
UNIVERSITY OF CALIFORNIA

Los Angeles

Scheduling for Energy Aware Wireless Sensor Applications

A thesis submitted in partial satisfaction

of the requirements for the degree Master of Science

in Electrical Engineering

by

Sridhar Sesha Vemuri

2004

 2

The thesis of Sridhar Sesha Vemuri is approved.

 William J. Kaiser

 Kung Yao

 Gregory J. Pottie, Committee Chair

University of California, Los Angeles

2004

 3

To my parents…

who worked so hard all their lives

to see their children do well…

I hope I fulfilled a part of their dreams.

 4

TABLE OF CONTENTS

1. Introduction . 13

1.1 A Brief Overview on Sensor Platform Requirements 13

1.2 The Wireless Sensor Architectures . 14

1.2.1 Previous Architectures . 14

1.2.2 Our Proposed Architecture . 16

1.3 An Overview of Scheduling . 17

 1.3.1 Kinds of Scheduling in Research . 17

 1.3.2 Our Scheduling Approach and Requirements . 19

 1.4 Outline of the Thesis . 21

2. Smart Objects Platform and Scheduling Overview 23

2.1 Platform Description and Typical Application Suite 23

2.2 Scheduler Algorithm Stages . 24

2.2.1 Registration . 24

2.2.2 Optimization for a Static Scheduling Scenario 26

 2.2.2.a Theoretical Details . 26

 2.2.2.b A Heuristic Approach for a 2-application Scenario 27

2.3 A Brief Overview of Dynamic Scheduling . 29

2.4 The Communication Interface . 31

 2.4.1 Description of the Scheduler Matrix . 32

3. Scheduling for Multiple Applications . 34

3.1 A Generalized Approach . 34

3.2 Kinds of Multi-application Scheduling . 36

 3.2.1 The Exhaustive Approach . 36

 3.2.2 The Hierarchical approach . 36

 5

3.3 The Exhaustive Approach for Scheduling . 37

 3.3.1 Registration for Multiple Applications . 37

 3.3.2 Description of the Exhaustive Function . 39

3.4 Details of the Energy Measurement Function 42

 3.4.1 The Table Description . 42

 3.4.2 The Energy Management Scheme . 43

 3.4.3 The Components of the Energy Function . 44

3.5 Factors Affecting the Exhaustive Search . 46

 3.5.1 Earliest Instance Scaling . 46

 3.5.2 Tolerance Scaling . 46

4. Results from Scheduler Simulations 49

4.1 Test Vector Analysis . 49

 4.2 Histogram Analysis of the Scheduler Algorithm 53

 4.3 The Working of the Scheduler with the Interface 54

 4.4 Analysis of the Results for a 4-application Case 57

4.4.a Simulation that Demonstrates a Two-Fold Improvement 58

4.4.b Simulation that Demonstrates a Three-Fold Improvement 60

 4.5 Discussion of Further Possible Test Capabilities 63

 4.5.1 Scheduling for a General Set of Duty Cycles 63

 4.5.2 Scheduling for Applications with a Definite Dependency 64

5. Conclusion and Future Work . 65

5.1 Conclusion . . . 65

 5.2 Future Work . 67

 Bibliography . 69

 6

 LIST OF FIGURES

1.1 Smart Objects Platform . 17

2.1 Registration stage of the Application set . 25

2.2 Static Scheduling for a 2-application Scenario . 28

3.1 Optimization Stage for Multiple Applications . 38

3.2 Flowchart of The Exhaustive Loop . 40

4.1.a Scheduling for the Betas=0 Case . 51

4.1.b Scheduling for the Betas=1 Case . 51

4.2 Histogram of Range of Energy Values . 53

4.3 Power Comparison of Platform vs. Simulation . 55

4.4 Energy Savings Plot for the 1
st
 Simulation . 58

4.5 Energy Savings Plot for the 2
nd
 Simulation . 60

 7

LIST OF TABLES

2.1 Description of the hardware bits of the tabular matrix 33

4.1 Application Parameters for the Test Vectors . 50

4.2 Hardware Resource Parameters for the Test Vectors 50

4.3 Energy Comparison Between Simulations and Hand Calculations 52

4.4 Granularity Scaling Factors and Energy Values for the 1st Simulation 59

4.5 Granularity Scaling Factors and Energy Values for the 2nd Simulation . . . 61

 8

Acknowledgements

I would first express my most sincere gratitude to Dr. Gregory J. Pottie for considering

me eligible to be a part of his research group at UCLA. I started my work in the summer

of 2002, just to get acclimatized to the nature of the research and to the attributes needed

to deal with various challenges. Dr. Pottie has an amazing temperament and approach to

his research group (especially to newcomers) and I personally feel that it worked out

great for me. He gave me all the freedom and time to explore previous research works,

digress into unknown and unrelated fields and even to take it easy when under course

pressure. My coursework and research were in two unrelated areas so that kind of a

support was the most I could have hoped. His insight in my field of research and his

invaluable help and suggestions made it possible to finish my thesis work. It cannot be

emphasized enough the amount of patience and understanding he displayed whenever I

interacted with him. In short, his mentorship propelled me to a great extent and I thank

him sincerely for the faith he had in my abilities in addition to the financial assistance.

Dr.William Kaiser had been equally responsible in ensuring that my research work

progressed consistently despite constraints related to implementation issues and research

requirements. Despite his busy schedules and the fact that he mentored in many areas in

his research group, he always made time to listen and appreciate what our team had to

offer. In my observation, all the students who work under him enjoy two things

thoroughly- his keenness to understand what you have to offer and more importantly, his

words of encouragement irrespective of how much you have achieved. I really consider

 9

myself fortunate for working under these two very amicable and understanding people. In

addition, I would thank Dr. Kung Yao for being in my committee to review my thesis. I

am glad that he took interest in my research work and agreed to serve as a committee

member.

I could not have completed my part of the work without the valuable help and advice

offered along the way by my team-mates Ashutosh Verma, Winston Wu who I began

with, and by Anitha Vijayakumar and Dustin McIntire, who joined in later. Ashutosh and

Winston were always available to assist me in my algorithm implementation and improve

the thought process. Their mastery over various aspects of the research work greatly

enabled smoothness in my part. I wish to thank Anitha sincerely for contributing to my

work by improvising my code and providing some important calculations to ascertain

performance of my work. Dustin has always been supportive in rendering ideas and has

appreciated the present work done, despite his busy work schedule.

I also take this opportunity to thank Ameesh Pandya for being of valuable help since the

beginning of my graduate work. I really appreciate all of his efforts in letting me know of

the various research endeavors in Dr.Pottie’s group. In addition, his help whenever

needed either in coursework or for some research-related suggestions will always be

remembered. I offer a special note of gratitude to Srikanth Gondi, who has always shown

a big brother affection and support in times of need. I cannot remember a more helpful

person than him.

 10

I was fortunate to have two very understanding roommates in Charanjeet Singh and

Bravish Mallavarapu. I never missed out an opportunity to load them with any worry or

concern I had and it was just amazing to receive such support from them in their own

unique ways. Their intellectual guidance would always be appreciated and I am sure I

learnt something valuable from both of them during the last two years.

During the past seven years of my educational pursuit in America, I was blessed with

many friends and well-wishers who always supported me in my success and failures. I

would acknowledge all my friends in San Jose especially Vasudeva Arramreddy, Azeem

Karmally and Vikas Singhal for being trustworthy over the years. From my

undergraduate and graduate years at UCLA, I would thank Arpit Antani for being a loyal

friend in addition to being an extremely helpful and understanding project-partner in most

of my graduate courses. In addition, I would thank Niket Sourabh, Deepak Alagh, Nitin

Gambhir, Gaurav Ahuja and Rohini Reddi for their support and friendship over the

course of my stay at UCLA.

My earliest friend in graduate school, Parul Gupta will never be forgotten. She is one of

the most affectionate and understanding people I ever came across. I will never stop to

appreciate the support she rendered as the truest of friends. Her wisdom and brilliance

always astonished me but more importantly, she was always available to share her

thoughts on every issue I presented to her. I am fortunate that I had such precious friends

in my life and I really pray to God that they remain in such a way.

 11

I cannot finish this section without making a special mention of all the family members

who have been there since my childhood and have been responsible for my growth.

Firstly, I would like to thank the late. Mrs. Kamala Paritala, my aunt for making sure our

family had a secure future by sponsoring our immigration into the United Sates. I would

always appreciate my cousin Sriniketh Nagavarapu and his dad Mohan for their initial

support in the establishment here. Sriniketh has been a tremendous influence on me and

always been a motivation by being the one of the most modest, helpful and amicable

people I ever met. I would like to thank the Galivanche family, the Vedantam family and

the Vadlakonda family for being the most helpful to me for as long as I could remember.

Without their support, I could not have come this far in my life.

I made sure I included all the people I wanted to and if it had been possible more, in my

acknowledgements. It is because all of them contributed significantly towards my present

state- attaining a Masters degree from a reputed institute such as UCLA and enabling a

secure future. In this process, the most important contribution in terms of emotional

support and presence has been from my mother Mrs. Vimala Vemuri, my father Mr.

Upendra Vemuri, my brother Srinivas Vemuri and my closest friend Sumanth Kodury. I

would like to take this opportunity to thank my brother for being there during the tougher

situations in my life and for a timely financial assistance. It is true that I can never repay

my parents for all the sacrifices they made in their lives to ensure their two children have

a secure future. The least I could do is to dedicate my thesis to them.

 Sridhar Sesha Vemuri

 12

ABSTRACT OF THE THESIS

Scheduling for Energy Aware Wireless

Sensor Applications

by

 Sridhar Sesha Vemuri

Master of science in Electrical Engineering

University of California, Los Angeles 2004

Professor Gregory J. Pottie, Chair

Present day wireless sensor platforms must support applications such as imaging,

networking and security. Challenges that accompany such applications include

complexity in signal and image data processing, high data rate in the wireless networking

and supporting a fully secure system. In addition to the problem of supporting a suite of

resource intensive and computationally burdensome sensor applications, there is also a

need for continuous vigilance in unattended environments. The focus of this thesis is a

resource-scheduling algorithm that enables a novel distributed processor platform to

operate at the optimal point in energy while catering to such a class of wireless sensor

applications.

 13

CHAPTER 1

Introduction

1.1 A brief overview on Sensor Platform Requirements

Present wireless sensor applications have extended in scope and importance from

simple day-to-day utilities like temperature and pressure measurements to complex

exercises such as environmental and land surveillance, health monitoring and battlefield

security [7]. An increase in the complexity of applications correspondingly brings about

an increase in measures such as implementation costs, time to establish results and most

importantly, in a sensor system’s perspective, the energy required to cater to the very

broad range of applications suite. These range from computationally intensive

applications such as image sensing and processing to resource intensive applications such

as wireless networking. These applications demand a complex, fully functional operating

system thus enabling a secure platform for wireless sensor architectures. However, such

an environment can only increase power requirements. There is a factor of 1000 in the

ratio of the power needed to execute such an application set to what is typically supplied

by a battery that is used to power up the sensor devices and the various hardware

resources on the backend processing. This would essentially widen the energy gap

between the energy demanded and what is present.

 14

A specific example is in the context of NIMS or Networked Info Mechanical

Systems, an area of wide interest in the sensor network community. These are mobile,

distributed nodes that are deployed into the environment to perform image sensing and

processing, networking and other resource intensive applications which demand power at

the order of milli-watts. Thus, large batteries are used to supply power to the each of the

distributed set of nodes. In short, the energy problem is one of the most important issues

presently tackled by the sensor network community.

1.2 The Wireless Sensor Architectures

1.2.1 Previous Architectures

Previous architectures used for wireless sensor applications have been discussed in the

literature. Most of them are equipped with a micro-controller that can display variable

power modes, memory for holding the memory data and a typical sensor suite. Each

component consumes a fraction of a Watt of power through the use of these low-power

microcontrollers. However, there is a trade-off seen in the architectural complexity vs.

the system applicability. The complexity of the algorithms executed on such platforms is

fairly low thus, restricting their usage to specific applications. For example, [6] describes

the Mica Mote wireless sensor system has been developed in UC Berkeley. It is an

example of the unification of sensing, processing and wireless networking in a single

package. The operating system that runs on the Mote, called the TinyOS, supports

 15

components that provide efficient network interfaces and which perform with little

processing and storage overhead. The reader is encouraged to read [6] to understand the

design features of TinyOS. However, the Mote’s processor, which is an 8-bit, 4 M-Hz

Atmel processor, cannot perform floating-point arithmetic operations [9]. As an

experiment, by adding system features into TinyOS, emulations were performed to

compute and compare the execution times of computationally intensive algorithms. It was

found that the execution time of FFT algorithms took tens of seconds, which could have

been performed in far less time on a dedicated microprocessor running a fully functional

operating system.

On the other hand, there have been distributed-processor wireless platforms implemented

which have been successful in catering to the low-power requirement while performing

computational and resource intensive applications. For example, [2] and [10] discuss the

Infopad, a multimedia terminal from the University of California Berkeley. The

applications that are executed on the Infopad consist of computationally intensive

applications such as speech, video and graphics applications. All the application related

computing is performed on remote servers. The components of the platform consisted of

low power ASIC’s with embedded processor cores and other general-purpose

microprocessors. Wireless sensor platforms that support hierarchical and modular

hardware architecture and which support a complex operating system for secure

transmission of data are desired. We integrated such a platform similar to the above-

discussed concept with Commercial Off the Shelf (COTS) units, where the power

 16

intensive operations could be executed on backbone servers. In addition, the platform can

drive towards the lowest energy operating point by a resource scheduling mechanism we

have implemented. In addition, the advantages are yielded by the processor-preprocessor

architecture while dealing with periodic applications with specified duty cycles.

1.2.2. Our Proposed Architecture

We have implemented the Smart Objects Platform, which is based on the principles of

hierarchy in processing. The platform supports Linux, which is a fully functional

operating system supporting security features necessary for specific applications. The

hardware resources can be portioned into a processor-preprocessor architecture, wherein

the processor is a power-intensive embedded unit that executes whenever a preprocessor

triggers an event and requests services from the processor. Periodic applications such as

monitoring and detecting changes can be effectively performed on the preprocessor

modules. In addition there is a power-management preprocessor, which is essentially a

micro-controller. There is a clear hardware/software partition on the platform as desired

by the embedded systems community that governs the hierarchy on the platform. In

addition, the platform uses a dedicated scheduling algorithm that aims to provide an

optimal schedule to run the various hardware resources in both periodic applications and

when event-driven applications arise.

 17

1.3 An Overview of Scheduling

1.3.1 Kinds of Scheduling in Research

There have been many scheduling algorithms at various levels in embedded systems.

Operating systems have their own scheduling mechanisms. Often heuristic approaches

are employed to achieve a near optimal solution in scheduling algorithms, as task

allocation and scheduling problems are known to be NP-complete problems in time [3].

Researchers have used scheduling techniques to optimize different parameters for

applications such as deadlines, execution time of the entire schedule or the schedule

DC power

Fig. 1.1- Smart Objects Platform

Processor
(Fujitsu PFU Netcard)

Image
Pre-Processor

Image
Sensor

(Axis 2100)

Pre-
Processor
LP3500

Wireless
Network
Interface
802.11

Sensor
Suite

Power
Distribution
And Control

Sensors:

• Battery State
• Power
Dissipation

• Acoustic
• Motion
• Level Sensor

Digital I/O

Analog

Serial
PPP over Serial

Ethernet
Ethernet PCMCIA

 18

length and energy consumption, all of which can be represented as a cost function. The

results of these algorithms do provide globally optimal solutions in certain cases while

providing near-optimal solutions in other cases pertaining to the factors like the time to

execute and the urgency of the schedule requirement. The two main optimization

parameters that follow in our discussion are the net energy consumed and the deadlines

requirements for the set of periodic applications. The energy-optimization based

scheduling is described first followed by scheduling to achieve deadlines.

The standard equation for power consumed in a CMOS integrated circuit is given by:

where CL at the CMOS gate, Vdd is the supply voltage, f is the clock frequency and α is

the switching activity, which is defined as the probability of switching from an ON state

to an OFF state during a clock cycle. Changing one or more independent variables on the

right hand side of the equation affects the net power consumed.

 A popular kind of power scheduling called voltage scaling is explained in detail in

[1] and [8]. In this approach, the supply voltage allocated to each resource on a hardware

platform can be controlled. This will have a large effect on the power due to the quadratic

dependence on the supply voltage, Vdd. In addition, adjustment of the clock frequency

factor, f can lead to substantial improvements in energy savings. Provided that hardware

resources can operate in a variable clock environment, the clocks assigned to various

 P=α*CL*V
2
dd*f (1.1)

 19

hardware resources can be slowed down or even shut off when the particular resource is

not in use. These approaches form a part of dynamic power management.

 Another class of scheduling algorithms deals with task allocation to satisfy

deadline requirements provided by the application developer in addition to catering to the

low energy requirement. The algorithms proposed in the literature are dynamic in nature,

such as the Earliest Deadline First (EDF) algorithm, which assumes resource sufficiency

i.e. all the set of tasks are schedulable irrespective the unpredictability in their times of

arrival. This approach suffers a heavy degradation in the presence of a heavy overload

[1]. Improvements over this approach are described in [1] and the algorithm is modified

into the Slacked Earliest Deadline First (SEDF) algorithm, which asymptotically

converges to the performance of the EDF algorithm. There have also been heuristic

algorithms that provide globally optimal solutions in certain cases while providing near-

optimal solutions in other cases pertaining what the requirements are. For a complete

understanding of certain heuristic scheduling techniques such as Earliest Deadline First

and it variations, the reader is encouraged to refer to [1]. However, in the case of

wireless sensor platforms, where power optimization is the key concern, it is desired to

operate near the minimum point, which might be achieved only through an exhaustive

search of all possible schedules.

1.3.2 Our Scheduling Approach and Requirements

The scheduling problem considered in our research has been to optimize the global

energy on the platform to perform a series of tasks over a period of time while enabling

 20

applications to complete within a specified deadline. The applications to be executed

provide additional constraints such as the period of operation, their execution times and a

tolerance around which they can be executed. Optimal solutions are desired, which lead

to the implementation of an exhaustive approach. The overview and details of our

scheduling algorithms are explained in detail over the subsequent chapters. Some of the

main features of the different approaches considered for a simple 2-application scenario

and in general, for a multiple application case are mentioned below.

The first method proposed was a constrained approach where two periodic applications

with specified duty cycles were considered. The scheduling procedure was based on a

greedy approach wherein instances of applications whose period multiples mapped

partially or completely were scheduled first. This maximum overlapping of processor

execution times would save the energy related to the transition costs (shutting down and

booting back again) of all the common resources. The remaining instances of these

applications have situations where energy savings could not be achieved because they

have to be executed in discrete time frames. Although this approach gave an initial

intuition on scheduling for periodic applications and also converged to a solution in a

very short execution time of the algorithm, the approach was not extensible in the case of

a multiple application scenario.

In order to cater to the most general case while guaranteeing a globally minimal energy

operating point, an exhaustive approach was considered, which essentially considers all

 21

possible combinations of potential start times of all the instances of each application. The

scheduler matrix created out of each such combination is tested for the optimal energy

case. There were factors that influenced the exhaustive search space considered to trim

the execution time of the search algorithm. The details of this approach are explained in

chapter 3 of this thesis.

Finally, a certain kind of a variational approach involving hierarchical notions is

also mentioned. Pre-computed schedules of already assigned applications could be

utilized and new applications that ought to be scheduled could be best fit in into these

optimal schedules. Although this approach would not guarantee an optimal solution, the

advantage clearly is that the complexity of the search algorithm is always maintained at

O(n
2
) i.e. that of a 2-application case. In addition, a good solution can always be worked

out given earlier hierarchies of computed schedules.

1.4 Outline Of the Thesis

The remaining chapters of this thesis are organized as follows. In chapter 2, we present a

brief architectural description of the Smart Objects platform. The various parameters for

an efficient scheduling are discussed. A heuristic scheduling algorithm is described for a

simple 2-application scenario, which gives an overview of the general concept of

application scheduling. In chapter 3, we extend the scheduling algorithm into an optimal

exhaustive-search approach to cater to any multiple application specification. The various

factors that affect the optimality and execution time of the algorithm are discussed in

 22

detail. Various test vectors that were validated by hand calculations earlier are tested in

the simulation for correctness. Some results and plots that explain the characteristics of

the scheduler and describe graphically the advantages of scheduling follow the test vector

analysis. In the last chapter, we provide a conclusion and discuss the scope for future

work.

 23

CHAPTER 2

Smart Objects Platform and Scheduling Overview

2.1 Platform Description and Typical Application Suite

The Smart Objects platform has a defined hardware architecture that consists of a power-

intensive processor unit and a series of preprocessor units whose functionalities are

described during the course of this chapter. Application developers publish resource

requirements, which are constituted from the set of the various processing and

preprocessing units in the environment. The scheduler module observes application duty

cycle, deadline demands and tolerance values. It then computes an energy-efficient

operation schedule that meets the task and resource requirements at minimum energy

consumption. The micro-controller preprocessor, LP3500 manages power and the

platform management episodes through the schedule vector transferred to it by the

scheduler. This chapter presents the scheduling mechanism that runs as an a-periodic

application on the power-intensive processor. The demonstration of an energy-efficient

environment is done through this efficient scheduling of the registered applications

according to their resource pools. The scheduler algorithm can be best viewed as an

application as it also utilizes resources such as the PFU processor and the pre-processor

LP3500.

 24

The applications that ought to be demonstrated in this distributed energy-aware wireless

sensor environment include computationally intensive applications such as object

tracking and image processing and resource-intensive applications such as networking

and sensor node discovery. In addition, co-operative applications such as acoustic

beamforming can also be demonstrated.

2.2 Scheduler Algorithm Stages

2.2.1 Registration

The initial prototype of the environment has a remote node networked with the Smart

Object node that sends in the configuration files representing each application. The

scheduler application has its own internal configuration file, which it reads along with the

others. The first stage of the algorithm is the registration stage (Fig. 2.1), wherein it

reads the published resources needed for each application. Each of the resources is

constituted from the imager (camera), the imaging preprocessor, the PFU processor (for

executing computationally intensive applications) and the wireless LAN unit (for

information transfer across nodes and for discovery). The application descriptor files are

transferred to the Smart Object node from a remote “application” node through a secure

file transferring protocol. The files contain information such as the executables for each

application, the approximate execution times for each application, the duty cycle around

which the applications have to be performed, a tolerance value that measures the

 25

feasibility level of deviation from the true period and most importantly the resources

required for execution. The application developer publishes all these parameters in the

respective configuration files of each application. Old descriptor files are deleted after

resource allocation is provided and new applications that were queued previously would

be scheduled to achieve a new optimization scheme. If no new applications exist, then the

present scheme would execute unless prompted by any event that requires an immediate

usage of the system resources. The entire environment runs on a Linux platform and the

concept of parameter passing through signals is utilized in the demonstration. The Linux

file systems are utilized to write all the required parameters of each application. This

approach provides a simpler means of communication that we have extended to the

scheduling of multiple applications.

Fig. 2.1- Registration stage of the Application set

IMAGING

- Object detection

Networking
- Discovery

- Data transfer

- Health

reporting

Co-operative

application

- e.g. acoustic

sensing

SCHEDULER

 Resource requirements

SIGNALS

 26

2.2.2 Optimization for a Static Scheduling Scenario

2.2.2.a Theoretical Details

Once the resources for a particular set of applications are obtained, they are passed onto

the optimization stage of the algorithm. The scheduling optimization algorithm runs in a

variable time after the initial registration has taken place. During this time, the resource

requirements are considered for each separate application. The idea is to complete as

much preprocessing work as possible for each application so that applications can utilize

the power-intensive processor within a common time frame. It is experimentally verified

that the power consumed by the PFU while running simultaneous applications is

insignificantly different than running separate applications. Once the power optimization

algorithm determines at what time frames each processing unit is set to work and which

are shutoff during those times, a matrix table is created which is then passed into the

LP3500 (the power-management preprocessor) to read the table sequentially and operate.

Whenever the PFU processor is ON, an updated scheduler table is copied onto the

LP3500, which caters to both situations; a new application is added or that no new

application occurs (wherein the table remains unchanged). The algorithm for the creation

of the scheduler vector itself takes in the physical attributes of each of the processing and

preprocessing units such as the boot up/shutdown times, the wake/sleep times, the

processing times of the applications on the respective processing units and most

importantly, the power dissipated through each of the processing units in different modes.

 27

The optimization algorithm in its simplest version considers the above-mentioned

attributes and resource parameters and assigns begin and end times for each application

in its respective duty cycle frame. The scenario that is to be demonstrated on the platform

is a periodic surveillance of the environment for routine versus interesting objects

through simple differencing between images and if required, template matching. The

frequency-domain template-matching algorithm is computationally intensive and can be

demonstrated efficiently on the platform. The optimization algorithm results in a resource

management mechanism (in the form of a matrix that describes the states of each

resource at various time frames) transferred from the power-intensive processor to the

low-power power-management preprocessing unit. The schedule matrix displays the

resources to be switched on and switched off appropriately. Resources common to the

applications are dealt with in accordance to when they are required to be switched i.e.

depending on the smallest begin time of the applications. The time axis should be

considered to be granular by creating smaller time ticks to ensure the various processing

units start and end as close as possible to the determined values.

2.2.2.b A Heuristic Approach for a 2-application Scenario

The algorithm is described by an interval partitioning method wherein the duty cycle

frames of each application are matched into three different cases and scheduling of

applications into appropriate execution times are done individually for these three cases.

 28

Case 1: The current duty cycles are such that one frame is embedded in the other frame.

Case 2: A partial overlap exists between two duty cycle frames.

Case 3: The current duty cycle frames are completely exclusive of each other.

In cases 1 and 2, all resources that are common to both applications have to be managed

such that the tasks are handled in parallel when such resources are in the execution mode.

In other words, it makes sense to schedule tasks while making sure that the particular

resource is back to shutdown/idle mode only after the completion of the scheduled tasks.

In case 3, the scheduling has to be done individually to all the frames that have not been

dealt with in either cases 1 or 2. Fig. 2.2 shows the demonstration for a typical two-

application scenario. It can be seen that scheduling of the two applications is done such

that the partial and complete overlapping cases are utilized extensively and the remaining

unscheduled frames are scheduled independently. However, if power optimization can be

Fig. 2.2- Static scheduling for a 2-application scenario

Application 1

 Application 2

Application 1

Application 2

time

d1 2d1 3d1

d1-TOL1
d1+TOL1

t=0

d2-TOL2 d2+TOL2

d2 2d2

AFTER SCHEDULING

 29

achieved by maintaining resources to be in idle as opposed to a complete shutdown, the

algorithm searches for all possibilities and determines the states of the resources (when

not utilized) such that the net power over the desired sets of duty cycle frames is

minimized. The above process wherein scheduling of applications takes place before the

actual activation is termed as static or off-line scheduling. The schedule for the entire

sequence of task execution (as in the periodic surveillance scenario given duty cycle and

tolerance values) can be conveniently stored in a vector table.

2.3 A Brief Overview of Dynamic Scheduling

The present section deals with scheduling of tasks, which form a part of dynamic

scheduling. There are two kinds of scenarios that constitute dynamic scheduling. The

first case is that of event detection- a case wherein resources are woken up immediately

in order to verify a noticeable disturbance in the environment. The other case is that of an

online scheduling of tasks where new application registration and scheduling decisions

are to be taken at run-time on the set of active tasks. The scheduling of multiple tasks on

the distributed processor platform is explained in detail in the next chapter. In the present

section, the phenomenon of event detection is explained along with the communication

interface between the processor and the power-management pre-processor.

 The scenario of periodic surveillance of the environment is demonstrated

effectively on the platform through the optimization scheme proposed above. However,

 30

there might be instances where simple differencing of images is not sufficient to

determine if there was any significant change in the environment. The arrival of a new

object in the environment creates a significant change, which would be detected by the

motion sensor. The infrared sensor communicates directly with LP3500 in case of

detection of a new object. The networking application is invoked to obtain templates for

the frequency-domain template-matching algorithm to execute. An action is then taken

depending on whether the new object is interesting or not. However, there are some

additional cases that do not constitute event detection. For example, there might be

instances where the motion sensor fails to detect the presence of a new object if it appears

either too slowly or too quickly. There might also be an instance where the sensor detects

a moving object that appears and disappears from a scene. In this case, networking need

not be invoked since there was no change in the scene. Such cases do not count as the

occurrence of an event.

In case of an event occurrence, all the required resources, which are in idle, sleep or

suspend states, are immediately woken up. In the present architecture, the power

intensive PFU processor has idle, a cold shutoff/boot up and suspend/wake states whereas

all the remaining pre-processing units have a hard shutdown and boot up states. Once the

IR sensor communicates to LP3500 about the presence of a new object, the preprocessor

halts the present execution of the schedule vector transferred by the scheduler and wakes

up the needed resources (if not awake already) to begin the necessary application. Once

the required application is executed, the PFU can go back to the sleep state or continue

 31

executing other applications depending on the command issued by the power-

management pre-processor, LP3500.

2.4 The Communication Interface

The communication interface between the LP3500 and the PFU should be made as

minimal and yet as flexible as possible. As mentioned earlier, the initial prototype of the

platform has the components talking through file systems. There are two types of

commands issued from the LP3500 side to the PFU side. The interface has as its

parameters, the schedule matrix (determined from the optimization algorithm) and a file

to read sent from the LP3500 side. This file contains a value that enables the interface to

read the schedule matrix and execute either of the two commands- an EXE command that

indicate the schedule to be followed by the various processing units when the processor is

ON and an SCH command, which indicates what schedule by the other processing units

when the processor is OFF. In other words, the interface function presents a convenient

mechanism by which the representation of the schedule matrix (through a huge sparse

matrix of 1’s and 0’s) is translated into a form that can be viewed as one of two

commands executed by the various components of the platform. The command is written

from this interfacing function into another file that is accessed by the LP3500 processor

and executed accordingly.

 32

2.4.1 Description of the Scheduler Matrix

For a clear communication between the Scheduler algorithm and the interface, the tabular

matrix is represented as follows.

1. A time index is the first column of the matrix, which can be synchronized to the

real-time on the platform either directly or through some scaling factor.

2. The next eight columns represent the “hardware bits”. Presently, there are three

bits whose states can be toggled between 0 and 1. The first bit corresponds to the

ON/OFF state of the PFU processor. The third bit corresponds to the ON/OFF

state of the AXIS processor and the fourth bit corresponds to the Imager. The

remaining hardware bits are presently inactive. For the future, the SUSPEND

state of the PFU processor is to be integrated into the platform. It is to be noted

that some of the hardware bits are “don’t care” bits, which have been set to 0.

3. The next eight bits corresponds to the time indices where a particular application

or a group of applications start, beginning from application 1 onwards. The

interface function scans the tabular matrix for all the positions where a particular

application starts and informs the LP3500 to start the specific hardware resources

and in addition execute the appropriate software executables that constitute a

particular application.

As an example, as shown in fig 2.3, a row of a sample schedule matrix at time t=100 is

shown along with the various hardware bits.

 33

Time

Index

PFU

(ON/OFF)

BIT 1

PFU

(suspend)

BIT 2

AXIS

(ON/OFF)

BIT 3

IMAGER

(ON/OFF)

BIT 4

 BITS 5-8

100

1

0

1

1

DON’T CARE

bits

With such a tabular description, it not only becomes easier to communicate with the

interface but also the total energy of the platform is easier to calculate. The total energy

of the system is the sum total of the boot, the execution and the shutdown modes. The

table is scanned and the net energies of each resource in different modes of operation can

be accumulated to determine the total energy of the platform. The detailed description of

the scheduling function and the interface function can be viewed through the c-files,

scheduler.c and schexe.c respectively. These basic models for the schedule optimization

and the interface can be extended to include online scheduling of events. A generalized

optimization algorithm that is developed for an arbitrary number of applications based on

a pure exhaustive search is discussed in detail in the next chapter.

Table 2.1- Description of the hardware bits of the tabular matrix.

 34

CHAPTER 3

Scheduling for Multiple Applications

3.1 A Generalized Approach

There is often a greater demand to be able to perform a larger set of sensor applications

on the Smart Objects low-power platform. The sensor application suite typically includes

network discovery, peer discovery, event detection and scheduling. Each of these

applications has their own application descriptor files. Initially, the Smart Objects

interface observes that there is no schedule vector present. It then downloads a schedule

from a server, which has been set up specifically to share the computational burden. The

scheduler algorithm that is executed on the remote server is the most robust method for

the energy optimization scheme on the platform. It performs an exhaustive search on all

the possible schedules of the applications to find an energy minimum. The schedule that

determines the lowest possible energy on the platform over the entire application

episodes is decided to be the optimal schedule. There is a computational complexity vs.

energy optimality tradeoff involved in such an exhaustive method. In order to perform a

complete search, it is imperative to perform the search algorithm offline on another node

specifically set up for the computational burden, especially when the application set is

large (i.e. >= 4 applications). This would also enable the platform to be devoid of any

computational complexity for long periods of time, thus supporting the low-power

capabilities.

 35

The advantage of the exhaustive approach is that there will not be any

computational stress on the low-power platform. However, this approach would not be

feasible whenever a new application with a very high duty cycle needs to be registered

into the application pool and needs to be executed. The platform has to wait for the

optimization to be finished in order to accommodate the new application, leading to an

over dependence on a remote unit. Furthermore, the network resources on the platform

are also burdened to communicate with an offline server to transfer the schedule. To

counter this, approaches involving scheduling hierarchies can be employed wherein old

optimal schedules for the previous application set are maintained and a new application is

accommodated (according to its own constraints) into the existing schedule in such a way

that the net energy on the platform remains optimized. The advantage of such a scheme is

that the algorithm complexity would remain at the complexity of a 2-application case.

Moreover, the platform can slowly adapt to the lowest operating energy point through a

more complete search starting from the initial estimate, which might be a coarse

evaluation. In addition, certain other techniques would result in the narrowing down the

search space for task allocation. To be more specific, placing the constraint of the

deadline values before the exhaustive procedure reduces the search space. This would

essentially guarantee a search through a smaller space of possible schedules. The tradeoff

however is that it might also overlook better possibilities that were eliminated during the

determination of the near-optimal scheme. A brief explanation of the hierarchical

approach is given in the next section. However, the exhaustive approach is considered in

all our simulations and the results are discussed in the next chapter.

 36

 3.2 kinds of Multi-application Scheduling

3.2.1 The Exhaustive Approach

The complexity of the optimization scheme is clearly in polynomial-time with a degree of

the number of applications. The algorithm implemented as an exhaustive approach to

determine a schedule guarantees the global minimum for the net energy consumed. In this

approach, all the applications are considered in all possible alignments over the entire

time frame of consideration (typically the least common multiple of the duty cycle times

of all the applications). Each of the applications is placed in all possible combinations

with the remaining ones and the set of schedules (that display the start times of each

application) are gathered. Out of this set, a schedule is chosen that also satisfies the

constraints of the deadline values. The schedule for this entire frame can be repeated

from the beginning, provided the number of applications remains fixed for extended

periods of time.

3.2.2 The Hierarchical Approach

After the registration stage, a scheduler matrix (or possibly a list of scheduler matrices if

the global minimum occurs at different sets of search points) is created out of the existing

scheme (involving an exhaustion approach e.g. for a 2-application case). Each application

thereafter that is already registered is introduced onto each of these lists and the resultant

energy is examined to determine if a global minimum is achieved again. To be specific,

 37

such variational approaches best serve to operate when new applications are

accommodated wherever the computationally intensive resources are already in

execution, performing the earlier applications.

3.3 The Exhaustive Approach for Scheduling

3.3.1 Registration for Multiple Applications

The present scheduling algorithm schedules a set of sensor applications specified in a

configuration file sent by the application developer to the scheduler. The algorithm is

classified into two stages.

A: The registration stage

B: The optimization stage

The registration stage as discussed in the previous chapter, registers a dynamic set of

sensor applications that need to be executed with specified duty cycles. The descriptor

files contain all the required parameters to implement an efficient schedule that observes

a global minimum point in energy. For demonstration purposes, a scenario can be

considered for an offline scheduling wherein the registration stage of the algorithm

accommodates a variable set of applications. A configuration file is sent by the

application developer that contains the number of applications to be scheduled along with

the filenames of each of the descriptor files. Following this, the descriptor files for each

application are read and all the resources are registered.

 38

 Below is shown a flowchart of the entire optimization structure, with all the

important functions highlighted. The iteration approach to the exhaustive process is

depicted in a separate flowchart. The scheduler matrix that results from the exhaustive

search represents the optimal scheduling scheme that can be re-used until a new set of

applications are provided by the developer for an efficient scheduling or if a new

application is added to the existing application pool.

Begin

Optimization

Compute an

LCM time frame

for the schedule

Obtain parameters for

all applications.

** THE

EXHAUSTIVE

FUNCTION

Pass the entire parameter pool

DONE

Explained in detail separately

Fig. 3.1 – Optimization stage for multiple applications

 39

The present approach is verified for a smaller scale of data (to verify the correctness of

the algorithm) in both the cases of

A: Larger periods for applications

B: Application number >= 4

are being considered for a timing analysis. In the next chapter, various test vectors are

generated to examine the features of this approach. The test cases vary from simple ones

in which the duty cycles are multiples of each other to more general cases where the

LCM is the product of all the periods. The scheduler performance is analyzed for these

different cases to determine the energy savings attained by operating at the minimum

point as opposed to an unscheduled event where the probability of working on a worst-

case energy point is very high. In addition, the peak to average power analysis is made

for the entire exhaustive search in which a fixed battery supply is assumed and the power

consumed by all the resources in each mode is provided by application developer. The

histogram provided in the next chapter supports the importance of scheduling in order to

obtain the minimum operating point.

3.3.2 Description of the Exhaustive Function

The exhaustive approach is brute-force implementation of the search involved in the

determination of the global minimum. The idea is to construct a cardinality set for each

application j, which basically corresponds to all the possible combinations of the start

times of each instance of each application. All these sets are then considered and each

combination across such sets is sent into the energy minimization function. The absolute

 40

Fig. 3.2 – Flowchart of the exhaustive loop

App_frames function call

(to obtain the cardinality set

of each application.)

 Start

Start with I=0 (1st app) and corresponding earliest start time for

instance 1 of each application

Check if I <=

number of apps

and T_earliest

<= dutycycle

 YES

Increase app. index

If index I > num of

apps.

Set counter = product

of cardinality of all

app sets

For k=1;

K<=counter;

k++

Gather an element from each set

(The total number of such

combinations = counter)

Create a tabular matrix and update the table (with chosen start times)

Calculate energy

Using the table_energy

function
If energy

of curr. Itr

< energy

of prev.

itr.

Update new

minima

Done if K>counter
SCHEDULE

READY

 41

energy minima point is determined by evaluating for all iterations, the corresponding

table matrix to output an energy value for the entire running time. The exhaustive

function is divided into smaller subroutine calls (in the sequence shown in the C-code):

1. AssignTimes: This sub-routine is called in the function ExhaustionApps function.

In this function, each combination of possible start times from the cardinality set

of each application is sent in to update the created tabular matrix. The update

corresponds to the corresponding hardware bits being set for the entire runtime of

each application.

2. CreateTable: This subroutine allocates dynamic memory and initializes the

tabular matrix.

3. IncrementApps: This function makes sure all the possible combinations are

considered across each cardinality set. Since the number of such sets is a variable,

the index of the element position (corresponding to a specific cardinality set) is

incremented to indicate the completion of a single iteration.

4. IncrementFrames: This function is similar to the IncrementApps function but

differs in the way that it runs across all the possible instances of each application

and exhaustively gathers for every iteration, all the possible start times of all

instances for a particular application. Each time this function is called, a

cardinality set for each application is updated.

5. Exhaust_frames: The Exhaust_frames function calls the IncrementFrames

function repeatedly to create the cardinality set for each application. Once such a

set is created for each application, the ExhaustionApps function can run across

 42

every cardinality set, pick an element from each set and pass into the energy

determination function.

6. ExhaustApps: This function represents the main exhaustive search loop, which

incorporates the entire possible combinations of start times of each instance of

each application.

7. Table_energy: This function takes in the table created for every iteration and

determines the total energy associated with it.

 3.4 Details of the Energy Measurement Function

3.4.1 The Table Description

The function table_energy takes in as its parameters a specific schedule table created for

every iteration and measures the total energy consumed for the entire length of time

allocated by the LCM value of all the duty cycles. The main features of this function are

described with an emphasis on how each source of energy consumption comes into the

energy calculations. To begin with, a brief re-explanation of the structure of the scheduler

table is necessary. The rectangular matrix consists of 17 columns. The first column

corresponds to the time index followed by 8 hardware bits and 8 software application

bits. The applications are identified in an ascending order from bits 9 to 17 i.e.

Application 1 corresponds to bit 9 while application 8 corresponds to bit 17. A unity in

any time position of the 1
st
, 3
rd
 and 4

th
 bits indicate that the hardware resources PFU,

 43

AXIS pre-processor and the camera are in the ON state. Similarly, a unity in any time

position across bits 9 through 17 indicate that the corresponding application is in the

execution state till the runtime of the application.

3.4.2 The Energy Management Scheme

The hardware resources PFU, AXIS and the camera can be in three different states- the

boot, executing/idle and the shutdown states while the power-management preprocessor,

LP3500 and the IR motion sensor exist in a high-power execution mode and a low-power

sleep mode. The power.txt file contains the power consumed by each resource in its

respective mode of operation. The total energy measured is a sum of the component

energies of each resource in all the possible states it exists as a function of time. For each

iteration involving a specific set of start times for the application set, the total energy thus

calculated, is sent back to the optimization stage of the algorithm. The optimization stage

replaces the existing energy minimum whenever a new minimum occurs. At the end of

the exhaustive search, the matrix that achieves the global minimum is chosen to be the

optimal schedule table. The schedule is then sent by the interface to the preprocessor

LP3500 as a series of commands understood by LP3500, which would enable/disable the

various operating states of the hardware resources.

 44

3.4.3 The Components of the Energy Function

The main functionality of the energy determination function is explained in the present

section. For each potential schedule vector that is sent as an input to the energy

calculation function, it is essential to check if it is a feasible schedule or not. Each

schedule that is constructed is clearly a function of the start times of the various instances

of each application. In a specific configuration it might occur that a specific set of

instances of applications may be aligned in such a way that the resources are transitioned

from an executing state to a shutdown state and then back to an executing state in a net

time that does not take into consideration the total shutdown time of the resource. Hence,

every time a resource transitions from an ON state to a shutdown state i.e. transitioning

from a 1 to a 0, it is checked that the next time the resource is switched back to a 1 state,

the time index difference between both the events is at least the shutdown time of the

resource. If this condition fails, then the resource under consideration is set to remain in

the 1 state without shutting off. In other words, it is forced to remain in the idle state.

Another modification that the function brings about in the schedule vector before the

energy measurements is to observe the BETA values, which denote interference values

between pairs of applications. Based on the values provided, realignment of application

start-times can occur. Specifically, applications that are scheduled to occur at the same

start time and have temporal dependencies or resource conflicts between them are

executed sequentially depending on the priority in the dependency chain. In the present

algorithm, cases of all BETA values=0 and all values=1 are considered.

 45

Each of the resources, PFU, AXIS and the IMAGER are then perceived as hardware bits

in the scheduler table and the net energies are analyzed in various states of each of these

resources. For resources that can be present in the idle state and have a defined power

associated in that state, a break-even point in the state is determined every time the

resource transitions from an ON state to a shutdown state. A comparison is made between

the net transition energy (the shutdown energy after the present execution frame + the

boot energy for the next execution frame) and the net idle energy for the entire frame. In

case the net idle energy of the resource is lesser than the transition energy, the resource is

allowed to settle in an IDLE state for the entire duration. For the means of these

computations, it is important to observe the states in which the remaining components

exist. Specifically, the LP3500 and the IR sensor can only exist in the high-power state

when the other hardware resources are in the ON state. They can be put in the sleep state,

which is the low-power state, only when the other resources are shutdown. The scheduler

table is then evaluated sequentially for each resource to get the energy in various modes

of operations of all the hardware resources of the platform. The calculated energy for

each potential schedule is then analyzed for the absolute energy minimum in order to

qualify as the optimal schedule.

An overview of the entire exhaustive search structure is depicted in the form of a

flowchart above. The total number of iterations depends on the coarseness of the

exhaustive search. Each of the applications are defined by their own cardinality set,

which contains the pre-computed results of all the possible start times of all the instance

 46

of each application in the allocated maximum cycle of observation. The detail of the

effects of certain scaling factors that alter the coarseness of the search and thus, the

optimal value of the energy value is explained in the next section.

3.5 Factors Affecting the Exhaustive Search

3.5.1 Earliest Instance Scaling (linear translation of the first instance)

There are two scaling factors that affect the granularity (coarseness) of the exhaustive

search. In the scheduler algorithm, the earliest instance scaling factor, represented by

EAR_SF indicates the jumps in which the first instance of each application occurs. It is

seen that the first instance can start anywhere from time t=0 to time t=d where d

represents the period of that specific application. All the remaining instances of each

application depend on the start time of the first instance. However, the algorithm

considers that every successive pair of instances of each application is separated by its

period embedded within a little tolerance frame.

3.5.2 Tolerance Scaling (transitions in the tolerance frame of an instance)

The other scaling factor that affects the performance of the exhaustive search and in a

more dominant way is the TOL_SF or the tolerance-scaling factor, which determines the

jumps in which the start time of each instance of a specific application can make in its

 47

tolerance frame. This applies to all the instances except the first one as the start time of

the first instance is determined by the linear translation, described by the term EAR_ SF

above. To be specific, the tolerance value varies from –T to T around each potential start

time where T represents the tolerance value specified in the descriptor file of each

application. As explained earlier, the tolerance values of each application is set to be at

10% of the duty cycle value. The simulations support the intuition that the number of

jumps of the start time of a particular instance in each tolerance frame is the dominating

factor in the total number of exhaustive searches.

 These scaling factors can be varied according to the duty cycle values of each

application. From the discussion above, it is clear that both these factors simultaneously

affect the length of the execution time of the exhaustive search and also the least possible

minimum energy value of the platform. In order to have a reasonable running time, both

the factors, EAR_SF and TOL_SF are to be placed in order of the magnitude of the

tolerance values. A detailed set of simulations were performed to examine the effects of

varying both the scaling factors simultaneously and to observe the effect on the minimum

energy determined by the scheduler. The main idea was to observe the minimum values

and determine whether they would converge i.e. the energy gap between successive pairs

of energy outputs would reduce while increasing the granularity of the search space.

Specifically, in order to observe the effect on the energy minimum over a more granular

search space, the scale of the search is decreased through the two scaling factors. Once

the global minimum is determined for a given set of parameters i.e. TOL_SF and

 48

EAR_SF, these are scaled down proportionally to perform a more detailed search and get

a better estimate of the energy minimum. This enables examination of the effects of these

parameters over a much wider order of magnitudes of both the parameters, at the expense

of some uncertainty as to whether the true minimum was found.

 49

Chapter 4

Results from scheduler simulations

4.1 Test Vector Analysis

A set of test vector cases was analyzed in detail for a 4-application scenario. The

simulations were performed to check the sanity of the scheduling algorithm itself by

comparing it to a pre-computed scheduler and hence its energies. The hand computations

were done for an ideally chosen set of duty cycle values and these values were compared

to the simulated results from the scheduling algorithm.

The simplest test vector was one involving a set of duty cycle values, which

shared a greatest common divisor belonging to the specified set of duty cycles. Hence to

begin with, hand calculations were performed with values for 4 applications and the

BETA values considered were the “all zero” case and the “all one” case. Period values of

1000,2000,2000 and 4000 and execution times of 1,2,3 and 4 units respectively were

used. For this simple specification set, it could be seen by observation that the best-case

energy occurs at a point where application start times overlap as shown in the figures

above, for both cases. Though this could be one among the set of optimal schedules, it is

the most visible solution. It is to be noted that the execution time of each application is

small in magnitude compared to the duty cycles, tolerances of that application and the

boot times of each resource. So the number of resource boots saved dominates the energy

 50

savings. For this test case and in general, the resource and application parameters used

are tabulated below.

Application Resources Execution

time

(seconds)

Application

Period

(seconds)

Tolerance

value

(seconds)

App 1 • LP3500

• PFU

• IR

1

1000

100

App 2 • LP3500

• PFU

• Imager

• Axis

2

2000

200

App 3 • LP3500

• PFU

• IR

3

2000

200

App 4 • LP3500

• PFU

• Imager

• Axis

4

4000

400

Resource Name

Power consumed Boot time in Seconds

LP3500

0.296watts

PFU(Boot)

2.5 watts

PFU(Exec)

11.4 watts

PFU(Idle)

5.8 watts

Imager(Boot)

3.18watts

Imager(Exec)

0.8watts

Axis(Boot)

2.808watts

Axis(Exec)

0.500watts

IR

0.108

Combined value of 15

seconds for each

application

Table 4.1 – Application parameters for the test vectors

Table 4.2 – hardware resource parameters for the test vectors

 51

These assumptions hold for all the energy calculations described below.

1. The combined boot time of all the resources is fixed at 15 seconds.

 So energy calculations are: E = (Sum of Powers of all the resources) * 15.

2. The shutdown energy for any resource is 0 and the total idle power is 10 m watts.

The figures below give a pictorial description of the optimal schedule for the

parameters mentioned above. For the Betas=0 case, all applications can start concurrently

if scheduled together, while in the Betas=1 case, they have to be executed sequentially.

These two represent the bounds for the best and worse-cases of the energy representation.

Fig 4.1.a- scheduling for the Betas=0 case

Fig 4.1.b- scheduling for the Betas=1 case

 52

The scheduler simulations were performed in two separate scenarios and compared with

the hand calculations. The first case was when the resources were shutdown completely

when not in use and rebooted when needed. Here the shutdown energy was assumed to be

0 for simplicity of calculations. The energy savings are mainly due to the transition costs.

The second case is when the resources can be kept in a low-power idle mode wherein the

total idle power is negligible. The main goal of this test vector analysis was to make sure

that the algorithm could adapt itself to different specifications provided by the developer

and also is robust to different hardware platforms. In the last chapter of the thesis, we

propose other platforms on which the algorithm can be implemented on to analyze the

energy savings on the platform.

The table shown below compares the hand calculations to the scheduler results in

the two cases discussed above. All minimum energy calculations lie between the Betas=0

and the Betas=1 cases and the simulations were performed under reasonable granularity.

BETA VALUES Hand
Calculations

(Resources
are
shutdown
when not in
use and no
idle mode)

Scheduler
Simulation

Hand
Calculations
(With total
idle time
power = 10
m watts)

Scheduler
simulation

β1 =β2= β3= β4 = 0 2018.4 J MIN:2046.6 J

466.14 J MIN: 476.66 J

β1 =β2= β3= β4 = 1 2126.3 J MIN:2200.6 J

615.29 J MIN: 629.6 J

Table 4.3 – Energy comparison between simulations and hand calculations.

 53

4.2 Histogram Analysis of the Scheduler Algorithm

In order to achieve a qualitative analysis on resource scheduling for energy harnessing,

we take a statistical approach towards a scenario where the platform runs without the

support of a scheduler. The histogram shown below in fig.4.3 plots the energy ranges

achieved on the platform for a specified set of specifications on the x-axis and the

frequency of the occurrence of these energy ranges during the entire exhaustive search on

the Y-axis. From this figure, we can argue that in case of assigning the platform with an

arbitrary schedule, the probability of falling into the category of an average case energy

scenario is very high. It can be seen from the figure that the largest frequency of samples

occurs towards the average of the best and worse case energies, which differ by a factor

of 2.

 N
u
m
b
er o

f sa
m
p
les

 Energy Range (joules)

Fig. 4.2- Histogram of range of energy values

 54

Since the median of the entire set of samples is more than the average energy, we can see

that there is a much larger probability associated with arriving at an operating point

greater than the average energy and moreover, weighing more towards the worse case

energy. Thus, scheduling can be of considerable benefit. If a complete exhaustive

approach is employed with the finest amount of granularity, it is guaranteed to achieve

the optimal point, which has the least probability of occurrence. Even with a constraint on

the execution time on the exhaustive algorithm, we can aim to achieving operating points

towards the optimal point, by allowing the scheduler to search with a higher level of

granularity.

4.3 The Working of the Scheduler with the Interface

The interface, which we talked about briefly in earlier chapters, communicates between

the schedule matrix and the power-management preprocessor, LP3500. The optimal

schedule matrix is transformed into a series of “sch” and “exe” commands as understood

by the preprocessor. The schedule that resulted out of the test vector with the assumptions

stated earlier was used to measure the real-time power measurements obtained from the

platform. In fig. 4.3 shown below, two plots are shown; the one termed “matlab

simulation” is a power plot of the optimal schedule through the simulation. The plot

overlapping it is the real power plot from the platform. This plot is smoothed by

removing the randomness in the system current around the states where the platform is

undergoing some activity. It can be seen that the real power plot has system current in the

 55

shutdown mode which is the low power mode current of the LP3500 and the IR sensor.

In addition, just to separate the two plots, the shutdown power was assumed to be 0 in the

simulation, which is shown as a difference in the real plot during the shutdown state of

the platform.

It can be seen that over a long period of time frame (the LCM period of all the periods for

example), the average power of the platform can best be treated as the average of the low

power mode and the power during the active cycle. Thus, we analyzed periodic

Fig. 4.3 - Power Comparison of Platform vs. Simulation

Shutdown mode

Bootup mode (On state) Execution mode

 56

applications with low duty cycles in this scenario and observed that the average energy

on the platform can be brought down to a much lower value when compared to the

energy consumed when all the resources are always in the active state. With low duty

cycled applications, it is highly advantageous to drive the platform to the lowest energy

operating point by making sure that the platform remains in the shutoff mode whenever

applications are not scheduled or no events take place. In addition, the applications that

can be performed sequentially are executed in such a way so that the transition costs of

the common resources are saved.

It is seen that most energy savings occur when the set of periodic applications are

scheduled to execute in a cluster as opposed to discrete executions in a particular time

frame. This would mostly happen in cases where some periods in the set are multiples of

others. We have simulated various test cases for a multi-application scenario that satisfy

this simplified condition and compared the results with manual calculations that achieve

the optimal schedule. The optimal energy point is a lower bound for the simulations and

the minimum energy through the simulations should converge to this bound as the

granularity of the search space gets finer. The ratio between the worst-case energy and

the minimum energy through each simulation quantifies the amount of energy saved.

Based on the application parameters such as the periods and the tolerances associated

with the duty cycles, the savings ratio can be of magnitude 2, 3 or even higher. For

instance, we have performed simulations for 4-applictions to determine a maximum of a

 57

three-fold improvement. The next section deals with two different sets of simulations,

which show the improvement in energy consumption.

4.4 Analysis of the Results for a 4-application Case

In the present description, we considered two different scenarios for a set of four

applications. The duty cycles, the tolerances and the execution times for these sets of

simulations were chosen so that the energy optimization depended only on the duty cycle

and the tolerance values. The execution times of the application set were small compared

to the duty cycle, tolerances and the boot times of the hardware resources. This setup was

considered to analyze the energy savings in transition costs. Also, the exhaustive search

on both the sets of applications gave improvements of values close to 2 and 3

respectively. We considered examples wherein the duty cycles were such that a

granularity of order equal to the tolerance values of the applications provided the required

near optimal solution. The examples, however, differ in the manner in which we

represent the granularity of the search space. Also importantly, in these simulations the

values of Betas were all assumed to be zero, permitting concurrent execution of

applications. It should be realized that the entire exhaustive process is a non-linear

calculation in general. Hence, no particular scaling factor pair is “good enough” for all

specifications, unless the granularity is made very fine compared to the application

parameters. However, both the examples verify the intuition that the minimum energy

through the exhaustive search converges asymptotically to the theoretical energy

 58

minimum. Convergence to the optimal point can be observed through the increase in the

granularity and the closer the solution is to the optimum, the more monotonically convex

is the behavior of the energy curve. In the next couple of sections, we detail out the

applications parameters use for the 4-application case and discuss the influencing factors.

4.4.a Simulation That Demonstrates a Two-fold Improvement

In the first set of simulations, the parameters used were as follows:

Duty cycles: 1000,1500,2000,3000

Tolerances: 10% of duty cycles i.e. 100,150,200 and 300.

Execution times: 1,2,3 and 4 seconds

The boot times, duty cycles and the tolerances were much larger than the execution times

to demonstrate the energy saving obtained in transition costs. In addition, the idle energy

of the resources was assumed to be negligible compared to the transition energies.

Fig. 4.4 – Energy Savings plot for the 1
st
 simulation

Energy comparison for a 4-application case

0

2000

4000

6000

8000

10000

12000

0 2E-06 4E-06 6E-06 8E-06 0.0000

1

1.2E-05 1.4E-05 1.6E-05 1.8E-05

Granularity factor

E
n
e
rg
y
 (
J
o
u
le
s
)

worst-case energy for the specif ied granularity

best-case energy for the specif ied granularity

 59

There are two subplots shown in fig. 4-4 above. The subplot on the bottom half shows the

comparison of the minimum energy on the platform as a function of the granularity

factor. In this plot, the granularity factor is on the x-axis and the minimum energy for

each granularity factor is shown on the y-axis. The granularity factor is defined as the

inverse of the product of the two scaling factors, discussed in the previous chapter. The

scaling factors are increased in granularity gradually for each set of simulations such that

the granularity factor increases on the x-axis and correspondingly achieves a decrease in

the minimum energy. Instead of providing subplots while fixing one factor and varying

the other, we consider this product variable for convenience, which results only in a

single curve. It yields a monotonically convex behavior in convergence.

The subplot on the top half of the plot is the worst-case energy as a function of the same

granularity factor. It is seen that in the initial coarser searches, the worse case maximum

energy is not achieved but on a lower granularity it is achieved and remains fixed at the

 EAR_sf T_sf 1/EAR_sf 1/T_sf Granularity Factor Min.ener Max.ener

600 500 0.001667 0.002 3.33333E-06 5593 9098.4

600 400 0.001667 0.0025 4.16667E-06 5566 9638.6

500 300 0.002 0.003333 6.66667E-06 5138 9638.6

500 200 0.002 0.005 0.00001 5052 9638.6

300 300 0.003333 0.003333 1.11111E-05 4505 9638.6

400 200 0.0025 0.005 0.0000125 4480 9638.6

300 200 0.003333 0.005 1.66667E-05 4320 9638.6

Table 4.1- Granularity scaling factors and energy values for the 1
st
 simulation

 60

same maximum value at every search of a lower granularity, which agrees with the

intuition of a theoretical upper bound for the worse-case energy.

In short, the comparison between the two subplots shows two things:

1. The convergence of the minimum energy curve to a constant value as the

granularity factor increases.

2. The energy ratio between the worst-case and the optimal energy from the plot is

equal to 2.3 (with the applied granularity). It asymptotically approaches the value

of 2.5 (15/6), which is the energy savings obtained though a manual analysis. The

energy savings is dominated by saving the transition costs of the resources.

4.4 b Simulation That Demonstrates a Three-fold Improvement

In the second set of simulations, the following parameters were used:

Duty cycles: 1000,1000,2000,3000

Tolerances: 10% of duty cycles i.e. 100,100,200 and 300.

Execution times: 1,2,3 and 4 seconds

Fig. 4.5 – Energy Savings plot for the 2
nd
 simulation

Energy comparison for a 4-application case

4000

5000

6000

7000

8000

9000

10000

11000

0 0.002 0.004 0.006

1/T_sf (inverse of the tolerance scaling factor)

E
n
e
rg
y
 (
jo
u
le
s
)

EAR_sf =
600

EAR_sf =
500

EAR_sf =
300

Worst-
case
energyminimum energy for different T_sf values

worst-case energy for different scaling factors.

 61

In the bottom part of the plot in fig. 4-5 above, the minimum energy subplot consists of

three curves, which are dependent on the EAR_sf or the earliest time scaling factor. For

each value of EAR_sf, the T_sf or the tolerance-scaling factor is decreased, so that the

tolerance granularity is increased. In this plot, three separate curves are shown (as

opposed to the combined curve in the first plot) for two reasons.

1. The granularity factor (i.e. the inverse of the product of the two scaling factors)

did not always behave monotonically with the energy, as in the earlier case.

2. More importantly, between the two scaling factors, we observe the dominance of

the tolerance-scaling factor to yield the asymptotic convergence of the minimum

 EAR_sf T_sf 1/EAR_sf 1/T_sf
Granularity
Factor Min. ener Max.ener

600 500 0.001667 0.002 3.33E-06 4442.74 9162.8

600 400 0.001667 0.0025 4.17E-06 4390 9742.76

600 200 0.001667 0.005 8.33E-06 4250 10824.3

500 400 0.002 0.0025 0.000005 4506 10824.3

500 300 0.002 0.003333 6.67E-06 4443 10824.3

500 200 0.002 0.005 0.00001 4390.07 10824.3

400 300 0.0025 0.003333 8.33E-06 4315 10824.3

300 300 0.003333 0.003333 1.11E-05 4391 10824.3

300 250 0.003333 0.004 1.33E-05 4362 10824.3

300 200 0.003333 0.005 1.67E-05 4139.46 10824.3

300 201 0.003333 0.004975 1.66E-05 4164.44 10824.3

200 300 0.005 0.003333 1.67E-05 4315 10824.3

100 300 0.01 0.003333 3.33E-05 4264 10824.3

Table 4.2 - Granularity scaling factors and energy values for the 2
nd
 simulation

 62

energy. Clearly, for a fixed EAR_sf, increasing the granularity of T_sf pushes the

energy value towards the optimal point.

The subplot on the top half of the plot has the worse case energy through the entire set of

simulations. In short, the comparison between the two subplots is summarized as follows.

1. The energy savings ratio must be asymptotically bounded by the value of 17/6 or

2.83, which is the theoretical calculation of the energy savings achieved for the

specified parameters. In our set of simulations, the ratio of the maximum energy

value (10824 J) to the minimum value (4139 J) stands at 2.6.

2. The worst-case energy value remains close to 11000 J and the best-case energy

converges to 4000 J respectively, which provide an energy saving ratio of 2.75.

In the above two cases, we have discussed the possibility of a two-fold and a three-

fold improvement in the energy savings. In fact, the energy savings can be even

higher and can be verified by similar simulations as the number of applications to be

scheduled increase.

 63

4.5 Discussion of Further Possible Test Capabilities

4.5.1 Scheduling for a General Set of Application Duty Cycles

The above simulations were chosen as two simple cases to demonstrate the energy

savings obtained for a 4-application scenario. We had simulations performed for sets of 2

and 3 application scenarios of periodic applications to compare the energy savings

obtained for varying number of applications. Intuitively it makes sense that the savings

increase directly with the number of applications provided the applications have periods

multiple of each other, or at least having a common factor amongst them. The result of

such simplifying conditions is the conspicuous visibility of the energy savings ratio

increase. However, all the results of the algorithm presented were so far, confined to

these simple cases. It is also important to analyze all the scheduler features for an

application suite with periods that are relatively prime to one another. The Least

Common Multiple, which is considered to maintain a schedule that is periodic, cannot be

used as the schedule length if the product of the periods is very large. We have

considered alternatives for the Least Common Multiple, such as a large multiple of the

highest period is substituted for the schedule length. There are certain drawbacks with

this approach.

1. The number of application instances in that schedule length has to be rounded off

for some applications. This would definitely perturb the energy consumption and

the energy savings.

 64

2. The schedule created cannot be repeated periodically because the schedule length

is an approximation to the required length of the Least Common Multiple. This

approximation can offset the minimum energy point through the simulation from

the optimal energy point by a large value.

3. In certain cases, if the period values are closer in value to one another, the

schedule should be chosen to be a large multiple of the larger period value just to

accommodate more instances of each application in that time frame. This would

enable a better result in the energy savings.

4.5.2 Scheduling for Applications with a Definite Dependency

In our scheduling approach, we have considered only parallel or sequential execution of

applications. In other words, the optimal energy point generated through the exhaustive

search for the Betas=0 case and the Betas=1 case are in fact, energy bounds for the all

cases, even those which include task dependency. We have not implemented the feature

of task dependency between subsets of applications i.e. some of the pairs can execute

concurrently while others have to be executed sequentially. This is considered a separate

area of research and is considered in the future work. Furthermore, dependency can be

classified also into the case of resource dependency wherein application can effectively

share the processing time of each processor in execution. The scheduler can incorporate

this dependency by considering Beta values between 0 and 1 and indicating the subset of

applications that require this dependency. Such cases of application suites are more

realistic to occur, as the set of resources need to be shared in wireless sensor applications.

 65

Chapter 5

Conclusion and Future Work

5.1 Conclusion

 We have seen an increasing need for energy consumption in wireless sensor

applications. The present suite of applications have evolved from an earlier class of

acoustic and seismic applications restricted to target tracking and sensing to a complex

set involving distributed monitoring, surveillance and networking applications. There is a

great need for secure communications and reliable date transfer in such applications. For

the earlier simpler class of applications, dedicated integrated-circuit logic could be

effectively utilized to obtain good performance with incorporation of efficient power-

optimization schemes. As discussed earlier, the evolution to a more complex nature have

widened the demands for energy. Traditional hardware architectures with dedicated logic

processing units cannot certainly satisfy the present requirements. We proposed a newer

hierarchical architecture with a processor-preprocessor division and the software

consisting of a complex operating system. The hardware platform runs Linux, which

supports all the secure lower-level communication protocols and the higher-level

complex applications. However, the need for higher energy is conspicuous with the

requirement of supporting such complex networking protocols and image processing

algorithms. The platform features were given an overview in the first chapter with the

concept of resource scheduling for a set of energy-aware wireless sensor applications.

 66

 The main area of discussion of this thesis is to describe the necessity of

scheduling for such computationally and resource intensive wireless sensor applications.

In the first part of the thesis, we defined the various parameters required for the scheduler

in the context of the application suite. Most importantly, we explained in detail the

fundamental differences in the present approach and the previous algorithms described in

literature. We then proposed a solution to determine the optimal schedule that operates

the platform at the minimum energy point and outlined some variations.

 The remaining part of the thesis is divided into two separate discussions. The first

discussion deals with a simple heuristic approach that gives an intuition on a 2-

application scenario. The second discussion, which forms the crux of the thesis deals with

scheduling of multiple sensor applications, each of them with their specifications. The

minimum energy point in the scheduler algorithm can be discovered through an

exhaustive search, which should converge to the theoretical optimum value as the

granularity of the search space is increased. We discussed the variation in granularity

through two scaling factors; the lowering of whose values has an increase in the

execution time of the search algorithm. However, as we discussed in the earlier chapters,

the energy cost function is a non-linear function in its variables, so it is not possible to

generalize the effect of increasing granularity to a continuous decrease in the minimum

energy determined. Two simulations were shown that support the notion of an asymptotic

convergence to the optimal value as the resolution increases and it was also discussed that

it is not possible to model the behavior of the energy curve (as a function of the

granularity) to be entirely convex in nature. The last part of the thesis included a

 67

discussion on some non-typical cases of application parameters and the performance

improvement that could be obtained through scheduling.

5.2 Future Work

In the present work, we had discussed scenarios in which the applications

scheduled were periodic and moreover, had their periods be multiples of one another. In

such situations, the least common multiple would be larger compared to the individual

periods by a small order of magnitude. However, in the previous chapter we mentioned

that there existed a limitation in the scheduling algorithm to decide the length of the

schedule when the periods were relative primes. In an extension to the present algorithm,

we would be working to include the scheduling mechanism for such scenarios. A

proposition being considered is to construct schedules for windowed subsets of

applications based on the exhaustive approach. This would result in discrete

“superframes” of application instances with their own schedules. It is evident that no

periodic nature exists between the set of superframes. Moreover, we do not consider the

product of all the periods as the whole schedule length but partition the time frame into

smaller lengths to accommodate multiple instances of each application. The exhaustive

approach guarantees an optimal schedule for each of these partitions. In addition, a

heuristic approach could be used to adjust for minimal energy operations at the

boundaries of each of these superframes. Thus, it can be concluded that the larger

scheduling problem could be decomposed efficiently into smaller problems to achieve an

 68

optimal schedule for a large enough period of time. However, it can be seen that, the

number of superframes has a direct effect on the energy optimality in that many

scheduling computations would be required.

In addition, we highlighted the importance of scheduling to achieve the optimum point.

The prototype of the Smart Objects platform we considered was shown in the first

chapter of this thesis. The scheduler algorithm had as its input, the resource parameters of

the various hardware blocks shown in fig. 1.1. In addition, the power consumed in each

time unit for the various modes of these resources and the application parameters

determined the optimal schedule. However, we have demonstrated a robust scheduling

algorithm that behaves as a many-one mapping of the all the above inputs to produce the

energy minimum. In other words, this algorithm works for any application and resource

data supplied by the developer. Presently, another sensor platform is being developed

with the main processor being the STARGATE processor that has it own advantages in

terms of the boot and the shutdown times.

 The main aim of this future work would be to execute the same set of

applications across these two different platforms and make a comparison of the energy

savings that occur between the two platforms. In this way, the scheduling algorithm could

be efficiently tested for robustness in addition to its precision to arrive at a near optimal

solution. With the advent of such a generalized algorithm, it only becomes easier to deal

with the varying range of complexities in wireless sensor applications and at the same

time, successfully implement different hardware platforms to execute those applications.

 69

 BIBLIOGRAPHY

[1] A. Sinha and A.Chandrakasan. “Energy Efficient Real-Time Scheduling”. Computer

Aided Design, ICCAD 2001. 458-463, Nov 2001.

[2] M. Srivastava, A.Chandrakasan and R.Brodersen. “Predictive system Shutdown and

other architectural techniques for energy-efficient programmable computation”. IEEE

Transactions on Very Large Scale Integrated (VLSI) systems. VOL 4. 42-55. March

1996.

[3] H.El-Rewini, T.G.Lewis and H.Ali. Task Scheduling In Parallel And Distributed

Systems, Prentice Hall, 1994.

[4] A. Chandrakasan, A. Burstein and R.W. Brodersen. “A low-power chipset for

portable multimedia applications”. ISSCC, Feb 1994 pp 82-83

[5] E.L. Lawler and C.U.Martel, “Scheduling periodically occurring tasks on multiple

processors”. Information Processing Letters. 12(1): 9-12 (1981).

[6] J.Hill, R. Szewczyk, A. Woo,S. Hollar, D.Culler and K. Pister. “System Architecture

Directions for Networked Sensors”. ASPLOS 2000, Cambridge, November 2000.

[7] G.J. Pottie and W.J.Kaiser, “Wireless Integrated Network Sensors”. Communications

of the ACM. Volume 43 Issue 5, 51-58, May 2000.

[8] A. Manzak and C. Chakrabarti. “A Low Power Scheduling Scheme With Resources

Operating At Multiple Voltages”. IEEE Transactions on Very Large Scale Integrated

(VLSI) systems. VOL 10. No.1, February 2002.

[9] F.Zhao, J. Liu, J. Reich, M. Chu and J. Liu. “ Programming Embedded Networked

Sensor Systems”. CODES+ ISSS 2003. October 1-3 2003, Newport Beach, CA, USA.

[10] R.W. Brodersen, A. Chandrakasan and S. Sheng. “Technologies for personal

communications”. VLSI circuits symposium , Japan 1991.

[11] T.Perling, T.Burd and R. Brodersen. “The simulation and evaluation of dynamic

voltage scaling algorithms”. Int’l Symosium on Low Power Electronics and design, pages

pp 76-81, Aug 1998.

[12] M. Weiser, B.Welch, A.Demers and S.Shenker. “Scheduling for reduced cpu

energy”. The first symposium on Operating Systems Design and Implementation (OSDI),

pages 13-23.

 70

[13] Apple Computer Inc., “Power manager IC, and reduced power modes” in Technical

Introduction to the Macintosh Family. Reading, MA: Addison-Wesley, Oct. 1992, ch 20,

2
nd
 ed.

[14] H.S. Stone, “Multiprocessor performance”, in high-performance computer

Architecture. Reading MA: Addison-Wesley, 1987, ch 6.

[15] C.-L. Su, C.-Y. Tsui, and A.M.Despain, “Low-power architecture design and

compilation techniques for high-performance processors,” Digest of Papers, IEEE

COMPCON Spring ’94, Mar. 1994.

[16] M.Muller, “The ARM6: Power efficiency & low cost,” Hot Chips Symp., Aug. 1992,

pp. 3.3.1-3.3-11.

