guidance for advancement of

subject health, wellness, and safety. The progress in motion classification relies on

both the performance of new sensor fusion methods that provide inference, and the

energy efficiency of energy-constrained monitoring sensors. As will be described here,

both of these objectives require advances in the capability of detecting and classifying

xiii

the location and environmental context. Context directly enables both enhanced

motion classification accuracy and speed through reduction in search space, and

reduced energy demand through context-aware optimization of sensor sampling and

operation schedules. There have been attempts to introduce context awareness into

activity monitoring with limited success, due to the ambiguity in the definition of

context, and the lack of a system architecture that enables the adaptation of signal

processing and sensor fusion algorithms specific to the task of personalized activity

monitoring. In this thesis we present a novel end-to-end system that provides context

guided personalized activity classification. With a refined concept of context, the

system introduces interface models that feature a context classification committee, the

concept of context specific activity classification, the ability to manage sensors given

context, and the ability to operate in real time using wireless sensors. We also present

an implementation that demonstrates accurate context classification, accurate activity

classification using context specific models with improved accuracy and speed.

1

Chapter 1

Introduction

1.1 Background

The rapid advance in microelectronics has provided MEMS inertial sensors, low

power processors, and low cost monitoring systems applicable to human motion

classification. Many of the most urgent problems in health and wellness promotion,

diagnostics and treatment of neurological condition and even athletic performance

advancement are now possible. The wireless health community exploits this along

with smartphone technologies for integration of monitoring and in field guidance for

both advancing and evaluating treatment outcomes.

Recently developed solutions monitor a subject’s physical activity, for example

walking gait speed monitoring for recovering stroke patients in the field of wireless

healthcare [1,2]. For many applications, there is also a need for personalized, targeted

monitoring for specific activities, in specific environments. For example, a stroke

patient benefits from monitoring of gait speed while in the hospital and then at home

to ensure that their mobility is sufficient to enable safe passage through urban areas.

2

Also, these subjects benefit from monitoring and guidance for aerobic exercises while

at home to maximize the effectiveness of recovery routines [3].

A large body of work has focused on the accurate detection of physical activities,

using a diverse range of classification and feature extraction techniques [1,2,4,5,6-9].

These methods are confronted with the challenge of classification of a specific, correct

motion among many possibilities at any observation time. As the number of potential

motions increase, classification reliability is degraded.

In fields including wireless sensor networking, pervasive computing, and others, the

concept of context-awareness has been introduced with the objectives of improving

human machine interaction, and enabling low energy operation while retaining system

performance. Many architectures have been proposed to bring personalization and

adaptation to a system [10], and recent attempts have been made to introduce context

into activity classification [11,12]. These systems experienced limited success due to

ambiguity in the definition of context, and a lack of an appropriate system architecture

that is specific to the task of personalized activity monitoring.

1.2 Aim, Objectives and Contributions

This thesis aims at integrating context into activity classification, and based on this,

proposes a novel system architecture for personalized, context-guided wireless human

motion classification. The objectives of the thesis work cover reliable wireless sensor

3

instrumentation, context detection, activity classification using context, mobile

platform development, and mass data collection.

There are four major contributions in the work presented in this thesis. First, in

addressing the deficiencies outlined in Introduction, a novel end-to-end system

architecture has been proposed that provides context guided personalized activity

classification. The novelty of the proposed architecture lies in three areas: 1) The

ability to accurately detect context with multiple sensing modes; 2) The use of context

to improve classification accuracy and speed; and 3) The ability to target specific

physical activities of interest under selected contexts.

Second, in implementing the proposed architecture, a comprehensive study of the

Bayesian Networks (BN), and its uses in activity classification have been presented.

Detailed discussions include: 1) The implementation of BN with corresponding

message passing inference algorithms; 2) The ability to exploit a BN's visualization

advantages to better assist domain experts who are otherwise not trained in machine

learning to construct meaningful models with powerful mathematical machinery as a

backend; and 3) The difficulties with using inertial data in BNs, and the solution using

specially designed discretizers that takes into account a BN's structure.

Third, a number of practical issues have been solved with regards to instrumenting

multiple unreliable sensors in a wireless environment. Specifically, the thesis describe

ways to reliably control and collect data from them.

4

Finally, a novel way has been developed to carry out long periods of data collection on

multiple subjects. Problems surrounding long recording labeling, unreliable labeling,

and synchronization have been solved.

1.3 Related Work

Many investigations in medical science over the last decade have demonstrated the

critical benefits of activity monitoring for applications ranging from health and

wellness promotion to disease treatment, to performance advancement and injury risk

reduction in athletics. One example is the use of motion and sound data sources in an

application that provides telemonitoring for elderly individuals living independently

[6]. Here, a method was developed that can detect when a user requires attention (as a

result of a fall or long periods of inactivity). In another study, accelerometer sensor

data sources and machine learning algorithms were applied for monitoring

intervention effectiveness of acute stroke patients [1]. The technology provides

physicians with the ability to directly measure a patient's activity level, even after

discharge. This improves on the surrogate laboratory measurements, administered only

in a clinical setting. An example of applications in athletics was presented in [7],

where multiple accelerometers were used for ambulatory monitoring of elite athletes

in both competitive and training environments. For swimmers, the characteristics of

strokes can be captured and analyzed. For rowers, the addition of an impeller

combined with accelerometer data was used to recover intra and inter stroke phases for

5

performance analysis. This system was used by Australian Olympic athletes in

training for competition in the 2004 Olympic Games.

Using sensors for activity monitoring has been studied extensively. In [8], a system

using iPhone and Nike+iPod sport kit was proposed for classifying human activities.

The activities considered include running, walking, bicycling, and sitting. In [4], a

complex environment with many microphones, video sources and other sensors was

designed. The study attempted to accurately track movements of arms and hands.

Activities considered there are bathing, dressing, toileting, eating, and others. Results

indicated that using one third of the 300 available sensors in the specially designed lab,

tasks can be detected with an accuracy of 90%. A specially designed glove was

introduced for activity classification [5]. The glove detects and records objects a user

touches using an RFID reader. In this system, all the objects being monitored (such as

utensils, toothbrushes, and appliances) need to have RFID tags instrumented.

Most of the studies above are restricted in the number of activities they can detect

accurately. These systems are designed either for a specific set of activities that may

not be easily modified, or have a high system installation cost with the requirement to

modify environments and also monitor subjects only when they are present in these

environments.

The recognition of user and environment context has been identified as a primary

capability for advancing the performance and capability of human-computer interfaces

in many fields [11]. Studies have emerged recently in wireless health that attempt to

6

combine context and activity classification. In [9], a multi-sensor wearable system was

proposed that enables a context that largely consists of physical activities. There, 30

sensors were embedded into a garment, with multiple processing nodes responsible for

distributed processing of sensor data. This study treated physical activities as contexts,

and focused on the sensor fusion development. A system for a context-aware mobile

phone named Sensay was developed in [12]. This includes context defined as a set of

user states (normal, idle, uninterruptable). By introducing light, motion and

microphone sensors, Sensay is able to detect these contexts and manipulate ringer

volume, vibration, and phone alerts. At MIT media lab, a system using audio

information to obtain environmental context is described in [6]. The system adopted

HMM algorithm to perform the classification, which can classify contexts such as

office, supermarket and busy street in real-time.

In the investigations conducted so far, the definition of context has varied significantly

between investigations. It is particularly important for activity classification systems to

define contexts such that they do not contain physical activities, as these should be

classified after a context has been determined. A new definition of context will be

introduced for the proposed system architecture in this thesis study.

7

Chapter 2

System Design

This chapter starts with the definition of contexts and scenarios, then presents a high

level description of the system, followed by describing the system architecture in

detail.

2.1 Context

First, we present the concept of a context, as it is fundamental to the rest of the thesis.

When addressing context, many investigations use the important definition by Dey

[13]. While powerful, this definition of context that includes every characteristics of a

given situation, in terms of both the environment and the user, is very broad. Useful

for some applications, it is not suitable for leveraging context in monitoring physical

activities, as in many cases a context contains physical activities that are underlying in

the definition. There are a number of alternative definitions available in the field of

pervasive computing, offering different selection of divisions, such as external and

internal contexts [14,15]. These definitions are usually narrower, but still contain a

mix of physical activities with other environmental attributes.

8

In this thesis, a context is defined thusly:

Definition 1: A context is a subset of all attributes that characterizes an

environment or situation, external to the user

This definition clearly distinguishes between the external environment, and the user's

physical activities. By means of this definition, there is a clear guideline for deciding

which attribute is associated with context and which is associated with physical

activity. For example, a "meeting" environment is a context, and its characteristics

may involve certain sound profiles and a set of possible locations. "Sitting in a

meeting" in contrast is not a context, as it contains the user's physical activity of

"sitting".

2.2 Scenario

The term scenario is used throughout this thesis, and refers to a collection of contexts

and activities of interest for a particular user. Within each context there is a set of

activities of interest, and we can build models of these activities. As an example,

suppose we believe that by using an accelerometer on the ankle and looking at the

standard deviation in the horizontal direction, we can tell if a person is walking,

running or standing still. Here the accelerometer on the ankle is a sensor, the standard

deviation on the horizontal axis is a feature (derived from sensor data), and activities

(walking, running, standing) are classes. Further assuming that the distribution on the

standard deviation is Gaussian, we obtain a model that links a feature to a set of

9

classes (and the model has only two parameters: mean and variance). From here, we

can carry out a number of different methods to distinguish between the classes given

an observation of the feature set, and these methods are called classifiers. A simple

example using Naive Bayes classifiers can be found in [16].

With this knowledge, a scenario is defined as:

Definition 2: A scenario consists of a set of interested contexts with a

model for distinguishing them. Under each context, a model is required

that describes a set of interested activities .

Using the concept of a scenario, we can now describe the proposed system. For

example scenarios, refer to Section 2.9.

2.3 High Level Description

High level functionalities of the system can be described by Figure 2.1. Through

instrumentation of various sensors, we obtain both inertial data which describe

motions, and environmental data which describe contexts. The data then flow through

a signal processing pipeline which would determine the user's context, and produce a

motion classification based on the context and inertial sensor data. The set of contexts

and motions that are considered, as well as their relationships are determined by a

scenario fed into the signal processing pipeline. This scenario can be built by domain

experts in areas such as primary health care and personal training. The final output of

10

the system is a user's current context and motion, which can be consumed by any

application that requests this data. These two pieces of information provide two

entirely new dimensions which could enhance the capability of many software and

applications.

Figure 2.1: High level system description

2.4 System Architecture

We propose here an architecture that is able to provide context guided activity

classification, with the capability for real time online operation and multimodal sensor

instrumentation. A set of sensors on the user’s side provide data to a core classification

system. The core system detects a user’s context first, and activity classification

models are selected based on this. Both the detected context and classified activity are

returned to the user, ready to be consumed by 3rd party applications.

To enable such a system, there are a number of integral components: 1) A way to

interface with various sensors; 2) A way to interface with the main classification

11

systems; 3) A way to provide visual guide to the end-user with regards to training and

live feedback of classification results; 4) A core system that provides the inference

services which would determine a user's context and activity; and 5) A way for

domain experts to prescribe scenarios for users.

2.4.1 Client Server Architecture

If we consider that the models are to be built by domain experts, classifications are

done by a core system, and the classification results are to be consumed by end-user

applications, then this is broken down to a well known Client-Server architecture. An

end-user client can handle the instrumentation of sensors, interface with core systems,

and provide visual guide. A domain expert client can handle the construction of

scenarios, and send them to the server. A server can then implement the required core

systems, and provide a way for clients (both end-user and domain expert) to interact

with them. Figure 2.2 depicts the architecture of this new system.

This architecture provides context detection and activity classification, where the

context information is utilized by an activity classification system, along with inertial

sensor data. The end-user client application is used for collecting sensor data and

labels from a user, and also for displaying results. A corresponding web service runs

on the server, and acts as a gateway between the client and the core system. This

provides a means for the client to transmit and access data through a network, in a

structured manner. Domain experts can build scenarios, and assign them to individual

users through a domain expert client.

12

Figure 2.2: System architecture

2.4.2 Object Oriented Architecture

It is important to note that at each step in design and implementation, individual

subsystems should be modeled with objects, and the entire system be defined by a set

of interfaces and relationships. Each software interface is characterized by their public

methods, defined by functionality, expected inputs and expected outputs. By

implementing an interface, a class agrees to provide all the methods of that interface

[17]. In this way, each subsystem is developed independently without the requirement

to reveal its specific implementations, but only that it implements the required

interface. This allows any part of our proposed system to be overridden by custom

realizations, allowing for rapid prototyping and evaluation of various algorithms.

13

2.4.3 Message Oriented Architecture

For communication between clients and the server, a message oriented architecture is

popular [18]. This decouples the client and server, where both only need to respond to

messages they understand, and send messages that the other expects.

Using object oriented concepts and combing with message based client server

architecture, we can model the system as depicted in Figure 2.2 with interface models

in Figure 2.3 - 2.6.

Figure 2.3: End-user client interfaces model

Figure 2.3 describes the end-user client. We see that the SensorData interface provides

required abstraction for representing both context and inertial sensor data, and the

message client sends messages according to Figure 2.5.

14

Figure 2.4: Domain expert client interfaces model

Figure 2.4 describes the client for domain experts. A software is given to them that

generates scenarios, and these scenarios can then be sent to the server through a

message client. Again, the messaging structure is in Figure 2.5.

Figure 2.5: Message system interfaces model

The messaging structure is shown in Figure 2.5. Note that all messages extend a base

Message interface, which defines the contract for basic functionalities that all

messages must have. Top half of the figure shows messages a MessageClient can send,

15

and bottom half represents the possible server responses. Through this messaging

structure, both the end-user and domain expert clients can fully communicate with a

server implementing the core systems below.

Figure 2.6: Server core systems interfaces model

This set of interfaces describes the core systems. Both context and activity classifiers

require features to be extracted by a feature extractor implementing FeatureExtractor.

The message server implements MessageServer, and delegate appropriate actions. For

16

example, if a TrainActivity message is received, then the InertialData received from

the message is delegated to InertialFeatureExtractor, and the ActivityClassifier's train()

method is called.

As a concrete example of the flexibility using interfaces, consider the

ContextClassifier interface, which covers the context classifier. Teams can develop

classifiers independently and optimize them according to particular applications. As

long as the classifiers provide the getContext method, they can be hot swapped into

the system to adjust the classification system behavior without affecting the overall

system.

2.4.4 Sensor Instrumentation

One requirement of the architecture on the end-user client is the ability to reliably

obtain data from external sensors. By reliably, we mean that the client should be able

to: 1) Automatically detect, connect and control the external sensors (start, stop, record)

in real time; 2) Know the status of the sensors at all times; 3) Recover from corrupted

data, missing data, delay; and 4) Be able to run for an extended amount of time (many

hours) without accumulating error.

We propose the following air architecture for instrumenting external sensors (Figure

2.7).

17

Figure 2.7: Sensor instrumentation architecture

First, the subsystem closest to actual hardware is the AirInterface, its implementation

should be as simple as possible, supporting only basic read and write operations

required for sensor control and data recording. This is so that the subsystem can

execute as fast as possible. Attached to the air interfaces are monitors. There should be

one monitor per interface, as the sensors being instrumented can be different, thus

requiring different monitoring. It is the monitor's job to track a sensor's state, and both

notify upper layer of changes, and take appropriate actions autonomously. For

example, if it is detected that a sensor has disconnected, the monitor could notify the

18

upper layer about the disconnection, while trying to re-establish connection (through

the air interface it is attached to).

Each AirInterface obtains data from a stream established to the target device, and from

there the data is tagged with a device id, and stored in a central buffer. A processor

unit (Processor) runs in parallel to all the air interfaces and processes the buffer. It is

the processor's job to synchronize the data from multiple sensors. This is a standard

producer-consumer pattern, where the processing unit is decoupled from the recording

units through a buffer to ensure that the recording units are not blocked waiting for

processing. It is essential, as we cannot have the sensors hang due to insufficient

processing speed. Using this buffer, we also have protection against spurious delays. It

is also important for the processor to monitor the buffer state to make sure it is not

overflowing, as this is an indication that the processing speed cannot keep up with

recording speed. In case that the processing speed is not fast enough, measures need to

be taken, such as having multiple processors running in parallel, or using memory

storage devices to store the data.

Abstracting the underlying sensor instrumentation system is the AirInterface

Controller. This controller offers upper layers the ability to initiate connection to

sensors, and to obtain synchronized recording data. Figure 2.8 shows the interfaces

model of this system.

19

Figure 2.8: Sensor instrumentation interfaces model

Noticeably lacking are specific data related methods on the AirInterface and Processor,

as well as the lack of read() on Buffer. To maintain maximum flexibility over a myriad

sensor types, the interfaces here are loosely defined, and the four pieces (controller, air

interface, buffer, processor) should be implemented as a coherent unit. Only the

controller needs an interface for abstracting with upper layers. The only

communication to the upper layers is through messages marked by DataArrived, and

Notification interfaces. Refer to Section 3.5.1 for a concrete example implementation

of the system.

2.5 Context Detection

Definition 1 is designed to capture a large number of situations, so that users with

different objectives can define their own sets of useful contexts. They can then

identify required characteristics, and select necessary sensors. This generalization

20

makes classification difficult, as we need to account for a diverse range of data sources

such as GPS coordinates, wireless information, audio, and illumination level. For

example, consider the following datasets (Table 2.1), demonstrating the result of an

experimental system that combines both audio signal processing on sound detected in

an environment, along with the Media Access Control (MAC) addresses associated

with wireless access points detected in the same environment. Here, three locations

were used, and MAC addresses and peak frequency of the audio power spectral

density (PSD) were recorded.

Table 2.1: Example datasets

Label Wireless MAC address Audio PSD peak frequency

A {30:46:9a:06:4d:e0, 00:0c:41:6e:1e:f6} 390.01Hz

B {2e:25:b3:96:d5:f9, 00:b0:d0:86:bb:f7} 80.91Hz

C {6e:51:f5:c1:11:00, 00:0c:f1:56:98:ad} 120.19Hz

To separate labels A, B and C in this example, a common method is to find thresholds

that divide them, based on the MAC address and PSD peak frequencies. It is clear that

the audio peak frequency data for environments can be assembled, and a distinct

separation between the labels can be found. The proper treatment of MAC addresses is

less clear. It is challenging to represent these identifier values in a feature space, and to

define a separation. This difference in data type determines the suitability of various

21

classifiers. For example, classifiers based on SVM are not suitable for treatment of

MAC addresses, whereas a method such as kNN has been used successfully [19].

In order to detect context based on a variety of data sources, there is a need to use

multiple classifiers for different features. To this end, we propose the development of

a classification committee consisting of n individual classifiers (Figure 2.9). The

individual classifiers are trained separately, and after training they can be tested for

individual accuracy. A voting weight (α) can be determined for each classifier,

proportional to the perceived accuracy. When an unknown class is encountered, the

committee performs a linear combination of the individual classifiers, and the context

with the highest vote is the output. In interface model 2.6, the committee is

represented by ContextClassifierCommittee, and individual classifiers should

implement ContextClassifier. They can then be registered by calling

registerCommitteeMember() method on the classifier committee implementation.

Figure2.9: Context classification committee architecture

This committee approach not only allows fusion of a number of sensors with various

data types, but also allows for adaptation of context detection to individuals with

22

varying habits. For the former, it is easy to see that different classifiers can be selected

to compose the committee, depending on inputs. For the latter, suppose a habitual

individual exhibits strong patterns in time of day relating to context. The weight of a

classifier based on time of day will be adjusted during training so that the habitual

subject would have a time classifier with higher vote weighting (compared to a subject

that is irregular).

2.6 Context Guided Activity Classification

As described in the previous section, the context is determined through the context

classifier committee. This context decision then determines the model/method used for

activity classification. We now introduce the concept of a context guided classifier.

These classifiers allow us to have specifically optimized models that each focus on the

activities of interest, given context. Unlike conventional activity monitoring, there is

no single list of comprehensive activities to be built into a monolithic classifier.

Instead, a basic set of activities common across all contexts can be chosen, and this set

can then be extended or reduced should the need arise for a particular context. These

models can be assigned to specific users, giving us the ability to personalize the

activities being monitored.

Based on context information, the model selector (Figure 2.2) would select an

appropriate activity recognition model from the current scenario, and the activity

classifier can then make a classification based on the model. There are a number of

23

benefits from using this system. First, we can improve classification accuracy and

speed due to a simplification of feature space. Then, the system allows scenarios to be

determined by investigators, and a person's monitoring program can be modified.

Finally, the system gives a user the ability to control his/her privacy. Unlike most

other monitoring systems that are always on, a user can decide to only allow

monitoring under specific contexts, for specific activities.

2.7 Sensor Control

By having scenarios describing the contexts and activities of interest, we can also

optimize sensor sampling rate and selectively enable or disable sensors to reduce

energy demand. For example, in contexts where no upper body motions are monitored,

the upper body sensors could be disabled or their sampling rate can be reduced. The

benefits of this are an overall reduction of power, storage and communication usage.

2.8 Modes of Operation

There are three modes of operation supported by this framework: 1) Construction of

models by healthcare professionals such as doctors, registered nurses, personal trainers;

2) Initial training from individual end-users of the classification system for both

context and motion; and 3) Live monitoring of the user's context and motion. The first

mode is straightforward, where an expert simply logs in to the server, construct a

scenario and assign it to a user.

24

The training scheme required is dictated by underlying classifier implementations,

some would require individualized training, while others can function with a generic

training set or none at all. If training is required, then once a scenario has been

prescribed, an end-user's client would parse this scenario for required parameters, and

prompt the user to perform a set of activities under certain contexts to collect the

training data. Visual cuos to guide a user through training should be implemented, and

the training data can be sent to a server via training messages (TrainContext and

TrainActivity). For example, a scenario that monitors walking and running while at

the gym would require the user to perform both activities in a gym.

After a scenario has been trained, the end-user client can then go into live mode. Data

are collected autonomously in this mode and sent to a server, where a continuous live

stream of context and motion classification can be made and returned to the client.

2.9 Example Scenarios

Section 2.1 and 2.2 have defined the concepts of context and scenario, now we present

some example usages to show-case the power of this architecture. In the tables, some

of the columns such as features and methods will become clearer in subsequent

sections.

In primary health care, physicians may often wish to monitor a stroke inpatient's (still

in hospital) walking speed and also ensure they are intermittently sitting/standing to

25

alleviate deterioration in exercise tolerance [3]. The domain expert here is the doctor,

and one possible scenario could be Table 2.2.

Once the patient is discharged, physicians may then wish to monitor the patient to

make sure that recommended daily activities are performed at home. This could

translate to a scenario show in Table 2.3.

Another example is where personal trainers can prescribe personalized training plans

for different individuals, including activities of interest and their duration and place

(gym, home, office). Here the activity monitoring system can inform the user of

his/her training progress, and also track how long the person has stayed inactive

(Table 2.4).

26

Table 2.2: Example scenario 1

Context Features Classifier(s) Activity Model Features Classifier Purpose

Patient room WiFi k-nearest-

neighbour

(kNN)

• Sitting

• Standing

• Lying down

Accelerometer

standard deviation,

gravity direction

Naive

Bayes

Monitor how long a

patient has stayed

immobile, assess the risk

of bed sores and other

problems

Rehabilitation WiFI kNN • Aerobic

exercise

• Walking Slow

• Walking fast

• Fall

Acceleration peak

magnitude, standard

deviation

Naive

Bayes

Monitor patient's

performance in exercises

Hall way WiFi,

Sound

kNN,

AdaBoost

• Standing

• Walking fast

• Walking slow

• Fall

standard deviation Naive

Bayes

Monitor a patient's general

physical condition, and

detect falls

27

Table 2.3: Example scenario 2

Context Features Classifier(s) Activity Model Features Classifier Purpose

Home WiFi, Time

of day

kNN • Aerobic

exercise

• Walking slow

• Walking fast

Acceleration peak

magnitude, standard

deviation

Naive

Bayes

Monitor if the patient is

following exercise routine, and

also his physical performance

28

Table 2.4: Example scenario 3

Context Features Classifier(s) Activity Model Features Classifier Purpose

Home WiFi, Time

of day

kNN • Sitting

standard deviation Naive

Bayes

Monitor if the user is

exercising enough

Office WiFi, Time

of day

kNN • Sitting

standard deviation Naive

Bayes

Monitor if the user is

exercising enough

Gym WiFi, Time

of day,

Sound

kNN,

AdaBoost

• Pushups

• Weight lifting

• Running

Acceleration peak

magnitude, standard

deviation

Naive

Bayes

Monitor if the user is

following the correct routine

(amount of time at each

activity etc).

29

Chapter 3

Implementation

3.1 Language and Framework Choices

The first design choice is the language to use. For object oriented designs there are a

number of popular languages such as C++, Java and Python. From a development

perspective, both Java and Python are much easier to use as they hide away a lot of the

complexities that a C++ developer must be mindful of. While Java and Python both

provide ways to robustly implement the proposed architecture, there is no direct

support for interfaces in Python, and more importantly, development on the mobile

platform Android requires Java. While we can implement different parts of the system

with different languages, there is no advantage to be had by implementing parts in

Python. Also, some areas are computationally intensive, and Java is generally much

faster than Python [20]. Finally, having a common language (i.e. Java) lets us use

techniques such as object serialization, which provides an easy way to transmit data

between client and server (Section 3.2.1).

30

Section 2.4.1 talked about the need for both an end-user client, and a domain expert

client. For the end-user client, an ideal candidate is a mobile application supported by

a smartphone for two primary reasons: First, mobile devices are pervasive, which

makes the client accessible, and we can leverage services off existing network

infrastructure that is available in the residential, workplace, and clinic environments,

where the systems reported here are deployed; Second, mobile devices are high

performance, so they are able to act not only as user interface platforms, but also as

wireless sensor hubs that can log, process and store data from the wearable sensors.

The two main contenders here are Apple's iOS and Google's Android. Due to a

number of restrictions on iOS such as only being able to interface with Apple

approved Bluetooth devices, Android was chosen as the development platform for

end-user client.

Domain expert clients are designed to run on stationary computers (laptops, netbooks,

desktops), as they are primarily for user management and scenario building. Here Java

can be used, and Nokia's Qt library [21] is chosen for Graphical User Interface (GUI)

development for the following reasons: 1) It is newer and has a more friendly

appearance than Java's native Swing; 2) It is cross-platform; and 3) Qt provides not

only a GUI library, but also libraries for audio, video, network etc, which allows for

easy extension development later on.

31

3.2 Server Implementation

The server serves as a gateway between the client and server for real time

classification. It also implements the whole automation process.

3.2.1 Object Serialization and Transfer through Network

Section 2.4.3 described the message oriented architecture and how it can be used for

context guided activity classification. In this implementation, the server is also a

native Java program. This has two advantages, first, the server is able to natively

interface with all the other core systems, as they are all developed in Java. Also,

messages from the clients can be sent using a technique known as serialization, by

which an object is converted into a binary data string that can be transmitted over any

stream (network stream in this case). Figure 3.1 demonstrates the process of

serialization.

Figure 3.1: Serialization, deserialization process

32

Here TrainActivity message is constructed at the client (sender) with the

InertialSensorData and label filled in. This message object is converted into a data

string, transmitted through the network, and a server simply deserializes to obtain the

original object exactly, complete with all data members. Without using this technique,

developers must come up with their own packing formats to pack objects for

transferring. Note that Java has native support for serialization through the Serializable

interface [22].

3.2.2 User and Scenario Management

A central concept of the proposed architecture is the ability to prescribe scenarios for

individuals by domain experts such as doctors. This requires a user and scenario

management system in place on the server. A user logs into the system, and depending

on the role can either prescribe a scenario through the domain expert client, or choose

to use one of the scenarios through the end-user client. A number of interfaces in

Figure 2.5 govern this: Login, GetUsers, GetScenarios etc.

The server implementation uses a flat-file database system (where data are stored in

regular files on a hard drive, arranged categorically under a root directory). User login

and privilege information are stored in a file containing a serialized java

Map<Username, Password> [23], where the passwords are md5 hashed for security.

Upon login request, the file is deserialized into the original map, and credentials can

be checked.

33

The domain experts have privileges to view a list of users, and prescribe scenarios for

any of them. When a new scenario is posted, the server receives the untrained scenario

file and saves it in target user's directory. End-users only have privileges to view a list

of scenarios linked to them, and use the scenarios.

3.2.3 Core Classification Components

Both a context classification committee and an activity classifier make up the core

system components. These components each have their own section below.

3.2.4 List of Messages

Table 3.1 shows the list of messages implemented, their functions and their responses

(also refer to Figure 2.5).

3.3 Context Detection

Context detection is a major part of the work conducted. Using the modular nature of

the system, we surveyed a number of classifiers. During this process, we discovered

that certain features are not suitable for certain classifiers. This section starts with a

survey of classifiers we implemented, then discusses the impact of features on

classifier selection, and finally describes a committee based approach that combines a

number of classifiers in a personalized manner for realizing context classification.

34

Table 3.1: Messages implemented

Request Privilege Response Description

Login User,

Expert

OK, Exception Logs in the user, a dedicated

server thread will be created to

handle this user's requests. If

login unsuccessful, Exception is

raised

GetUsers Expert Users, Exception Returns a list of users

GetScenarios User,

Expert

Scenarios, Exception Returns a list of scenarios

Experts can assign a username

on the message and that user's

scenarios are returned

PostScenario Expert OK, Exception Adds a scenario for a user

RemoveScenario User,

Expert

OK, Exception Removes a scenario from a user

TrainContext User OK, Exception Trains the context classifier

committee with the data posted

TrainActivity User OK, Exception Trains the activity classifier with

the data posted

InertialDataMessage User ClassificationResult,

Exception

Returns a classification based on

inertial data

ContextDataMessage User ClassificationResult,

Exception

Returns a classification based on

context data

35

3.3.1 KNN

The k-nearest-neighbors (kNN) classifier is an instance based learner [24, 25, 26]. It is

a lazy learner in that no real work is done when the training sequence is given during

the training phase, they are simply stored by the classifier. When an unknown class is

encountered, the classifier looks for the k nearest training samples to the unknown

class, and a decision is made based on majority vote.

Other than implementation simplicity, another major advantage of kNN is the ability

to handle nominal data (discontinuous). This is particularly important for data types

like wireless SSID, as we will see in Section 3.3.6. To find the nearest training sample,

we need to define a distance function. As there are timestamps and a set of SSIDs and

signal strengths per context, we propose a set of custom distance function below.

𝒕𝑡𝑖𝑚𝑒 − 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡,𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡, 𝑙𝑎𝑏𝑒𝑙 𝑠

𝑠𝑡𝑖𝑚𝑒(𝑥) − 𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑥

𝒕𝑤𝑖𝑓𝑖 − 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑙𝑙 𝑆𝑆𝐼𝐷𝑠

𝒕𝑤𝑖𝑓𝑖(𝑠) − 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑙𝑙 𝑆𝑆𝐼𝐷𝑠 𝑔𝑖𝑣𝑒𝑛 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑠

𝒛𝑤𝑖𝑓𝑖(𝑥, 𝑠) − 𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑆𝑆𝐼𝐷 𝑥,𝑢𝑛𝑑𝑒𝑟 𝑙𝑎𝑏𝑒𝑙 𝑠

𝑦𝑡𝑖𝑚𝑒 ,𝒚𝑤𝑖𝑓𝑖 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

36

𝛿𝑡𝑖𝑚𝑒 = arg min𝑠𝑡𝑖𝑚𝑒(𝑡)‖𝑡 − 𝑦𝑡𝑖𝑚𝑒‖ ∀ 𝑡 ∈ 𝒕𝑡𝑖𝑚𝑒 (1)

𝒃𝑤𝑖𝑓𝑖 = �𝒕𝑤𝑖𝑓𝑖 ∩ 𝒚𝑤𝑖𝑓𝑖� − 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑆𝑆𝐼𝐷𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑎𝑙𝑙 𝑙𝑎𝑏𝑒𝑙𝑠 (2)

𝑙𝑒𝑡 𝑑(𝑠) = �min(�𝒛𝑤𝑖𝑓𝑖(𝑏, 𝑠) − 𝒛𝑤𝑖𝑓𝑖(𝑏,𝑦)� ∀ 𝑏 ∈ 𝒃𝑤𝑖𝑓𝑖) , 𝑖𝑓 𝑏 ∈ 𝒕𝑤𝑖𝑓𝑖(𝑠)
∞, 𝑒𝑙𝑠𝑒

�

(3)

𝛿𝑤𝑖𝑓𝑖 = arg min
𝑠

 𝑑(𝑠) (4)

Eq. (1) is a kNN classifier that does matching on time. The distance function here is

just a check to see which label has the closest matching time. Eq. (2) first finds a set of

common wireless SSIDs between all training data and the unknown class. The class

with an SSID whose signal strength is closest to the unknown class is then used as

output. In the case of k nearest neighbor, both Eq. (1) and Eq. (4) pick the top k, and a

majority vote is performed.

3.3.2 AdaBoost

AdaBoost is a class of boosting method [27, 28, 29]. It is a meta learner, meaning that

it is to be used in conjunction with a base learner. The base learner can be any

classifier, and is usually straightforward to implement. They can also be very weak: in

the binary case, a base learner needs only to outperform chance (50%). By forming

multiple weak classifiers and weighting them on their accuracy, AdaBoost can

combine the ensemble into a strong classifier. There are a large number of literatures

describing the operation and algorithm of a number of AdaBoost variants [27, 28, 29].

37

For this study, we used the AdaBoost.MH algorithm with a decision stump base

learner. AdaBoost.MH is an earlier variant, and one of the most popular [30]. It is an

extension of the earliest multiclass AdaBoost.M1 algorithm [27]. A listing of the

AdaBoost.MH algorithm can be found in [31]. The decision stump is a modified

binary decision stump that handles multiple classes by creating a binary label set, and

converting a multi class problem into a binary problem that tests to see if an unknown

is of class A, or another class. The implementation simply traverses along each feature

space, and picks the point where the dataset can be separated most distinctly. Figure

3.2 demonstrates this using two features.

Each axis on the figure represents a feature of the data, and by plotting feature 2

against feature 1 we obtain a 2D space from which the decision stump algorithm can

find the decision region shown in shaded colors. The AdaBoost algorithm runs a large

number of these, each time putting more weight on the misclassified data to force the

decision stump to adjust its decision regions. The collection of stumps is then summed

in a weighted way to form the final classifier.

38

Figure 3.2: Decision stump on binary data

3.3.3 SVM

Support vector machine (SVM) is another popular machine learning algorithm. As a

classifier, it finds the support vectors of a training dataset from the training process,

and from these support vectors a cut is found that produces the maximum separation

of classes on both sides.

Figure 3.3 demonstrates this for a binary case. The support vectors are circled, and the

cut (black line) produces the maximum separation to all the support vectors.

39

Figure 3.3: SVM on binary data

3.3.4 Decision Table Tree

Decision Table Tree (DTT) is model that we came up with by observing the datasets

collected. We observed that wireless information is a strong feature for determining

location compared to time and sound. As a result, we designed the tree to first attempt

to make a classification based on wireless information, and only fall back to time if the

information is not available. Figure 3.4 shows the DTT model.

During training, the DTT model stores all the data in a database. During classification,

the DTT first check wireless information using the same distance function as Eq. (4),

and the closest result is returned as the classification. However if no wireless

40

information can be matched, DTT then tries to see if the timestamp overlaps with any

time period on record, and return the label as classification. If this also fails, then the

DTT returns a label whose time is closest to the unknown timestamp, using Eq. (1).

Figure 3.4: DTT model

3.3.5 Artificial Neural Networks

Finally, we also implemented an Artificial Neural Network (ANN). A neural network

involves a network of simple processing elements called neurons [32]. These elements

can arrange themselves to model a complex behavior, determined by the way

connections are made between the processing elements, and the weighting on each

connection. A neural network can also be interpreted as an adaptive machine [33], in

which it is a massively parallel distributed processor made up of simple processing

units. These then have a natural ability for storing experiential knowledge and making

it available for use.

41

Figure 3.5: ANN with 3 layers

Figure 3.5 shows a 3 layers artificial neural network, with input layer, hidden layer

and output layer. There are 4 neurons in the input layer, 4 in the hidden layer, and 2 in

the output layer. Each connection has a weight attached, and the output of a layer

becomes the input of the next layer. For training, an error back-propagation algorithm

is one of the most popular, this algorithm contains a forward path and a backward path

through all the layers. The forward path describes the connections and weights of a

layer, and is responsible for computing the outputs of that layer. The backward path is

used for adjusting the weights and biases for each neuron in the network, based on

final output of the current iteration.

3.3.6 Features and Classifier Choice

The classifiers AdaBoost, SVM and ANN work by finding a way to divide the feature

space into partitions belonging to different classes. It follows then that they only work

well on data that has separable feature space. Classifiers like KNN and DTT work as

42

long as a custom set of distance functions or rules can be created, making them

suitable for some data types, as we will present now.

In our work, we identified time of day, wireless SSID, signal strength, and sound as

possible features for identifying context. It is easy to see that two wireless SSIDs are

not related to each other, and it is difficult to represent them on a feature space suitable

for classifiers. For example, consider the two sets of SSIDs below:

 Set 1: [30:46:9a:06:4d:e0, 00:0c:41:6e:1e:f6, 2e:25:b3:96:d5:f9]

 Set 2: [00:11:95:4c:7b:57, 00:26:bb:76:b3:85, 62:2a:19:50:35:79]

It is difficult, if not impossible to tell how to plot these on a feature space (such as a

2D space shown in Figure 3.3). We note that this type of data lends itself well for kNN

and our own rule based DTT, as we can develop custom rules and distance functions

based on sets.

Time and sound features on the other hand are continuous and separable in feature

space. This means that we can use classifiers like SVM and AdaBoost without

problems.

Based on the discussion of features and the choice of classifiers, there is a need to use

separate classifiers to determine context based on different features. In this

implementation, the committee is made up of 3 classifiers: kNN (k-nearest neighbors)

with time as a feature; kNN with wireless MAC address and signal strength as features;

43

and AdaBoost with audio peak frequency, peak energy, average power and total

energy as features (Table 3.2). These features are extracted from raw sensor data

through a java program implementing the ContextFeatureExtractor interface: time is

taken from the clock; wireless MAC address and signal strength list is obtained from

periodic scans; and audio features are obtained by taking periodic recodings 10

seconds in length, and performing fast Fourier transform.

Table 3.2: Classifiers and features used for committee

Classifier Features

kNN with time • Timestamp

kNN with wireless • SSID

• Signal strength

AdaBoost • Peak frequency

• Peak energy

• Average power

• Total energy

In Section 2.5, we proposed a classification committee consisting of individual

classifiers. Figure 3.6 shows the particular construction used in this implementation.

44

Figure 3.6: Classifier committee

3.4 Activity Classification - Bayesian Networks

This section first introduces all the concepts required for a discussion on our classifier.

Sub section 3.4.6 then ties together all the concepts, and presents a coherent

formulation for a classification system. Throughout this section, full proofs are given

for all theories discussed for completeness.

3.4.1 Graphical Models and Bayesian Networks

3.4.1.1 Theory

A graphical model is a probabilistic device that embeds conditional relationships of

random variables. In such a graph (𝐺), random variables are represented by nodes (𝑉),

edges (𝐸) represent a relationship between the two variables, and the graph can be

written as 𝐺(𝑉,𝐸). Figure 3.7.a shows an example of one such graph.

45

a. Generic graph b. Bayesian network

Figure 3.7: Graph models

For a graph to be a Bayesian Network (BN), the edges (𝐸) must be directed (meaning

each edge has a direction which indicates the starting and ending node), and the graph

must also satisfy the Markov condition in Definition 4.

Definition 3: Given a graph 𝑮(𝑽,𝑬) and nodes 𝑿,𝒀. 𝑿 is the parent of 𝒀 if

there is an edge from 𝑿 → 𝒀, and 𝑿 is an ancestor of 𝒀 if there is a path

from 𝑿 → 𝒀 (with length > 1, i.e. not an edge). 𝒀 is a descendent of 𝑿 if

there is a path from 𝑿 → 𝒀 (taking note of the difference between an edge

and a path).

Definition 4: Given a graph 𝑮(𝑽,𝑬) and a joint probability distribution 𝑷

of the set {𝑽}, the graph 𝑮 satisfies the Markov condition if:

𝑷(𝑿 | 𝑨𝑿,𝑵𝑿) = 𝑷(𝑿 | 𝑨𝑿),∀ 𝑿 ∈ 𝑽

46

Where 𝑨𝑿 is the parent set of 𝑿, and 𝑵𝑿 is the non-descendent set. That is,

the probability of node 𝑿 given its parents is conditionally independent to

variables not linked to 𝑿.

Following the Markov condition we arrive at an important theorem:

Theorem 1: If a graph G satisfies the Markov condition, then the joint

probability 𝑷 embedded in the BN is given by the product of all

conditional probabilities following Definition 4.

Proof: First order the nodes so that if 𝑌 is a descendent of 𝑋, then 𝑌 follows 𝑋

in the ordering (ordering being the number given to each node, or the order we

visit the nodes). E.g. Figure 3.8 can have an ordering [𝐴1 …𝐴𝑛].

Figure 3.8: Example Bayesian network

From here, the proof is given by induction.

Basis step: Assume 𝐴1 is empty (root of the tree has no parent set).

𝑃(𝑋1) = 𝑃(𝑋1| 𝐴1)

Induction step: Suppose that for 𝑃(𝑋𝑛 … .𝑋1) the theorem holds:

𝑃(𝑋𝑁 …𝑋1) = 𝑃(𝑋𝑁 | 𝐴𝑁) …𝑃(𝑋1|𝐴1)

47

We show that:

𝑃(𝑋𝑁+1 …𝑋1) = 𝑃(𝑋𝑁+1|𝐴𝑁+1)𝑃(𝑋𝑁 …𝑋1)

First, if any of the 𝑃(𝑋𝑖|𝐴𝑖) = 0, the last equation is 0.

Next, for 𝑃(𝑋𝑖|𝐴𝑖) ≠ 0, we have

() ()+ +

+ +

+ +

… = … …
= …
= 

1 1 1 1 1

1 1 1

1 1 1 1

, | ()
(|) ()
(|) (|) (|)

N N N N N

N N N

N N N N

P X X X P X X X P X P
P X A P X P
P X A P X A P X A

Where line two follows from Definition 4 and line 3 follows from the

induction step.

Figure 3.9 demonstrates a canonical example of the Markov condition being satisfied.

Figure 3.9 Another example of Bayesian network

Markov condition requires that ⊥ |B C A .

From the graphical model, we have =(, ,) (|) (|) ()P A B C P B A P C A P A

From probability theory, we should have =(, ,) (, |) ()P A B C P B C A P A

48

Combining the above two, we have (, |) (|) (|)P B C A P B A P C A= , so ⊥ |B C A and the

graph is a BN.

3.4.1.2 Benefits

Using a Bayesian network has a number of benefits. First, it is easy to visualize a

graph, and from it the conditional independences between variables. The reverse is

also true, where given a set of variables, we can identify the relationships between

them, and from there intuitively construct a graphical model that is backed by

probabilistic machinery for various computations. Second, a BN is an economical way

of representing a complex joint probability distribution involving many variables.

Suppose we have variables 𝐴,𝐵 and 𝐶 constructed as shown in Figure 3.9. If each

variable has 𝐿 values, then by general probability theory 𝑃(𝐴,𝐵,𝐶) requires 𝐿3 space

for a lookup table (one 𝐿 per dimension for each variable). Utilizing the Markov

condition, variables 𝐵 and 𝐶 have 1 parent each (𝑚 = 1), and the required space is

given by 𝐿1 × 𝑚 × 𝐿2 𝑜𝑟 3 = 𝐿𝑚+1. Assuming 𝐿1 = 𝐿2 = 𝐿3 then in general the space

required is 𝑛𝐿𝑚+1 for the entire graph, where 𝑛 is the number of nodes in a graph.

This is much less than 𝐿𝑛 from general probability theory, if the number of parents per

node can be restricted (thus small 𝑚).

3.4.2 Pearl's Message Passing Algorithm

Pearl's message passing algorithm (MPA) originally appeared in the paper by Judea

Pearl in 1982 [34]. When operating on a tree structured Bayesian network, it

49

determines all probability 𝑃(𝑋|𝑬) exactly, given a set of instantiated nodes 𝑬 (random

variables whose value we have seen).

3.4.2.1 Algorithm

The algorithm can be summarized as follows:

Algorithm 1: Peal's message passing algorithm

Input: A Bayesian network whose model is a tree, and a set of evidence (𝑬)
Output: 𝑃(𝑋|𝑬) ∀ 𝑋 ∈ 𝑽

Initialize:

for 𝑋 ∈ 𝑽
 𝜆(𝑥) = 1
for each parent (𝑍) of 𝑋
 𝜆𝑋→𝑍(𝑧) = 1
for value r of root R

𝑃(𝑟|𝒆) = 𝑃(𝑟)
𝜋(𝑟) = 𝑃(𝑟)

for each child C of R
send_π_message(𝑅 → 𝐶)

send_π_message(𝑍 → 𝑋):
𝜋𝑍→𝑋(𝑧) = 𝜋(𝑧) � 𝜆𝑌→𝑍(𝑧)

𝑌∈𝑁𝑍{𝑋}

𝜋(𝑥) = �𝑃(𝑥|𝑧)𝜋𝑍→𝑋(𝑧)
𝑧

𝜑(𝑥|𝒆) = 𝜆(𝑥)𝜋(𝑥)
𝑃(𝑥|𝒆) = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝜑)
for each child 𝐶 of 𝑋, 𝐶 ∉ 𝑬

send_π_message(𝑋 → 𝐶)

send_λ_message(𝑌 → 𝑋):
𝜆𝑌→𝑋 = �𝑃(𝑦|𝑥)𝜆(𝑦)

𝑦

𝜆(𝑥) = � 𝜆𝑈→𝑋(𝑥)
𝑈∈𝑁𝑋

𝜑(𝑥|𝒆) = 𝜆(𝑥)𝜋(𝑥)
𝑃(𝑥|𝒆) = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝜑)
if 𝑋 is not root, and parent 𝑍 of 𝑋 is not in E

50

send_λ_message(𝑋 → 𝑍)
for each child 𝐶 of 𝑋, 𝑋 ≠ 𝑌,𝑋 ∉ 𝑬

send_π_message(𝑋 → 𝐶)

update_evidence:
for each node 𝑁 ∈ 𝑬

𝜆(𝑛�) = 1,𝜋(𝑛�) = 1,𝑃(𝑛�|𝒆) = 1, 𝑠𝑒𝑡 𝑎𝑙𝑙 𝑒𝑙𝑠𝑒 0
if 𝑁 is not root and the parent 𝑍 of 𝑁 not in 𝑬

send_ λ_message(𝑁 → 𝑍)
for each child 𝐶 of 𝑁, 𝐶 ∉ 𝑬

send_π_message(𝑁 → 𝐶)

Proof:

Figure 3.10: Division of graph at node 𝑋

Consider Figure 3.10, let 𝑫𝒙 be the subset of 𝑬 containing all members

of 𝑬 that are in the subtree rooted 𝑋 (𝑋 ∈ 𝐷𝑋 if 𝑋 ∈ 𝑬). Let 𝑵𝑿 be the

subset of 𝑬 containing non-descendents of 𝑋 (note that 𝑋 is a non-

descendent of 𝑋, and 𝑋 ∈ 𝑁𝑋 if 𝑋 ∈ 𝑬).

51

We then have

β

=

=

=

=

=

,)
(, |) ()

(,)

(|) (|) ()
(,)

(|) (|) () ()
(,)

(|)

()

(|) ()

|

|

(
P x P x

P

P x P x P x
P

P x P

P x P x P p x
P P x

P x P x

x x x

x x

x x

x x

x x

x x x

x x

x x

n
d n

d n

d n
d n

d n n
n

e d

d

d n

where the 3rd line comes from the fact that 𝒅𝒙 and 𝒏𝒙 are independent,

and 𝛽 at the end is a factor that contains all the terms not related to 𝑥.

From this, we define

λ
π

∝
∝

() (|)
() (|)

x P x
x P x

x

x

d
n

And so

(|) () ()x xP xλ π∝e

Looking at 𝜆(𝑥), we have:

1. 𝑋 ∈ 𝑬 𝑎𝑛𝑑 𝑖𝑠 𝑥�

This means that

𝜆(𝑥) ∝ 𝑃(𝒅𝒙|𝑥) = �0,𝑓𝑜𝑟 𝑥 ≠ 𝑥�
1,𝑓𝑜𝑟 𝑥 = 𝑥�

�

52

2. 𝑋 ∉ 𝑬, and is a leaf

We have

𝒅𝒙 = {∅}

𝜆(𝑥) ∝ 𝑃(∅|𝑥) = 1,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥

3. 𝑋 ∉ 𝑬, and is not a leaf

We then consider the case where there are two children, let 𝐷𝐿

be the left child and 𝐷𝑅 be the right child. And since 𝑋 ∉ 𝑬,

𝐷𝑋 = 𝐷𝐿 ∪ 𝐷𝑅 (Figure 3.11).

Figure 3.11: Division of subtree into left and right branches

This means that

λ λ

=
=
=

=

∑ ∑

∑ ∑

|) (, |)
(|) (|)

(|) (|) (|) (|)

(|) () (|) ()

(

l r

l r

x P x
P x P x

P l x P l P r x P r

P l x l P l x r

P x L R

L R

L R

d d
d d

d d

d

Where the third line comes from:

=
=

, |) (| ,) (|)
(|) ()

(
|

l x P l x P l
P P l x

P x
l

L L

L

d
d

d

53

Since the above depends on both 𝑙, 𝑟 and 𝑥, we define messages

λ λ

λ λ

→

→

=

=

∑

∑

(|) (())

)() (| ()

L X
l

R X
r

P l x l

P r x r

x

x

Looking at 𝜋(𝑥), we have:

1. 𝑋 ∈ 𝑬 𝑎𝑛𝑑 𝑖𝑠 𝑥�

𝜋(𝑥) ∝ 𝑃(𝑥|𝒏𝑿) = �0,𝑓𝑜𝑟 𝑥 ≠ 𝑥�
1,𝑓𝑜𝑟 𝑥 = 𝑥�

�

2. 𝑋 ∉ 𝑬, and is the root

We have

𝒏𝑿 = {∅}

𝑃(𝑥|𝒏𝑿) = 𝑃(𝑥|∅) = 𝑃(𝑥)

3. 𝑋 ∉ 𝑬, and is not the root

We then consider 𝑋 to be the left child of 𝑍, and let 𝑇 be the

right child. 𝑁𝑋 = 𝑁𝑍 ∪ 𝐷𝑇 (the set of non-descendent is now the

set of non-descendent of the parent 𝑍, together with the set of

descendent of 𝑇 , since 𝑋 is only connected to 𝑇 through its

parent).

54

γ

γ π λ →

=

=

=

=

=

=

=

∑

∑

∑

∑

∑

∑

∑

(| |

(|) (|

(|) (|

(
(|)

) ,) (|)

)

,)

, |)
(

()
,)

) ()
|) ()

,)

(|) (|) (|)

(|) ()

(|
(

()(|)
(

()

z

T

z

z

z

z

z

Z

z

P x x

P x z P z

P x z P z

PP x z
P

P z P
P zP

z P z

z P z

P z P z

P x z

x z
P

z

P z P z

P x z z

x x x

x

z T

z T

z T

z z
T

z T

z T

n n

n

n

n

d

d
d

n
n

n

d

n d

d

n

n

Where the λ message in the last equality comes from

λ →

=

=

=

∑

∑

((

(

|)

()

| ,) (|)

|) (|)

t

T Z

t

P P

P

z

z z t P t z

t P t z

T T

T

d d

d

Since 𝑃(𝑥|𝒏𝑿) depends on values from 𝑇 and 𝑍 , we define

message

𝜋𝑍→𝑋(𝑧) = 𝜋(𝑧)𝜆𝑇→𝑍(𝑧)

And so

π π →=∝ ∑(| (|)) () ()Z X
z

P x P zx x zxn

55

3.4.2.2 Space and Time Complexity

Let

 𝑛 = the number of nodes in the tree

 𝑙 = number of values for a node

 𝑘 = number of children for a node

The resulting tree would have 𝑛 − 1 edges, and need to store at most 𝑙2 values in a

look up table for each pair of nodes (conditional variables), 2𝑙 values in two separate

1D arrays for the 𝜋 and 𝜆 values, and so the space complexity is given by 𝑂(𝑐𝑙2),

where 𝑐 is a constant.

The number of multiplications required to compute a variable's conditional probability

is 𝑙 to compute the 𝜋 messages and 𝑙2 to compute the 𝜆 messages, 𝑙2 to compute the 𝜋

values and 𝑘𝑙 to compute the 𝜆 values, giving us a running time complexity of 𝑂(𝑐𝑙2).

3.4.3 Beta Density

Up until now, we have assumed that the conditional probabilities are already given. In

classification problems, they often need to be learned from training data. When

learning from data, we can either learn from only user training data, or from only

expert opinion. Using the former, we obtain estimates of conditional probabilities

specific for a user, ignoring any general trends that may be exhibited by the general

population. And using the latter, we use trends exhibited by the general population,

56

and ignore specific input from the user. Here we look at ways to incorporate both our

prior belief of a conditional probability (maybe from what we have observed in the

general population), and a user's specific behavior (from the user's training data).

Beta density is a probability distribution. It allows us to start with a prior belief about

the value of a random variable, and then update this belief with new datasets. To show

some of its properties, we will provide a running example.

Suppose we have a binary data transmission channel that randomly assumes one of

100 states numbered 𝑛 = 1 𝑡𝑜 100 , each with 1/𝑛 chance of corrupting the

transmitted bit. Let 𝑋 be the outcome from a channel, and 𝐹 be the random variable

associated with 𝑛 (such that 𝑓 = 1 is associated with the 1st channel and so on). We

then have:

𝑃(𝑋 = 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 |𝐹 = 𝑓) = 𝑓

That is, if we know which channel state we are in (thus which 𝑓), then the probability

of receiving a corrupted bit is 𝑓.

Now consider that this is the very first time such a channel is used, then we are more

likely to set 𝐹 to uniform as there are no prior knowledge. Further consider the case

where one such channel has been used widely, and we see that the channel's state is

centered around 𝑛 = 10 (that is 𝑓 = 0.1). For both of these cases, we would want a

different distribution for 𝐹, and the Beta density family allows us to do that.

57

Definition 5: A beta density describes a binary random variable 𝑭 with

parameters 𝒂 and 𝒃, and has the form

− −Γ +
≤= − ≤

Γ Γ
(1) (1)() 1

(
(; ,) (1) ,

) ()
0a ba b f

a b
beta f a b f f

Where 𝜞(𝒙) is given by:

−∞ −Γ = ∫ (1) (

0

)() .x tx e dtt

Going back to the motivating example, note that 𝑏𝑒𝑡𝑎(𝑓; 1,1) is uniform, and

𝑏𝑒𝑡𝑎(𝑓; 5,45) is a bell curve centered around 0.1. Figure 6 shows both of these.

Figure 3.12: Uniform and non-uniform beta densities

58

Worth noting, is that the beta density centers around 𝑎
𝑎+𝑏

, and has its sharpness

associated with 𝑎 + 𝑏. Intuitively, 𝑎
𝑎+𝑏

 can be seen as the relative frequency of seeing

𝑎 occurring in 𝑎 + 𝑏 observations, and 𝑎 + 𝑏 shows how many samples we have taken

(thus how confident we are about the distribution of values around the center).

Now that the beta density is defined, we establish the relationship of 𝐹 and the

probability of error 𝑃(𝑋 = 1):

Theorem 2: Suppose we believe that given beta density,

(1|)P X f f= =

Then

𝑃(𝑋 = 1) = 𝐸[𝐹]

Proof:

= = =

=
=

∫
∫ 

1

0
1

0

(1) (1|) (; ,).

(; ,).
[]

P X P X f beta f a b df

f beta f a b df
E F

59

𝐸[𝐹] can then be evaluated through the integral:

Where the 2nd gamma function in line 4 comes from the definition of a beta function:

− −=
Γ Γ
Γ +

=

−∫ (1) (1)1

0
(,) (1) .

() ()
()

x yBeta x y
x y

t t dt

x y

And the last line comes from the following result:

−

∞ − −∞−

∞

= −

Γ + =

Γ
+

=

∫
∫

0

0
1

0

(1) .

.
()

[]

x t

x x t

x e dt

e t

t

t x t
x

e dt
x

The final result is that

𝑃(𝑋 = 1) = 𝐸[𝐹] =
𝑎

𝑎 + 𝑏

(1) (1)

1

0

1

0

0

()1 1

() (1) .
() ()

() (1) .
() ()

() (1) ()
() () (1 2)

() () ()
() ()

[] (; ,).

(())

a b

a b

a b f df
a b

a b f df
a b

a b a b
a b a b

a

E F f beta f a b df

f f

f

a
a b

a

b a b
a b

b

a

a

b

− −

−

Γ +
−

Γ Γ

Γ +
−

Γ Γ

Γ + Γ + Γ
Γ Γ Γ + − +

Γ + Γ Γ
Γ Γ Γ

=

=

=

=

=
+

=
+

+

∫

∫

∫



60

Intuitively, 𝐸[𝐹] can be thought as the prior belief of the probability of 𝑋, and we

want to start with this prior belief, and update it if the new set of data disagrees. For

example, if we believe the channel behaves with beta(f; 1,1), and after 20 transmission

there is a 90% error rate, then it is likely this is the wrong estimate for the current

channel, and our belief needs to be updated.

Theorem 3: Given a set of independent data 𝒕 = {𝒙𝟏, … ,𝒙𝒏}, let 𝒌 be the

number of times 𝒙𝒊 = 𝟏, let 𝒍 be the number of times 𝒙𝒊 = 𝟎. We can

update the original beta distribution to

(; ,)beta f a k b l+ +

Proof:

=

− −

+ − + −

Γ +
− −

Γ Γ

Γ +
−

Γ Γ

Γ + Γ

=

=

=

=

=
+ + +
+ Γ +

Γ Γ Γ

∫

∏∫

∫

∫

(1) (1)

(1) (1

1

0

1

0
1

1

)

0

1

0

|) (; ,).

()(1) (1) .
() ()

() (1) .
() ()

()

() (

() (

|) (; ,).

(

()
)

() ()

i

k l a b

N

a

i

k b l

f beta f a b df

a bf f

P t P t f beta f a b df

df
a b

a b f df
a b

a b a k b

P x

f f

f

a b
l

kb la

Where line 2 relies on the data samples being independent from each

other. From this, we further obtain

61

(1) (1)

(1) (1)

(1) (; ,)

()(1) (1)
() ()

(

(|) (; ,)(; , |)

)

()

()

()

(;

() ()
() ()

() (1)
() (

,)

)

k l

k l a b

a k b l

P f beta f a bbeta f a b
P

f
P

f f

a b k l

f

beta f

f beta f a b

a bf f
a b

a b a k b l
a b

a b k l

a k b l

f
a k b l

− −

+ − + −

−

Γ +
− −

Γ Γ
Γ + Γ

=

=

=

+
+ Γ +

Γ Γ Γ

Γ + + +
−

Γ

+ +

=

= + +

+ Γ +

tt
t

t

Figure 3.13 shows the result of this update on the running example of binary data

transmission.

Figure 3.13: Initial uniform beta function and the updated result

62

3.4.4 Dirichlet Density

Whereas all the analysis and examples above only apply to binary variables, Dirichlet

density applies to multi-nominal variables. The Dirichlet density is a multivariate

generalization of the Beta density, and is studied here. For a variable that takes on 𝑟

values, we have for the Dirichlet distribution with parameters 𝑎1, … 𝑎𝑟:

1(1

1

) (1)
1 1 1

(
,... 1; ,...) ... 1,

()

)
(,0r

i
a ai

r
i

i

r r r i i

i

f a a
a

dir f f f
a

ff− −

=

Γ
− = ≤ ≤

Γ

∑
∑

∏

Note that only 𝑟 − 1 number of 𝑓 are needed, as 𝑓𝑟 can be unique determined using:

1

1
1

r

i
r if f

−

=

= −∑

Figure 3.14 shows an example of a uniform Dirichlet (a) 𝐷𝑖𝑟(𝑓1,𝑓2; 2,2,2) and one

that tends towards 𝑓2 (b) with 𝐷𝑖𝑟(𝑓1,𝑓2; 2,4,2).

a. Uniform b.Dirichlet towards f2

Figure 3.14: Dirichlet functions

63

Following the beta density, Dirichlet density has similar properties regarding expected

values and updates:

1

][i
i

k

r

k

aE F
a

=

=

∑

And if

)(| i iP X i f f==

Then

()][iP X i E F= =

Also

1 1 1 1 1 1 1..., ...,(, ; , |) ..., ,(...,, ;)r r r r rDir f a Dir ff a f l la a− −= + +t

3.4.5 Augmented Bayesian Networks

An augmented Bayesian network is defined as [35]:

Definition 6: An augmented Bayesian network is a Bayesian network, with

the addition of:

1. For every node 𝑿𝒊 in the graph, there is an auxiliary parent

𝑭𝒊 and a density function 𝑷𝑭𝒊 . Each auxiliary parent is a

root, and must only contain an edge to the variable 𝑿𝒊.

64

2. For every node 𝑿𝒊, all values 𝒂𝒊 of the parents 𝑨𝒊 from the

original graph, and 𝒇𝒊 of 𝑭𝒊, there is a defined probability

distribution of 𝑿𝒊 conditioned on 𝒂𝒊 and 𝒇𝒊

For example, Figure 3.15 shows a two node Bayesian network (white) with its

augmented construction (auxiliary shaded). 𝐹1 is prior belief (beta density) for variable

node 𝑋1 (which has values 1 and 2), while 𝐹2,1 is the prior belief of node 𝑋2, given

𝑋1 = 1. Similarly 𝐹2,2 is the prior belief of 𝑋2 given 𝑋1 = 2.

Figure 3.15: Augmented Bayesian network

If we let all the auxiliary node take on beta densities (initialized to uniform), then a list

of all functions associated with this augmented BN is listed below (Table 3.3).

3.4.6 Bayesian Network Classifiers

We now have all the pieces required to develop a probabilistic classification system.

There are a number of main components for a complete probabilistic classification

system: 1) Features measured from raw data; 2) A set of class labels that can be

separated by features; 3) A model describing the relationship between class labels and

features; 4) A method for estimating the conditional probabilities from raw data; and 5)

65

An inference engine that queries a model for class label classifications, given an

observation of features. All of the theories derived above will be used to implement

these components.

Table 3.3: Beta densities associated with the augmented BN

Auxiliary nodes Uniform beta densities

1

2,1

2,2

;1,1)
(;1,1)
(;1,

(

1)
beta f
be f

a f

ta

bet

Conditionals in the augmented BN
1 1 1

2 2,1 2,1

2 2,2 2,2

1|)
1| 1,)

|

(

1 2,()
(

fP X
P

f
X f f
X f

X
P fX

= =
= = =
= = =

Conditionals in the underlying BN

With auxiliary removed

1

2 1

2 1

1) 1/2
(1) 1/

(1| 2) 1/2

2
(1|

P X

P X
P X X

X
= =

= = =

= =
=

Throughout this subsection, we use a running example of determining whether a

Tennis game has been played, through a number of weather parameters. It is a

common example, with raw data taken from the University of California, Irvine (UCI)

Machine learning database [36]. The data is summarized in Table 2.

66

Table 3.4: Example data summary

 Play = Yes Play = No

Outlook Sunny 2 3

Overcast 4 0

Rain 3 2

Temperature Hot 2 2

Mild 4 2

Cool 3 1

Humidity High 3 4

Normal 6 1

Wind Strong 3 3

Weak 6 2

Play 9 5

Components one and two are straightforward. First, features important for a topic of

interest are determined by experts. Here for example weather data such as sunlight,

wind strength etc are determined to be important for whether a tennis game goes ahead.

Then, the class labels are identified such that the topic of interest is cleanly separated.

For example whether the tennis game plays or not (yes, no are then the class labels).

The model we use to describe relationships between features and class labels is a

Bayesian network. Each feature is a node on the graph, and the class label is also

67

represented by a node. The conditional relationship between class node and feature

nodes are represented by directional arrows. If there are additional relationships

between the features, then they can also be linked by directional arrows. One of the

simplest models is the naive Bayes classifier, which assumes dependency between the

class label and each of the features, but considers features conditionally independent to

each other. Figure 3.16.a shows the running example represented by a naive Bayesian

model, while (b) shows one more complex model which introduces dependency

amongst the features.

a. Naive Bayes model b. Tree like structure

Figure 3.16: Bayesian models

Once we have a model, dependencies are set by edges and their directions. From this,

we can go back to the raw data, and estimate these necessary conditional probabilities.

Section 3.4.4 provides a way for us to incorporate both prior beliefs and user training

data. Our belief about an individual's behavior can be obtained from a general

population, and a generic Dirichlet density can be formed. This prior belief can then

be updated through an augmented Bayesian network once we have seen training

datasets from the user. In this running example, we may have the match playing and

68

weather statistics from tennis games across the country. This can serve as a prior belief,

if there is location specific data to a particular tennis arena, then we can update our

prior belief. Figure 3.17 shows an augmented BN of Figure 3.16.a, and Table 3.5

shows an example of this update by starting with uniform Dirichlet functions.

Figure 3.17: Augmented Bayesian network of Figure 3.16.a

Finally, given a model and required conditional probabilities, Pearl's message passing

algorithm presented in Section 3.4.2 allows us to infer the probability of our class

label being one of its values, given all the observed features. In our example, suppose

we observed evidences 𝒆:

𝒆 = {𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 𝑆𝑢𝑛𝑛𝑦,𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝐶𝑜𝑜𝑙,𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝐻𝑖𝑔ℎ,𝑊𝑖𝑛𝑑 =

𝑆𝑡𝑟𝑜𝑛𝑔}

then the class probabilities given by Pearl's MPA are

𝑃(𝑃𝑙𝑎𝑦 = 𝑌𝑒𝑠|𝒆) = 0.280 , or 0.205 without using augmented BN (no

Dirichlet density update)

69

𝑃(𝑃𝑙𝑎𝑦 = 𝑁𝑜|𝒆) = 0.720 , or 0.795 without using augmented BN (no

Dirichlet density update)

Table 3.5 Updated Dirichlet of Figure 3.17

Feature Updated Dirichlet

Wind 𝐷𝑖𝑟(𝑓1; 4,7)|𝑌𝑒𝑠

𝐷𝑖𝑟(𝑓1; 4,3)|𝑁𝑜

Humidity 𝐷𝑖𝑟(𝑓1; 4,7)|𝑌𝑒𝑠

𝐷𝑖𝑟(𝑓1; 5,2)|𝑁𝑜

Outlook 𝐷𝑖𝑟(𝑓1,𝑓2; 3,5,4)|𝑌𝑒𝑠

𝐷𝑖𝑟(𝑓1,𝑓2; 4,1,3)|𝑁𝑜

Temperature 𝐷𝑖𝑟(𝑓1,𝑓2; 3,5,4)|𝑌𝑒𝑠

𝐷𝑖𝑟(𝑓1,𝑓2; 3,3,2)|𝑁𝑜

Play 𝐷𝑖𝑟(𝑓1; 10,6)

We see that the results above are consistent with those obtained through probability

theory:

(|) (|) (|) (|) (|)
0.0035

P Yes P Sunny Yes P High Yes P Cool Yes P Strong Yes=
=

e

(|) (|) (|) (|) (|)
0.0206

P No P Sunny No P High No P Cool No P Strong No=
=

e

70

After normalization:

(|) 0.2046
(|) 0.7954

P Yes
P No

=
=

e
e

3.4.7 Implementation

Based on theories explored above, we implemented an activity classification system

that uses BN for modeling, augmented BN with Dirichlet densities for parameter

learning, and Pearl's MPA for inference. By using BN, we enable users to visualize

abstract features as nodes, and let them build complex structures modeling an

inference problem, based on their domain expertise. By using Dirichlet densities and

forming augmented BN for parameter learning, we further enable a user to input their

domain expertise in the form of prior knowledge. Finally by using Pearl's MPA, we

enable both speed and space efficient inference. The server side component (the main

classifier) implementation is described here, and the implementation of the model

maker is covered in Section 3.6.

3.4.7.1 Overview

The system's general workflow is described by Figure 3.18. When in training mode,

the untrained XML model generated by a domain expert client (Section 3.6) is used to

determine the parameters that need learning, and theses parameters are estimated from

the training data. The fully trained BN model is then saved as an XML document. In

live mode, a previously trained BN model is loaded, and observations are inserted into

71

the network as evidences. Carrying out Pearl's MPA will update the network to the

correct probabilities, and classification can be made.

Figure 3.18: BN server side architecture

Figure 3.19 shows the interfaces model.

Figure 3.19: BN server side interfaces model

72

3.4.7.2 Parameter Estimation

When training is conducted, the program needs to finds all conditionals of the graph.

This is done by carrying out a breadth first search (BFS) using algorithm listed in

algorithm 2.

Algorithm 2: Breadth First Search (BFS)

Input: tree
Output: a list of nodes in the order of visit from left to right, then top to
bottom

Initialize queue q, List marked
q.add(root)
mark root as visited (add to marked)
while q is not empty

x = q.leave
for each child of x

if child not marked (not in marked)
mark child
q.join(child)

return marked

Using these conditionals, the program then generates a list of uniform Dirichlet

densities, and updates them based on theories developed in Section 3.4.4. First, the

counts (l,k...) are determined from the raw data file received. Then, the densities are

updated. Finally, actual conditionals of each feature node is determined through 𝑎𝑖
∑ 𝑎𝑙𝑙

.

3.4.7.3 Inference

Once the training is complete, inference can be carried out in real time on the server.

The end-user client would go into live mode, and stream sensor data to the server.

Depending on the BN model prescribed, different features are derived from the data,

73

and Pearl's MPA is carried out by updating evidences (the observed feature values).

Results are then streamed back to the client.

3.4.8 Extension into Activity Classification, Discretization

The extension of a generic BN structural-wise into activity classification is

straightforward. There are two types of nodes, one is a class node containing activities

of interest, and the other is a feature node, containing feature derived from sensor data.

From there, the construction of a BN is no different to that discussed above.

In activity classification, almost all features are continuous. For example, the

distribution of standard deviation of acceleration along any particular axis is usually

considered Gaussian. This requires that a BN be constructed with continuous variables.

The inclusion of continuous variables as feature nodes is non-trivial, and is the topic of

this section.

While there are a number of theories extending Bayesian networks into the continuous

domain [37,38], they are usually limited in the distributions that can be used (Gaussian,

exponential), or the structure of the graph (e.g. must not have continuous parent with

discrete child). In this work, we have decided to employ a discretizer, and this section

describes our discretizer, and how to take into account a network's structure when

discretizing.

74

3.4.8.1 Equal Distance Discretizer

An equal distance discretizer is the simplest discretizer, but also brings the most

flexibility as it assumes no prior knowledge of the data or structure. The discretizer

starts by dividing a continuous data set into n number of bins with boundaries

1 1...[]nbb − , and data points belonging to each bin is replaced by the bin number instead

of their original continuous values. The two edge bins have range 1(],b−∞ and

1[,)nb − ∞ respectively. The result is a discrete variable whose value [1...]v n∈ .

3.4.8.2 Enhancing the Discretizer Output

A significant drawback with using a discretizer is that if there was not enough data,

then the output could contain empty bins. This could also occur if we have training

data that was unfortunate enough to have no data in a bin's range, or if there are too

many bins.

Figure 3.20: Discretizer output

75

As mentioned before, the distribution being discretized is the features. Figure 3.20

shows the result of discretization on the feature standard deviation in the horizontal

axis, and this dataset contains the activities standing, walking and running. It is clear

that the blue on the left in low bin number represents the samples for standing, as it

generates the least amount of variance on acceleration. The next two roughly Gaussian

shaped areas to the right are walking and running respectively.

It is also clear that bin 53 should contain samples relating to running, however there is

nothing in the output for that bin. This is because the data set unfortunately does not

contain any running sample that falls in that bin. When the BN is trained using this

data, it assigns zero probability to bin 53, and any subsequent query on the network

using that bin number produces a unknown result. From Figure 3.20, it can also be

seen that bin 53 is not very close to the tail, so in actual live environments there is a

fair chance that an observation of the feature would fall into that bin.

There are a number of solutions, the easiest of which is to increase training dataset

size. The longer a training dataset is, the less likely that a probable bin (for example

bin 53 in Figure 3.20) would be blank. However there is no upper bound on how long

a training set has to be, and users are not likely to accept long periods of training (for

example asking an end-user to run for 10+ minutes is often difficult).

We propose that by interpolating a zero bin with nearby bins, and filling it with

generated data, we can get around the problem of empty bins without requiring extra

training samples. Algorithm 3 and Figure 3.21 below demonstrate this idea.

76

Algorithm 3: Interpolation

Input: dataIn - discretizer output (array of integers, index is bin number,
element value is count)

Output: dataOut - enhanced discretizer ouput

Copy dataIn to dataCopy

For each zero count bin in dataIn with bin number x

Find nearest non-empty bin to the left, maximum 3 steps, assign steps
taken to steps, assign count to l, assign samples to s
Find nearest non-empty bin to the right, maximum 3 steps, add steps
taken to steps, assign count to r, add samples to s
new count for bin x is n = floor((l+r)/steps)

For each unique sample class present in s

generate m new samples of that class, m =
ceiling(count(class)/size(s) * n)

end for
end for

Figure 3.21: Enhanced discretizer output

77

Algorithm 3 requires that extra samples be generated, and this is also non-trivial in a

BN, as it is highly dependent on the structure. Consider the four possible scenarios in a

BN in Figure 3.22.

Figure 3.22: Possible node type combinations

In the case a discrete variable is the parent of a continuous variable (a), we generate

samples that would fill the empty bin on the continuous variable, whose parent

variable values are distributed in proportion to the distribution of neighboring bins

(see Figure 3.21 for an example). In the case of a continuous variable followed by a

continuous variable (d), both need to be interpolated. Similarly, the case of continuous

variable followed by discrete variable (b) can be filled by following case (a), and the

case of discrete variable followed by discrete variable does not need to be handled.

78

3.5 End-User Client

As per Section 2.4.1, the end-user client handles sensor instrumentation, scenario

training and then real time classification.

3.5.1 Sensor Instrumentation

Both inertial data and context data need to be collected by the end-user client. Context

data includes sound, time and wireless information, which can be obtained directly

from an Android device and require no additional sensor instrumentation. This section

deals with the instrumentation of external Bluetooth accelerometers for inertial data

collection.

3.5.1.1 Hardware

GCDC X6-2mini accelerometers are used in this study. It is a 3-axis accelerometer

with the following characteristics:

• ± 2/6g range

• 12/16 bit resolution

• 20 - 320Hz sample rate

• USB and SD card storage

They originally do not have Bluetooth logging capabilities, and so wireless capability

is obtained by soldering a RN-42 Bluetooth module [39] onto the serial debugging

port of the X6-2mini. The RN-42 chip supports RFCOMM communication, and the

79

X6-2mini serial port commands can be found in Appendix I. Figure 3.23 shows a

picture of the modified accelerometer.

Figure 3.23: Modified X6-2mini

3.5.1.2 Software

Based on the debugging console commands from Appendix I, the implemented

AirInterface outlined in Section 2.4.4 supports:

• Data logging

• Battery level check

• Bluetooth transmission on/off

Below is an example listing of the data being received, in the format of (relative time,

x, y, z):

0.317,-1189,-3392,2130
0.342,-2745,-5547,1496
0.367,-2720,-6395,1245
0.391,-1886,-6210,1161

80

The device reports relative timestamp since the start of sensor. Synchronization is

carried out by the controller, where a snapshot of all relative timestamps of every

sensor is taken at a specific time (t), and subsequent data are tracked with the time t

being zero reference. Sensor timing drift is avoided in the controller implementation

by re-synchronizing every n seconds. Figure 3.24 is a flow chart depicting the data

collection process.

Figure 3.24: Sensor instrumentation system flow chart

Most parts of the process is self explanatory, worth noting are the "Signal ready" and

"Wait for other interfaces and Processor" process. To synchronize the controller,

multiple AirInterfaces and the processor, our implementation uses a cyclic barrier. A

cyclic barrier is a multithreading control construct with the following behaviors:

81

1. Two operations are supported on a barrier: signal and wait

2. A cyclic barrier is initialized with a count

3. If a process signals the barrier, count decreases by 1

4. If a process waits at the barrier, it is allowed to proceed only after count

becomes 0

5. Once all processes waiting at the barrier clears, the count is reset to initialized

value (ready to be reused)

On the controller, there is a cyclic barrier initialized to the number of AirInterfaces + 2

(controller and processor). This allows all sub systems to periodically wait for each

other to arrive at certain parts of the process before proceeding onwards again.

As individual sensors can send data at up to 320Hz (f), the data processing rate

required to achieve buffer stability by the processor unit is:

28R fn=

Where f is the sampling frequency of the sensors, n is the number of sensors, and R

has unit bytes per second.

To provide as much headroom as possible, the processor implements a lookup table

like data structure with insertion time (1)O , at the expense of memory footprint

()O nft , where n is the number of sensors, f is the sample frequency, and t is the

number of seconds between re-sync. At every re-sync, the processor compiles the

82

table into InertialSensorData and notifies the upper layer with DataArrived. Table 3.6

shows an example constructed lookup table:

Table 3.6: Example lookup table

Time range Sensor 1 Data String Sensor 2 Data String

0 - 1/f -1189,-3392,2130 -1886,-6210,1161

2/f - 3/f -2745,-5547,1496 Missing

4 /f - 5/f -2720,-6395,1245 -1790,-4317,1308

3.5.1.3 Robustness

We observed a number of issues regarding sensor robustness in our experiments, and

present some of them here. Where applicable, solutions are given.

The first problem discovered is that the Bluetooth transmission is not reliable and can

deliver wrong control characters. This is especially problematic when the X6-2mini

uses single character control commands, as a command character can actually be

corrupted to another valid command. For example we have observed that d can be sent

as D, which instead of starting the stream, stops it. This problem is dealt with on two

levels. First, the AirInterface locks in a loop while trying to start a recording, this

means that if a d was mistaken for something else, another d is sent. Second, the

AirInterfaceMonitor tracks the incoming data stream, and senses when it has frozen.

The AirInterface is not capable of sensing this as it would be blocked on a read

83

operation due to stream errors, and since no data is coming the read will block

indefinitely. On sensing a frozen stream, the monitor restarts any recording that may

have been stopped due to erroneous commands, and also unblocks the AirInterface by

resetting the stream.

The second problem is corrupted and missing data. As each AirInterface is

independent of each other and do not keep track of time (the rationale for a simplest

possible design is presented in Section 2.4.4), they are not able to tell if a data line is

missing or invalid. The processor however, can detect missing data by looking at

empty slots on the buffer, and can detect bad data by doing a regular expression search

on the string [40]. The regular expression required for a validation a data line is:

\d+.\d+,{1}([-+]?\d+,?){3}

Missing and corrupted data points are marked, and are interpolated by the processor.

The interpolation method implemented is a simple repeat of the closest valid value.

The third problem observed is that re-synchronization can cause brief periods of data

loss. Consider a system with 3 sensors connected. If sensor 3 is lagging behind, then at

the end of a re-sync cycle while we are waiting for sensor 3, the other sensors are not

transmitting. This means that the data in this waiting period does not exist to the client.

The problem does not affect our system, as the recording requirements can tolerate

such a delay: 1) Training data requires a maximum of 5 minutes and Section 5.1.1 will

demonstrate that the time drift is minimum at 5 minutes (thus no re-sync is needed,

84

circumventing the problem); and 2) Live mode does not require classification

resolution up to the second scale, so a few seconds delay does not cause a problem.

We would like to note however that this problem could potentially be addressed by

using a second buffer to take over the extra data during the waiting time.

Last but not least, there is also the problem of sensors disconnecting. The monitor can

detect this by catching socket errors on the stream, and attempt to re-establish

connection. In the case of complete sensor failure, the upper layer is notified of

disconnection after 3 attempts of reconnection.

3.5.2 Scenario Training

When a person starts the client, he/she is first presented by a login screen (Figure

3.25.a). Once logged in, the client pulls a list of available scenarios, and displays them

to the user for selection (Figure 3.25.b). If the selected scenario is not trained, then the

client determines which classes (activities) are present (for example running, walking),

and guides the user through training each of the activities (Figure 3.25.c). For each

activity, a three minute session is recorded, and the data is posted back to the server

for training.

85

 a. Login b. Scenario selection c. Training screen d. Live screen

Figure 3.25: End-user client

3.5.3 Live Mode

If the selected scenario has been trained before, then a user is prompted with the

screen shown on Figure 3.25.d. Here the user only needs to press Start, and client will

automatically instrument the sensors, and send data back to the server every 4 seconds.

This means that a classification result would also be available every 4 seconds.

3.6 Domain Expert Client

The domain expert client is responsible for creating scenarios. Recall that a scenario is

made up of a number of contexts and activities, each with its own model. A domain

expert start by logging into the program as an expert (to gain the privilege of viewing

users and creating scenarios), as shown in Figure 3.26.

86

Figure 3.26: Login screen

The expert would then select a user (Figure 3.27), and add a scenario.

Figure 3.27: User selection

3.6.1 Context Model Generation

Context model generation is straightforward, an expert starts with the context name,

followed by selecting a list of prebuilt context features, and finish by pressing the add

context button (Figure 3.28).

87

Figure 3.28: Adding context

3.6.2 Activity Model Generation

This step requires an intuitive graphical interface that enables an expert to visualize

the nodes (features nodes and the class node), and make logical connections that are

later translated into conditions in the underlying BN. There is a prebuilt list of sensors

and features available to the domain expert client, and an expert would be able to pick

from this list.

An expert starts by selecting what activities are of interest, and a root node is formed

(Figure 3.29.a). From there, additional class nodes and feature nodes can be added

(Figure 3.29.b), links can be drawn (Figure 3.29.c) and removed (Figure 3.29.d). Once

finished, the model can be compiled and sent to the server (Figure 3.29.e). Because the

object graph is constructed using object oriented techniques, it can be saved directly

into a XML file through object serialization on the server.

88

a. Add root

b. Add features

89

c. Link nodes

d. Delete links or nodes (optional)

90

e. Compile and submit model

Figure 3.29: Adding activity model

91

Chapter 4

Data Collection

Apart from the data recorded wirelessly via Bluetooth, some data collection

campaigns conducted in the thesis study required offline data recording using the

standard X6-2mini. The data logging and labeling method that this thesis developed

for supporting these campaigns presents a significant advancement to the available

technologies currently used in the community. This chapter aims to provide a

description of the problems facing long data collection campaigns, and describe what

we developed to address them.

4.1 Problems

Data acquisition not only involves collecting sensor data and corresponding

annotations, but also includes post-processing analysis, where all annotations must be

matched with corresponding data. Only then are they ready to be used by classifiers.

While many studies in the area of activity classification provide detailed discussions

on classifiers and features, they do not address the variety of issues related to data

acquisition required for essential system training. Studies and practices have shown a

92

number of factors affecting data acquisition accuracy, ranging from end users being

severely inconvenienced by the equipment they have to carry, to users not being able

to record properly or meet the annotation demands using traditional pen and paper

approaches [40-43].

Another problem we observed in large measurement campaigns is that many time

references for events are recorded based on different clocks (watches, wall clocks etc),

depending on where the subject was at the time. These clocks are not synchronized,

and can be several minutes apart with each other, compared to the sensor system time.

This phenomenon dramatically reduces the effectiveness of the labeling process.

Interestingly, while the process of manually labeling long periods of activity data is a

time consuming exercise, given an already labeled dataset it is easy to verify that the

labels are correct, as the next Section demonstrates.

4.2 Context and Activity Data Acquisition and

Labeling System

We have designed and implemented a complete data acquisition and processing

system that includes voice recognition on an Android based client and a centralized

server-hosted labeling tool. Our system is developed against Android SDK version 2.2

and the target device may be any Android smartphone (we used an Archos 32 Internet

Tablet, which has support for wireless and audio recording).

93

The context and activity data acquisition system is displayed in Figure 4.1. While

collecting data, a user can hold down the "Hold to Speak" button and speak a

recognized context or activity label (a). Once it has been recognized, the "Start" button

can be used to either start an activity or context. While recording, the "Status" label

shows what are being recorded (b). If there is a context currently being recorded, then

an audio recording and a wireless scan is performed periodically. If there is an activity

being recorded, then there is a cumulative timer for that activity in the "Total Elapsed

Time" display (c). This is useful in tracking activities that takes a short amount of time

to complete, but must be repeated multiple times in order to gather enough data. For

example, stairs are usually short, so to record walking up stairs for 5 minutes would

require multiple attempts, and the total elapsed time can be used to see when 5

minutes of total recording is done.

To perform a data collection run, all sensors have their time synchronized to the phone.

For wireless sensors, this is done through wireless control commands from the phone,

and for non-interactive sensors this is done by synchronizing the sensors and the

phone with a computer. At the beginning of a recording, the user is required to first

bundle the sensors together, and shake them repeatedly while indicating to the logger

that a synchronization marker is in progress (say to the software "Sync"). Once sync is

performed, a user can carry out the data recording, using the application to make many

annotations necessary. At the end of the run, we have a toolkit that takes the recorded

data (merged into a MATLAB file) and annotation file (generated on the phone as

94

annotation.txt), automatically detect the synchronization time series in the data, and

align this to the sync marker from the annotations. From there, the entire sequence of

recording is labeled (Figure 4.2.b).

 a. Initial screen b. Speak keywords c. Logging in progress

Figure 4.1: Android data collection application

In Figure 4.2.b, black lines are the start of activities, and red lines are the end of

activities. We can see from Figure 4.2.a that manually labeling this 1.5 hour long

recording would be difficult (let alone a 10+ hour recording). However, to check that

the automatic labeling is correct, we can zoom into individual activities (Figure 4.3).

95

a. Import files

b. Label

Figure 4.2: Automatic labeling

96

Figure 4.3: Zoomed in waveform with label

Here the transition on the accelerometer waveform between the activities is clear, and

the black line is clearly at the correct location. Notice the red lines stop short of when

the actual activities end. This is because the person recording the data specifically

ended the annotation before he stopped performing the activity.

Now manual effort is only needed for quality checking. Compared to the process of

labeling a day-long dataset after the recording is done, this new process drastically

reduces the amount of time and effort required for organizing collected data (in our

system the labeling is done in three clicks). Using this system, we have a robust means

for supporting large campaigns, where users will be given a kit containing an Android

(or other smartphone) application and sensors. For activities where the subjects cannot

label data with hands (e.g. while in sports), a Bluetooth ear piece can be provided

(most current solutions require a second person to do the annotation).

97

Chapter 5

System Evaluation

System evaluation is done on a number of levels. First, core components are verified

individually to make sure that they are working correctly. Then the context guided

activity classification system as a whole is evaluated with real life data. This is

followed by evaluations of the performance of the activity classification system under

different conditions. Finally, limitations of the system are explored.

5.1 Verification

5.1.1 Wireless Sensor Instrumentation

For the wireless sensor instrumentation stack, we are interested in seeing that: 1) The

collected data streams are in sync and 2) There are no missing data. Figure 5.1 shows

a plot of instrumenting with two accelerometers.

98

Figure 5.1: Data recorded wirelessly

This is 5 minutes worth of data collected by leaving the sensors flat on a table, and

periodically flipping one of the axis (by placing the sensors upside-down). First, we

see that the two sensors are clearly in sync. Second, we see that there are no missing

data (the lines are bolded for better visual effects, missing and corrupt data show up as

holes).

5.1.2 Bayesian Networks Implementation

The implementation of the core BN on the server side is tested individually using a set

of test data from the University of California Irvine's Machine Learning Database [36].

99

Table 5.1 summarizes the datasets, while Table 5.2 compares our results against a well

known implementation of Bayesian networks from Waikato Environment for

Knowledge Analysis (WEKA) [44].

Table 5.1: UCI dataset description

Dataset Description

Lens A toy dataset that describes the type of lens a person wear based on a

number of physical factors.

monk-problems

[45]

A set of data generated by randomly permuting certain attributes to 0.

Letters A data set used for testing classifiers on their ability to recognize

English letters. Each letter is divided into sub areas and the pixel values

are recorded.

post-operative-

patient

A number of patients' vital signs were recorded in a hospital, and the

patients' destination ward was recorded as the class label (intensive care,

general ward, discharged).

solar-flares A number of solar flares were recorded, and they are classed based on

Zurich classes

weather (tennis) Another toy dataset that is commonly used by a number of text books.

This set describes the relationship between the tennis game going ahead

and some weather patterns.

100

Table 5.2: BN results

Dataset Instance #

(Train/Test)

Thesis

Toolbox

WEKA

BayesNet

Best

Known

Lens 24/24 95.83% 95.83% -

monk-problems 124/432 70.92% 71.29% 94% [45]

Letters 2000/18000 69.16% 64.17% 69.16%

post-operative-

patient
20/90 76.5% 76.67% -

solar-flares 50/273 72.11% 72.31% -

weather (tennis) 14/14 92.85% 92.85% -

We see that for most cases the performance is comparable between our toolkit and

WEKA. This is not surprising as we are also implementing a Bayesian network with

the same underlying principles. The minor differences are due to our system using the

Dirichlet density functions for parameter learning. For the monk problem, Bayesian

networks performed poorly compared to the best known result. This is because the

dataset is biased towards rule based classifiers (and from [45] we see that all the top

performers are indeed rule based classifiers).

101

5.2 System Results

5.2.1 Data Collections

We have two collections of results. The first collection contains both context and

activity data, and is used to evaluate the entire system. The second collection contains

only activity data, and is used to evaluate the performance of the activity classification

system under different conditions.

5.2.1.1 Data Collection 1

Table 5.3 lists all scenarios built for this experimental trial.

Data acquisition was performed as follows: three subjects carried an Archos Internet

Tablet and six Medical Daily Activity Wireless Network (MDAWN) devices. The

tablet supports our Android client, and the MDAWN devices were placed on wrists,

waist and ankles. The MDAWNs robustly provide trialaxial accelerometer data [46].

Each subject was asked to record two sets of data. The first set is for training the

classifiers, where subjects spent 30 minutes in each context, and performed every

required activity under that context for at least 5 minutes. The second set is for testing

purposes, and each subject spent over eight hours across the contexts, collecting all

data listed.

In total, we collected six full sets of training and testing data. This was sufficient for

developing and verifying the overall system, but more data would be needed for any

clinical inference and for optimization of features, classifiers and sensor selection.

102

Table 5.3: Context guided models

 Walking Running Walking Upstairs Walking Downstairs Sitting Standing Writing Eating

Outdoors X X X X

Cafeteria X X X X

Home X X X X X

Class X X X

Meeting X X X X

Bus X X

103

5.2.1.2 Data Collection 2

The second data collection was designed and carried out by the summer Center for

Embedded Networked Sensing (CENS) students, and a full description of their

collection methodology can be found in the report [47]. In summary, they used 14

sensors set at 160Hz sampling rate and recorded 14 different activities for 5 minutes

each. The list of activities and the sensor placements are reproduced here for

completeness.

Figure 5.2: Sensor placements

104

Table 5.4: List of activities

Motion Based Stationary

Walk slow Stand

Walk fast Sit upright

Run Sit while slouching

Walk up slope Sit while hunching

Walk down slope Lying on back

Walk upstairs Lying on stomach

Walk downstairs Lying on side

5.2.2 Context Classifiers

Our new context guided classification method includes the classifier committee

system, and experimental results directly demonstrate its effectiveness, in the presence

of complex classification challenges.

Table 5.5 summarizes the accuracies of the classifier committee and the individual

classifiers in the committee in percentage of correctly classified instances.

105

Table 5.5: Context classifiers

 AdaBoost (%) Time kNN (%) Wireless kNN (%) Committee (%)

Bus 80 59 29 80

Cafeteria 100 35 80 90

Class 80 87 89 95

Meeting 100 73 100 100

Outdoors 85 33 25 85

Home 100 100 100 100

We see that wireless kNN performs with insufficient accuracy for bus and outdoors. In

the bus context case, the sensor system detects a large number of wireless access

points that have not been incorporated into prior training due to the route of the bus. In

the outdoor context case, the system tends to detect access points that belong to one of

the contexts at nearby indoor locations. For example, walking near a building causes

the context to be classified as that of a context inside the building. Time KNN is also

not sufficiently accurate for a number of contexts, and this is due to the varied nature

when subjects visit these contexts. For example, subjects visited the cafe and outside

at different times of the day. AdaBoost using sound features seems to perform well for

all contexts, but we noticed some cases where a bus driving nearby causes a

misclassification. Figure 5.3 shows the AdaBoost error percentage vs the number of

106

iterations. We see that the error of classification reduces steadily as the number of

iterations increase.

Figure 5.3: AdaBoost error vs iterations

Clearly, this experimental evaluation provides a classification challenge for each

individual classifier. However, as shown in Table 5.6, by combining the best of all

classifiers, our committee is able to achieve high accuracy for all contexts.

While the final system used the committee shown above, we also surveyed DTT, ANN

and SVM. We will present the results for these below. Table 5.6 shows the results for

DTT. We tested 108 samples from all 6 contexts.

Table 5.6: Accuracy of DTT

Context Cafeteria Class Outdoors Meeting Bus Home Overall

Accuracy (%) 100 100 41 77 41 100 90.70

107

The ANN classifier we implemented was not able to produce a result, due to the

disconnected nature of the wireless features.

We also implemented a C-SVM model for context detection, based on libSVM

developed by Chang [48]. Table 5.7 shows the results for SVM, this classifier is used

only for sound features as wireless features cannot be used on the SVM. We see that

the SVM classifier classifies many other classes into outdoors. This caused the

outdoors accuracy to be very high where as the other classes have low accuracy.

Table 5.7: Accuracy of SVM

Context Cafeteria Class Outdoors Meeting Bus Home Overall

Accuracy (%) 67 30 100 79 67 Missing 67.60

5.2.3 Context Guided Activity Classification

A critical benefit of context guided classification is a direct improvement in accuracy

for each classifier. This is also demonstrated by experimental results here.

Results are broken down by context. The "Generic" column shows results from a

standard classification system with all activities built in. The data in the column are

produced using UCLA's Wireless Health Signal Processing Toolkit (WHSPT), a

hierarchical Naive Bayes classification tool [49]. The "Specific" column shows

accuracy from context guided classifiers. The "Confusion" column shows the top

confusion matrix entries.

108

Table 5.8: Results for bus

Bus

 Generic (%) Confusion (%) Specific (%) Confusion (%) Improve (%)

Sitting 95.94 Eating (2.2) 100 None 4

Standing 81.29 Sitting (13.67) 86.33 Sitting (13.66) 6

Table 5.9: Results for outdoors

Outdoors

 Generic (%) Confusion (%) Specific (%) Confusion (%) Improve (%)

Walking 99.29 Running (0.71) 99.29 Running (0.71) 0

Running 95.79 Walking (4.21) 95.79 Walking (4.21) 0

Walking downstairs 90.47 Walking upstairs (9.53) 90.47 Walking upstairs (9.53) 0

Walking upstairs 97.3 Walking downstairs (2.7) 97.3 Walking downstairs (2.7) 0

109

Table 5.10: Results for cafeteria

Cafeteria

 Generic (%) Confusion (%) Specific (%) Confusion (%) Improve (%)

Standing 96.91 Eating (2.1) 98.97 Eating (1.03) 2

Walking 84.81 Walking downstairs (13.02) 100 None 17

Eating 1 Sitting (96.5) 1.29 Sitting (98.71) 29

Sitting 100 None 100 None 0

Table 5.11: Results for meeting

Meeting

 Generic (%) Confusion (%) Specific (%) Confusion (%) Improve (%)

Sitting 91.67 Writing (5.1) 100 None 9

Walking 97.83 Walking upstairs (2.17) 100 None 2

Writing 2.5 Sitting (97.5) 69.62 Sitting (30.38) 26.84 times

Standing 96.84 Eating (3.16) 100 None 3

110

Table 5.12: Results for home

Home

 Generic (%) Confusion (%) Specific (%) Confusion (%) Improve (%)

Sitting 100 None 100 None 0

Standing 94.12 Eating (5.88) 100 None 6

Walking 98.47 Walking upstairs

(0.8)

96.95 Walking upstairs (3.05) -1

Walking downstairs 100 None 100 None 0

Walking upstairs 96.61 Walking downstairs (3.39) 96.61 Walking downstairs (3.39) 0

Table 5.13: Results for class

Class

 Generic (%) Confusion (%) Specific (%) Confusion (%) Improve (%)

Walking 98.56 Walking downstairs (1.44) 100 None 1

Sitting 87.33 Eating (11.76) 71.04 Writing (28.96) -20

Writing 3.66 Sitting (95.81) 79.41 Sitting (20.59) 20.7 times

111

We see that in most cases there exists some increase in classification accuracy. This is

from the context specific models with reduced number of classes and features. In the case

of writing, we are able to see a large increase in accuracy, from being practically

impossible (less than 5% accuracy) to decent accuracy (70%). In the case of eating, we

are seeing an improvement, but the overall accuracy is still very low. We believe that this

is due to inappropriate feature choice, and further testing can be conducted. We note that

under the class context, there is a decrease in accuracy for sitting, however the trade off

here is that we are now able to classify writing with almost 80% accuracy. By using a

different feature or tree structure, we may be able to stop the decrease for sitting.

5.2.4 Classification Speed Increase

Table 5.14 shows the speed increase we are able to achieve. We see that in all cases there

is a significant increase in classification speed. This allowed us to construct an online

classification system capable of running in real time. To demonstrate the effectiveness

with multiple users, the results in the "Specific" column is averaged using time measured

from 5 simultaneous users on the classification system. The "Generic" column is obtained

again from the WHISPT.

5.2.5 Context Guided Classification Energy Usage

Context guided classification can also offers the capability for selecting optimal sensors

and schedules for energy and operating lifetime benefits. This also permits a minimum

number of sensor systems to be selected (for user convenience) while maintaining

classification accuracy.

112

Table 5.14: Speed increase using context

 Generic (s) Specific (s) Improve (# of times)

Bus 0.119 0.013 9.2x

Café 0.120 0.019 6.3x

Class 0.122 0.021 5.8x

Meeting 0.127 0.024 5.3x

Outside 0.128 0.022 5.8x

Home 0.119 0.021 5.7x

Based on models constructed, we produced the sensor requirement chart in Table 5.15.

Blank cells indicate that a sensor can be safely turned off without affecting the accuracy

for a given context. For example, in the case of "Bus" (Table 5.3), only the left waist

sensor is required as we are only interested in monitoring two activities, and the waist

sensor alone is enough to identify them.

Using this chart, a sensor policy selector can determine which sensors to shut down. To

estimate the potential for energy reduction, our analyses are directed to determining the

improvement in operation time by adopting sensor activation and sampling schedules, as

determined by context. The analysis was performed offline using manual calculations.

To indicate the operating time improvement over a range of subject behaviors, two cases

were taken as examples, a graduate student subject and a subject remaining in a

residential household. The typical profiles of their daily life are shown in Figure 5.4.a,

113

and the total operating time using continuous sensor system usage, in comparison to

context guided sensor usage, is shown in Figure 5.4.b.

Table 5.15: Sensor requirement

 Left Ankle Right Ankle Left Waist Right Waist Left Wrist Right Wrist

Bus X

Cafeteria X X X X X

Class X X X

Meeting X X X

Outdoors X X X X

Home X X X

Figure 5.4: User profiles and their battery life comparison

a. User profiles b. Battery life comparison

114

5.2.6 Effect of Discretizer on Bayesian Networks Classification

Accuracy

The enhanced discretizer described in Section 3.4.8 affects the training phase of a BN,

and thus the classification results. There are two parameters in the discretizer that would

affect training: 1) Number of bins used and 2) Whether interpolation is used. In this

analysis, 10 datasets were used (from collection 2) with classes walking slow, walking

fast, walking up, walking down, running and standing. Figure 5.5 shows the average

accuracy achieved with different parameters.

Figure 5.5: Average accuracy vs number of bins used

115

There are a number of observations. First, the maximum accuracy of the BN is not as

high as the Naive Bayes classifier with continuous variables. This is because some

observations on the testing set falls in the tails of the distribution, which in the BN are

empty bins with zero probability. These observations have small probability in the naive

Bayes method through integration of Gaussian, which is enough to make a correct

classification.

Second, the accuracy of the BN decreases with an increase of the number of bins used.

This is because as more bins are used, there are less number of samples per bin, and more

and more bins become empty. At very high bin numbers (such as 200), clusters of bins

where each activity is located only have few elements in them, with holes (blank bins)

frequently appearing. While interpolation is able to fill in many of them, there are some

that cannot be corrected.

Third, the accuracy seems very good at low bin numbers. As long as the distributions of

the features for each class are roughly Gaussian, have sharp fall offs (low variance) and

do not overlap each other, very low number of bins can capture the clusters very well.

Finally, we see that interpolation plays a significant role when the bin number increases.

This is because more and more holes are being created, and without the interpolation to

bridge the gap, these blank bins translate into zero probability during training, and

subsequently produce unknown results during classification.

116

5.3 Limitations of Discretized Bayesian Networks

Through the work carried out in this thesis, we note a significant limitation of discretized

BN. The discretized BN is more susceptible to feature distribution shifts than a classifier

that works with continuous variables (such as Naive Bayes). While both cannot deal with

significant shifts very well, the BN is much more sensitive to small shifts. This is because

while a small shift translates in to smaller probability on the Naive Bayes classifier (as

the probability is computed through an integration of the Gaussian tail), on a discretized

BN it translates into some observations falling on an empty bin, which are classified as

unknown.

117

Chapter 6

Conclusion

6.1 Conclusion

Activity monitoring appears as a critical need and valuable source of disease intervention

and guidance in healthcare, personal health and wellness promotion, workplace safety,

and athletics. In this thesis, we have described the design, implementation, and

comprehensive evaluation of a novel end-to-end system that integrates context into

activity classification.

On the architecture level, we first presented a refined definition of context, and a

classification committee approach for detecting context of diverse forms. We then

described how to interface with wireless sensors, and how any current classification

system can take advantage of the new context guided architecture through the concept of

a context guided classifier. Finally, we described the potential for real time classification

through the use of servers and clients that exploit smartphone technologies. The

architecture also employs an interface model, consequently providing great flexibility in

the rapid implementation and integration of subsystems.

118

We also presented a realization of the above context guided classification system, where

an Android client data collection application was able to solve issues relating to robust

data acquisition and large campaign support. For the core system, AdaBoost, kNN and

Bayesian network classifiers were all used for context detection and activity classification,

demonstrating the inherent system flexibility. This has also demonstrated the important

capability our system provides in enabling a matching of classifier systems to

applications and the capability for the classification committee to properly combine these

for optimization of classification accuracy.

Finally, through a series of experimental field evaluations sampling each of the diverse

context examples and activities in multiple episodes by multiple subjects, the critical

benefits of this system were demonstrated. First, it was demonstrated that context guided

classification has enabled a substantial advance in classification accuracy for many

activities including upper body motion. Second, it has been demonstrated that context

guided classification offers a computational throughput advance that may be exploited for

benefits including the support of real time, high accuracy classification. Finally, it was

also demonstrated that the context classification capability can be applied to control the

activation and selection of sensors. This benefit will be exploited in the immediate future

to enable substantial operating lifetime extension for critical applications.

119

6.2 Future Work

We end the thesis with some future directions. First, throughout the thesis, we

consistently felt the need for a standard activity recording database. Many groups work

on the problem of activity classification, but every group uses their own sets of data, and

often time little is known about how the data was collected, and how accurate the

activities were.

Second, most current researches (including the research behind this thesis) take activities

of interest from the list of activities of daily living (ADL). The definition of many

activities such as walking, running, grasping are arbitrary, and different groups have

different definitions. We believe that by finding a formal framework that could model

motions, we can provide a unified way to define activities. This could also be the basis of

a different type of classification method.

Lastly, we would like to carry out large clinical trials using the system described in this

thesis, and produce some comprehensive results.

120

Appendix I

GCDC X6-2mini Serial Port Debugging
Commands

Command Reference

'c' configuration

's' status

't' yyy-mm-dd hh:mm:ss' - set time

'P' Power off

'x' software reset

'v' Version information

'r/R' turn On/Off data Recording

'd/D' diagnostics On/Off

'+/-' double/halve sample rate

'm/M' microResolutionr On/Off

121

'u/U' resolUtion 12/16 bits

'g/G' gain 2/6 g

'f/F' filter On

122

References

[1] B. H. Dobkin, X. Xu., M. Batalin, S. Thomas, and W. J. Kaiser, Accelerometry
algorithms for activity recognition. Stroke, 2011 (in press).

[2] W.H. Wu, M.A. Batalin, L.K. Au, A.A.T. Bui, and W.J. Kaiser. Context-aware
sensing of physiological signals. In Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pp. 5271-5275, 2007.

[3] M. F. Gordon. Physical Activity and Exercise Recommendations for Stroke
Survivors. Stroke, pp. 1230-1240, 2004.

[4] B. Logan and J. Healey. Sensors to Detect the Activities of Daily Living. In
Engineering in Medicine and Biology, pp. 5362-5365, 2006.

[5] M. Philipose, K.P. Fishkin, M. Perkowitz, D.J. Patterson, D. Fox, H. Kautz, and D.
Hahnel. Inferring activities from interactions with objects. Pervasive Computing,
IEEE, vol. 3, pp. 50-57, 2004.

[6] C. Doukas and I. Maglogiannis. Enabling human status awareness in assistive
environments based on advanced sound and motion data classification. In
Proceedings of the 1st ACM international conference on Pervasive Technologies
Related to Assistive Environments PETRA 08, pp. 1, 2008.

[7] D. A. James, N. Davey, and T. Rice. An accelerometer based sensor platform for
insitu elite athlete performance analysis. In Proceedings of IEEE Sensors 2004,
IEEE, vol. 3, pp. 1373-1376, 2004.

[8] S. T. Scott, and L. Jonathan. iLearn on iPhone: Real-time human activity
classification on commodity mobile phones.
http://www.cs.washington.edu/homes/jlester/publications/UW-CSE-08-04-02.pdf,
2008.

[9] K. Van Laerhoven, A. Schmidt, and H. W. Gellersen. Multi-sensor context aware
clothing. In Proceedings Sixth International Symposium on Wearable Computers,
pp. 49-56, 2002.

123

[10] L. Han, S. Jyri, J. Ma, and K. Yu. Research on Context-Aware Mobile Computing.
In 22nd International Conference on Advanced Information Networking and
Applications Workshops 2008, pp. 24-30, 2008.

[11] A. Schmidt, M. Beigl, and H. Hans-W. There is more to context than location.
Computers and Graphics, vol. 23, pp. 893-901, 1999.

[12] D. Siewiorek, A. Smailagic, J. Furukawa, A. Krause, N. Moraveji, K. Reiger, and J.
Shaffer. SenSay: a context-aware mobile phone, In 7th IEEE International
Symposium on Wearable Computers, IEEE, 2005.

[13] A. K. Dey. Understanding and Using Context. Personal and Ubiquitous Computing,
vol. 5, pp. 4-7, 2001.

[14] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger and J. Altmann. Context-
awareness on mobile devices: the hydrogen approach. In Proceedings of the 36th
Annual Hawaii International Conference on System Sciences, pp. 292-302, 2002.

[15] P. Prekop, and M. Burnett. Activities, context and ubiquitous computing. Special
Issue on Ubiquitous Computing Computer Communications, vol.26, pp. 1168-1176,
2003.

[16] Monash University, "CSE5230 Tutorial: The Naive Bayes Classifier", Online:
http://www.csse.monash.edu.au/courseware/cse5230/2004/assets/naivebayesTute.p
df, [August 17 2011].

[17] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional, 1994.

[18] E. Curry, D. Chambers, and G. Lyons. Extending Message-Oriented Middleware
using Interception. In Proc. of the 3rd Int. Workshop on Distributed Event-Based
Systems, 2004.

[19] Y. C. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm. Accuracy characterization
for metropolitan-scale Wi-Fi localization. ACM, pp. 233-245, 2005.

[20] D. Nene. "Performance Comparison -
C++/Java/Python/Ruby/Jython/JRuby/Groovy", Online:
http://blog.dhananjaynene.com/2008/07/performance-comparison-c-java-python-
ruby-jython-jruby-groovy/ [August 10, 2011].

124

[21] Nokia Corporation, "Qt", Online: http://qt.nokia.com/products/ [August 11, 2011].

[22] Oracle Corporation, "Serializable (Java 2 Platform SE v1.4.2)", Online:
http://download.oracle.com/javase/1.4.2/docs/api/java/io/Serializable.html [August
11, 2011].

[23] Oracle Corporation, "Map (Java 2 Platform SE v1.4.2)", Online:
http://download.oracle.com/javase/1.4.2/docs/api/java/util/Map.html [August 11,
2011].

[24] N. Garcia-Pedrajas and D. Ortiz-Boyer, “Boosting k-nearest neighbor classifier by
means of input space projection”, Expert Systems with Applications, vol. 36, pp.
10570-10582. 2009.

[25] T.K.C. Neo, “A Direct Boosting Algorithm for the K-nearest Neighbor Classifier
Via Local Warping of the Distance Metric”, Brigham Young University, 2007.

[26] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition (Morgan Kaufmann Series in Data Management
Systems), Morgan Kaufmann, 2005.

[27] Y. Freund, R.E. Schapire, and P. Avenue, “A Short Introduction to Boosting”,
Society, vol. 14, 1999, pp. 771-780.

[28] R. Meir, “An introduction to boosting and leveraging,” Advanced lectures on
machine learning, 2003, p. 118?183.

[29] R.E. Schapire, P. Avenue, and R. A, “The Boosting Approach to Machine Learning
An Overview,” 2003, pp. 1-23.

[30] R.E. Schapire, P. Avenue, and R. A, “The Boosting Approach to Machine Learning
An Overview,” 2003, pp. 1-23.

[31] R.E. Schapire and Y. Singer, “Improved Boosting Algorithms Using Confidence-
rated Predictions”, Machine Learning, vol. 37, Dec. 1999, pp. 297-336.

[32] Y. Sun, RNA: Reusable Neuron Architecture for on-chip electrocardiogram
classification and machine learning, Master Thesis in University of Pittsburgh, 2010

125

[33] R. Beale and T. Jackson, Neural Computing - An Introduction, Institute of Physics
Publishing, 1990.

[34] J. Pearl, Reverend Bayes on Inference Engines: A Distributed Hierarchical
Approach, Association for Advancement of Artificial Intelligence Conference 82,
1982.

[35] J. Noble and T. Koski, Bayesian Networks: An Introduction, John Wiley and Sons,
2009.

[36] A. Frank and A. Asuncion, "UCI Machine Learning Repository", Online:
http://archive.ics.uci.edu/ml, [August 17 2011].

[37] S.L. Lauritzen and F. Jensen, Stable Local Computation with Conditional Gaussian
Distributions, Statistics and Computing, vol. 11, no. 2, pp. 191-203, 2001.

[38] B.R. Cobb and P.P. Shenoy, Inference in Hybrid Bayesian Networks with Mixtures
of Truncated Exponentials, International Journal of Approximate Reasoning, vol.
41, 2006.

[39] Roving Networks, "RN-42", Online: http://www.rovingnetworks.com/rn-42.php
[August 12, 2011].

[40] J.E.F. Friedl, Mastering Regular Expressions, O'Reilly Media, 1997.

[41] S. Pirttikangas, K. Fujinami, and S. Hosio. Experiences on Data Collection Tools
for Wearable and Ubiquitous Computing, In 2008 International Symposium on
Applications and the Internet, IEEE, 2008.

[42] S. Patnaik, E. Brunskill, and W. Thies. Evaluating the accuracy of data collection
on mobile phones: A study of forms, SMS, and voice. In 2009 International
Conference on Information and Communication Technologies and Development
ICTD, pp. 74-84, 2009.

[43] S. J. Lane, N. M. Heddle, E. Arnold, and I. Walker. A review of randomized
controlled trials comparing the effectiveness of hand held computers with paper
methods for data collection, BMC medical informatics and decision making, vol. 6,
pp. 23, 2006.

126

[44] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten, The
WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol. 11,
2009.

[45] J. Wnek and R. S. Michalski, Comparing Symbolic and Sub symbolic Learning:
Three Studies, Machine Learning: A Multistrategy Approach, Vol. 4., R.S.
Michalski and G. Tecuci (Eds.), Morgan Kaufmann, 1993.

[46] X. Xu, M. A. Batalin, W.J. Kaiser, and B. Dobkin. Robust Hierarchical System for
Classification of Complex Human Mobility Characteristics in the Presence of
Neurological Disorders, In Body Sensor Network, 2011

[47] A.H. Khan, Data Collection Prompt 4, CENS, 2011.

[48] C. Chang and C. Lin, “LibSVM: a library for support vector machines,” 2001.

[49] J. Y. Xu, Z. Wang, S. Yuwen, G. J. Pottie and W. J. Kaiser, Context Guided
Personalized Activity Classification System with Real Time End-to-End Web
Implementation, Wireless Health 2011, accepted.

	Table of Contents
	List of Figures
	List of Tables
	Chapter 1
	Introduction
	1.1 Background
	1.2 Aim, Objectives and Contributions
	1.3 Related Work

	Chapter 2
	System Design
	2.1 Context
	2.2 Scenario
	2.3 High Level Description
	2.4 System Architecture
	2.4.1 Client Server Architecture
	2.4.2 Object Oriented Architecture
	2.4.3 Message Oriented Architecture
	2.4.4 Sensor Instrumentation

	2.5 Context Detection
	2.6 Context Guided Activity Classification
	2.7 Sensor Control
	2.8 Modes of Operation
	2.9 Example Scenarios

	Chapter 3
	Implementation
	3.1 Language and Framework Choices
	3.2 Server Implementation
	3.2.1 Object Serialization and Transfer through Network
	3.2.2 User and Scenario Management
	3.2.3 Core Classification Components
	3.2.4 List of Messages

	3.3 Context Detection
	3.3.1 KNN
	3.3.2 AdaBoost
	3.3.3 SVM
	3.3.4 Decision Table Tree
	3.3.5 Artificial Neural Networks
	3.3.6 Features and Classifier Choice

	3.4 Activity Classification - Bayesian Networks
	3.4.1 Graphical Models and Bayesian Networks
	3.4.1.1 Theory
	3.4.1.2 Benefits

	3.4.2 Pearl's Message Passing Algorithm
	3.4.2.1 Algorithm
	3.4.2.2 Space and Time Complexity

	3.4.3 Beta Density
	3.4.4 Dirichlet Density
	3.4.5 Augmented Bayesian Networks
	3.4.6 Bayesian Network Classifiers
	3.4.7 Implementation
	3.4.7.1 Overview
	3.4.7.2 Parameter Estimation
	3.4.7.3 Inference

	3.4.8 Extension into Activity Classification, Discretization
	3.4.8.1 Equal Distance Discretizer
	3.4.8.2 Enhancing the Discretizer Output

	3.5 End-User Client
	3.5.1 Sensor Instrumentation
	3.5.1.1 Hardware
	3.5.1.2 Software
	3.5.1.3 Robustness

	3.5.2 Scenario Training
	3.5.3 Live Mode

	3.6 Domain Expert Client
	3.6.1 Context Model Generation
	3.6.2 Activity Model Generation

	Chapter 4
	Data Collection
	4.1 Problems
	4.2 Context and Activity Data Acquisition and Labeling System

	Chapter 5
	System Evaluation
	5.1 Verification
	5.1.1 Wireless Sensor Instrumentation
	5.1.2 Bayesian Networks Implementation

	5.2 System Results
	5.2.1 Data Collections
	5.2.1.1 Data Collection 1
	5.2.1.2 Data Collection 2

	5.2.2 Context Classifiers
	5.2.3 Context Guided Activity Classification
	5.2.4 Classification Speed Increase
	5.2.5 Context Guided Classification Energy Usage
	5.2.6 Effect of Discretizer on Bayesian Networks Classification Accuracy

	5.3 Limitations of Discretized Bayesian Networks

	Chapter 6
	Conclusion
	6.1 Conclusion
	6.2 Future Work

	Appendix I
	GCDC X6-2mini Serial Port Debugging Commands
	References

