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Present day wireless sensor platforms must support applications such as imaging, 

networking and security. Challenges that accompany such applications include 

complexity in signal and image data processing, high data rate in the wireless networking 

and supporting a fully secure system. In addition to the problem of supporting a suite of 

resource intensive and computationally burdensome sensor applications, there is also a 

need for continuous vigilance in unattended environments. The focus of this thesis is a 

resource-scheduling algorithm that enables a novel distributed processor platform to 

operate at the optimal point in energy while catering to such a class of wireless sensor 

applications. 
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CHAPTER 1 

 

 

Introduction 

 

1.1 A brief overview on Sensor Platform Requirements 

 

Present wireless sensor applications have extended in scope and importance from 

simple day-to-day utilities like temperature and pressure measurements to complex 

exercises such as environmental and land surveillance, health monitoring and battlefield 

security [7]. An increase in the complexity of applications correspondingly brings about 

an increase in measures such as implementation costs, time to establish results and most 

importantly, in a sensor system’s perspective, the energy required to cater to the very 

broad range of applications suite. These range from computationally intensive 

applications such as image sensing and processing to resource intensive applications such 

as wireless networking. These applications demand a complex, fully functional operating 

system thus enabling a secure platform for wireless sensor architectures. However, such 

an environment can only increase power requirements. There is a factor of 1000 in the 

ratio of the power needed to execute such an application set to what is typically supplied 

by a battery that is used to power up the sensor devices and the various hardware 

resources on the backend processing. This would essentially widen the energy gap 

between the energy demanded and what is present. 
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A specific example is in the context of NIMS or Networked Info Mechanical 

Systems, an area of wide interest in the sensor network community. These are mobile, 

distributed nodes that are deployed into the environment to perform image sensing and 

processing, networking and other resource intensive applications which demand power at 

the order of milli-watts. Thus, large batteries are used to supply power to the each of the 

distributed set of nodes. In short, the energy problem is one of the most important issues 

presently tackled by the sensor network community. 

 

1.2 The Wireless Sensor Architectures 

 

1.2.1 Previous Architectures 
 

Previous architectures used for wireless sensor applications have been discussed in the 

literature. Most of them are equipped with a micro-controller that can display variable 

power modes, memory for holding the memory data and a typical sensor suite. Each 

component consumes a fraction of a Watt of power through the use of these low-power 

microcontrollers. However, there is a trade-off seen in the architectural complexity vs. 

the system applicability. The complexity of the algorithms executed on such platforms is 

fairly low thus, restricting their usage to specific applications. For example, [6] describes 

the Mica Mote wireless sensor system has been developed in UC Berkeley. It is an 

example of the unification of sensing, processing and wireless networking in a single 

package. The operating system that runs on the Mote, called the TinyOS, supports 
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components that provide efficient network interfaces and which perform with little 

processing and storage overhead. The reader is encouraged to read [6] to understand the 

design features of TinyOS. However, the Mote’s processor, which is an 8-bit, 4 M-Hz 

Atmel processor, cannot perform floating-point arithmetic operations [9]. As an 

experiment, by adding system features into TinyOS, emulations were performed to 

compute and compare the execution times of computationally intensive algorithms. It was 

found that the execution time of FFT algorithms took tens of seconds, which could have 

been performed in far less time on a dedicated microprocessor running a fully functional 

operating system.  

 

On the other hand, there have been distributed-processor wireless platforms implemented 

which have been successful in catering to the low-power requirement while performing 

computational and resource intensive applications. For example, [2] and [10] discuss the 

Infopad, a multimedia terminal from the University of California Berkeley. The 

applications that are executed on the Infopad consist of computationally intensive 

applications such as speech, video and graphics applications. All the application related 

computing is performed on remote servers. The components of the platform consisted of 

low power ASIC’s with embedded processor cores and other general-purpose 

microprocessors. Wireless sensor platforms that support hierarchical and modular 

hardware architecture and which support a complex operating system for secure 

transmission of data are desired. We integrated such a platform similar to the above-

discussed concept with Commercial Off the Shelf (COTS) units, where the power 
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intensive operations could be executed on backbone servers. In addition, the platform can 

drive towards the lowest energy operating point by a resource scheduling mechanism we 

have implemented. In addition, the advantages are yielded by the processor-preprocessor 

architecture while dealing with periodic applications with specified duty cycles. 

 

1.2.2. Our Proposed Architecture 
 

 

We have implemented the Smart Objects Platform, which is based on the principles of 

hierarchy in processing. The platform supports Linux, which is a fully functional 

operating system supporting security features necessary for specific applications. The 

hardware resources can be portioned into a processor-preprocessor architecture, wherein 

the processor is a power-intensive embedded unit that executes whenever a preprocessor 

triggers an event and requests services from the processor. Periodic applications such as 

monitoring and detecting changes can be effectively performed on the preprocessor 

modules.  In addition there is a power-management preprocessor, which is essentially a 

micro-controller. There is a clear hardware/software partition on the platform as desired 

by the embedded systems community that governs the hierarchy on the platform. In 

addition, the platform uses a dedicated scheduling algorithm that aims to provide an 

optimal schedule to run the various hardware resources in both periodic applications and 

when event-driven applications arise. 
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1.3 An Overview of Scheduling 

 

1.3.1 Kinds of Scheduling in Research 

 

There have been many scheduling algorithms at various levels in embedded systems. 

Operating systems have their own scheduling mechanisms. Often heuristic approaches 

are employed to achieve a near optimal solution in scheduling algorithms, as task 

allocation and scheduling problems are known to be NP-complete problems in time [3]. 

Researchers have used scheduling techniques to optimize different parameters for 

applications such as deadlines, execution time of the entire schedule or the schedule 
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length and energy consumption, all of which can be represented as a cost function. The 

results of these algorithms do provide globally optimal solutions in certain cases while 

providing near-optimal solutions in other cases pertaining to the factors like the time to 

execute and the urgency of the schedule requirement. The two main optimization 

parameters that follow in our discussion are the net energy consumed and the deadlines 

requirements for the set of periodic applications. The energy-optimization based 

scheduling is described first followed by scheduling to achieve deadlines. 

 

The standard equation for power consumed in a CMOS integrated circuit is given by: 

 

                                 

where CL at the CMOS gate, Vdd is the supply voltage, f is the clock frequency and α is 

the switching activity, which is defined as the probability of switching from an ON state 

to an OFF state during a clock cycle. Changing one or more independent variables on the 

right hand side of the equation affects the net power consumed.  

 A popular kind of power scheduling called voltage scaling is explained in detail in 

[1] and [8]. In this approach, the supply voltage allocated to each resource on a hardware 

platform can be controlled. This will have a large effect on the power due to the quadratic 

dependence on the supply voltage, Vdd. In addition, adjustment of the clock frequency 

factor, f can lead to substantial improvements in energy savings. Provided that hardware 

resources can operate in a variable clock environment, the clocks assigned to various 

         P=α*CL*V
2
dd*f                 (1.1) 
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hardware resources can be slowed down or even shut off when the particular resource is 

not in use. These approaches form a part of dynamic power management. 

  Another class of scheduling algorithms deals with task allocation to satisfy 

deadline requirements provided by the application developer in addition to catering to the 

low energy requirement. The algorithms proposed in the literature are dynamic in nature, 

such as the Earliest Deadline First (EDF) algorithm, which assumes resource sufficiency 

i.e. all the set of tasks are schedulable irrespective the unpredictability in their times of 

arrival. This approach suffers a heavy degradation in the presence of a heavy overload 

[1]. Improvements over this approach are described in [1] and the algorithm is modified 

into the Slacked Earliest Deadline First (SEDF) algorithm, which asymptotically 

converges to the performance of the EDF algorithm. There have also been heuristic 

algorithms that provide globally optimal solutions in certain cases while providing near-

optimal solutions in other cases pertaining what the requirements are. For a complete 

understanding of certain heuristic scheduling techniques such as Earliest Deadline First 

and it variations, the reader is encouraged to refer to [1].  However, in the case of 

wireless sensor platforms, where power optimization is the key concern, it is desired to 

operate near the minimum point, which might be achieved only through an exhaustive 

search of all possible schedules.  

1.3.2 Our Scheduling Approach and Requirements 

 

The scheduling problem considered in our research has been to optimize the global 

energy on the platform to perform a series of tasks over a period of time while enabling 
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applications to complete within a specified deadline. The applications to be executed 

provide additional constraints such as the period of operation, their execution times and a 

tolerance around which they can be executed. Optimal solutions are desired, which lead 

to the implementation of an exhaustive approach. The overview and details of our 

scheduling algorithms are explained in detail over the subsequent chapters. Some of the 

main features of the different approaches considered for a simple 2-application scenario 

and in general, for a multiple application case are mentioned below. 

 

The first method proposed was a constrained approach where two periodic applications 

with specified duty cycles were considered. The scheduling procedure was based on a 

greedy approach wherein instances of applications whose period multiples mapped 

partially or completely were scheduled first. This maximum overlapping of processor 

execution times would save the energy related to the transition costs (shutting down and 

booting back again) of all the common resources. The remaining instances of these 

applications have situations where energy savings could not be achieved because they 

have to be executed in discrete time frames. Although this approach gave an initial 

intuition on scheduling for periodic applications and also converged to a solution in a 

very short execution time of the algorithm, the approach was not extensible in the case of 

a multiple application scenario. 

 

In order to cater to the most general case while guaranteeing a globally minimal energy 

operating point, an exhaustive approach was considered, which essentially considers all 
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possible combinations of potential start times of all the instances of each application. The 

scheduler matrix created out of each such combination is tested for the optimal energy 

case. There were factors that influenced the exhaustive search space considered to trim 

the execution time of the search algorithm. The details of this approach are explained in 

chapter 3 of this thesis. 

Finally, a certain kind of a variational approach involving hierarchical notions is 

also mentioned. Pre-computed schedules of already assigned applications could be 

utilized and new applications that ought to be scheduled could be best fit in into these 

optimal schedules. Although this approach would not guarantee an optimal solution, the 

advantage clearly is that the complexity of the search algorithm is always maintained at 

O(n
2
) i.e. that of a 2-application case. In addition, a good solution can always be worked 

out given earlier hierarchies of computed schedules. 

 

1.4   Outline Of the Thesis 

 

The remaining chapters of this thesis are organized as follows. In chapter 2, we present a 

brief architectural description of the Smart Objects platform. The various parameters for 

an efficient scheduling are discussed. A heuristic scheduling algorithm is described for a 

simple 2-application scenario, which gives an overview of the general concept of 

application scheduling. In chapter 3, we extend the scheduling algorithm into an optimal 

exhaustive-search approach to cater to any multiple application specification. The various 

factors that affect the optimality and execution time of the algorithm are discussed in 
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detail. Various test vectors that were validated by hand calculations earlier are tested in 

the simulation for correctness. Some results and plots that explain the characteristics of 

the scheduler and describe graphically the advantages of scheduling follow the test vector 

analysis. In the last chapter, we provide a conclusion and discuss the scope for future 

work. 
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CHAPTER 2 

 

Smart Objects Platform and Scheduling Overview 

 

2.1 Platform Description and Typical Application Suite 

 

The Smart Objects platform has a defined hardware architecture that consists of a power-

intensive processor unit and a series of preprocessor units whose functionalities are 

described during the course of this chapter. Application developers publish resource 

requirements, which are constituted from the set of the various processing and 

preprocessing units in the environment. The scheduler module observes application duty 

cycle, deadline demands and tolerance values. It then computes an energy-efficient 

operation schedule that meets the task and resource requirements at minimum energy 

consumption. The micro-controller preprocessor, LP3500 manages power and the 

platform management episodes through the schedule vector transferred to it by the 

scheduler. This chapter presents the scheduling mechanism that runs as an a-periodic 

application on the power-intensive processor. The demonstration of an energy-efficient 

environment is done through this efficient scheduling of the registered applications 

according to their resource pools. The scheduler algorithm can be best viewed as an 

application as it also utilizes resources such as the PFU processor and the pre-processor 

LP3500.  

 



 24 

The applications that ought to be demonstrated in this distributed energy-aware wireless 

sensor environment include computationally intensive applications such as object 

tracking and image processing and resource-intensive applications such as networking 

and sensor node discovery. In addition, co-operative applications such as acoustic 

beamforming can also be demonstrated.  

 

2.2 Scheduler Algorithm Stages 

 

2.2.1 Registration 

 

The initial prototype of the environment has a remote node networked with the Smart 

Object node that sends in the configuration files representing each application. The 

scheduler application has its own internal configuration file, which it reads along with the 

others. The first stage of the algorithm is the registration stage (Fig. 2.1), wherein it 

reads the published resources needed for each application. Each of the resources is 

constituted from the imager (camera), the imaging preprocessor, the PFU processor (for 

executing computationally intensive applications) and the wireless LAN unit (for 

information transfer across nodes and for discovery). The application descriptor files are 

transferred to the Smart Object node from a remote “application” node through a secure 

file transferring protocol. The files contain information such as the executables for each 

application, the approximate execution times for each application, the duty cycle around 

which the applications have to be performed, a tolerance value that measures the 
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feasibility level of deviation from the true period and most importantly the resources 

required for execution. The application developer publishes all these parameters in the 

respective configuration files of each application. Old descriptor files are deleted after 

resource allocation is provided and new applications that were queued previously would 

be scheduled to achieve a new optimization scheme. If no new applications exist, then the 

present scheme would execute unless prompted by any event that requires an immediate 

usage of the system resources. The entire environment runs on a Linux platform and the 

concept of parameter passing through signals is utilized in the demonstration. The Linux 

file systems are utilized to write all the required parameters of each application. This 

approach provides a simpler means of communication that we have extended to the 

scheduling of multiple applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1- Registration stage of the Application set 
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2.2.2 Optimization for a Static Scheduling Scenario 

 

2.2.2.a Theoretical Details  
 

Once the resources for a particular set of applications are obtained, they are passed onto 

the optimization stage of the algorithm. The scheduling optimization algorithm runs in a 

variable time after the initial registration has taken place. During this time, the resource 

requirements are considered for each separate application. The idea is to complete as 

much preprocessing work as possible for each application so that applications can utilize 

the power-intensive processor within a common time frame. It is experimentally verified 

that the power consumed by the PFU while running simultaneous applications is 

insignificantly different than running separate applications. Once the power optimization 

algorithm determines at what time frames each processing unit is set to work and which 

are shutoff during those times, a matrix table is created which is then passed into the 

LP3500 (the power-management preprocessor) to read the table sequentially and operate. 

Whenever the PFU processor is ON, an updated scheduler table is copied onto the 

LP3500, which caters to both situations; a new application is added or that no new 

application occurs (wherein the table remains unchanged). The algorithm for the creation 

of the scheduler vector itself takes in the physical attributes of each of the processing and 

preprocessing units such as the boot up/shutdown times, the wake/sleep times, the 

processing times of the applications on the respective processing units and most 

importantly, the power dissipated through each of the processing units in different modes. 
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The optimization algorithm in its simplest version considers the above-mentioned 

attributes and resource parameters and assigns begin and end times for each application 

in its respective duty cycle frame. The scenario that is to be demonstrated on the platform 

is a periodic surveillance of the environment for routine versus interesting objects 

through simple differencing between images and if required, template matching. The 

frequency-domain template-matching algorithm is computationally intensive and can be 

demonstrated efficiently on the platform. The optimization algorithm results in a resource 

management mechanism (in the form of a matrix that describes the states of each 

resource at various time frames) transferred from the power-intensive processor to the 

low-power power-management preprocessing unit. The schedule matrix displays the 

resources to be switched on and switched off appropriately. Resources common to the 

applications are dealt with in accordance to when they are required to be switched i.e. 

depending on the smallest begin time of the applications. The time axis should be 

considered to be granular by creating smaller time ticks to ensure the various processing 

units start and end as close as possible to the determined values.  

 

2.2.2.b A Heuristic Approach for a 2-application Scenario 

 
 

The algorithm is described by an interval partitioning method wherein the duty cycle 

frames of each application are matched into three different cases and scheduling of 

applications into appropriate execution times are done individually for these three cases.  

 



 28 

Case 1: The current duty cycles are such that one frame is embedded in the other frame. 

Case 2: A partial overlap exists between two duty cycle frames. 

Case 3: The current duty cycle frames are completely exclusive of each other. 

In cases 1 and 2, all resources that are common to both applications have to be managed 

such that the tasks are handled in parallel when such resources are in the execution mode. 

In other words, it makes sense to schedule tasks while making sure that the particular 

resource is back to shutdown/idle mode only after the completion of the scheduled tasks. 

In case 3, the scheduling has to be done individually to all the frames that have not been 

dealt with in either cases 1 or 2. Fig. 2.2 shows the demonstration for a typical two-

application scenario. It can be seen that scheduling of the two applications is done such 

that the partial and complete overlapping cases are utilized extensively and the remaining 

unscheduled frames are scheduled independently. However, if power optimization can be  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2- Static scheduling for a 2-application scenario 
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achieved by maintaining resources to be in idle as opposed to a complete shutdown, the 

algorithm searches for all possibilities and determines the states of the resources (when 

not utilized) such that the net power over the desired sets of duty cycle frames is 

minimized. The above process wherein scheduling of applications takes place before the 

actual activation is termed as static or off-line scheduling. The schedule for the entire 

sequence of task execution (as in the periodic surveillance scenario given duty cycle and 

tolerance values) can be conveniently stored in a vector table. 

 

2.3 A Brief Overview of Dynamic Scheduling 

 

 

The present section deals with scheduling of tasks, which form a part of dynamic 

scheduling. There are two kinds of scenarios that constitute dynamic scheduling. The 

first case is that of event detection- a case wherein resources are woken up immediately 

in order to verify a noticeable disturbance in the environment. The other case is that of an 

online scheduling of tasks where new application registration and scheduling decisions 

are to be taken at run-time on the set of active tasks. The scheduling of multiple tasks on 

the distributed processor platform is explained in detail in the next chapter. In the present 

section, the phenomenon of event detection is explained along with the communication 

interface between the processor and the power-management pre-processor. 

 The scenario of periodic surveillance of the environment is demonstrated 

effectively on the platform through the optimization scheme proposed above. However, 
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there might be instances where simple differencing of images is not sufficient to 

determine if there was any significant change in the environment. The arrival of a new 

object in the environment creates a significant change, which would be detected by the 

motion sensor. The infrared sensor communicates directly with LP3500 in case of 

detection of a new object. The networking application is invoked to obtain templates for 

the frequency-domain template-matching algorithm to execute. An action is then taken 

depending on whether the new object is interesting or not. However, there are some 

additional cases that do not constitute event detection. For example, there might be 

instances where the motion sensor fails to detect the presence of a new object if it appears 

either too slowly or too quickly. There might also be an instance where the sensor detects 

a moving object that appears and disappears from a scene. In this case, networking need 

not be invoked since there was no change in the scene. Such cases do not count as the 

occurrence of an event. 

 

In case of an event occurrence, all the required resources, which are in idle, sleep or 

suspend states, are immediately woken up. In the present architecture, the power 

intensive PFU processor has idle, a cold shutoff/boot up and suspend/wake states whereas 

all the remaining pre-processing units have a hard shutdown and boot up states. Once the 

IR sensor communicates to LP3500 about the presence of a new object, the preprocessor 

halts the present execution of the schedule vector transferred by the scheduler and wakes 

up the needed resources (if not awake already) to begin the necessary application. Once 

the required application is executed, the PFU can go back to the sleep state or continue 
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executing other applications depending on the command issued by the power- 

management pre-processor, LP3500.  

2.4 The Communication Interface 

 

The communication interface between the LP3500 and the PFU should be made as 

minimal and yet as flexible as possible.  As mentioned earlier, the initial prototype of the 

platform has the components talking through file systems. There are two types of 

commands issued from the LP3500 side to the PFU side. The interface has as its 

parameters, the schedule matrix (determined from the optimization algorithm) and a file 

to read sent from the LP3500 side. This file contains a value that enables the interface to 

read the schedule matrix and execute either of the two commands- an EXE command that 

indicate the schedule to be followed by the various processing units when the processor is 

ON and an SCH command, which indicates what schedule by the other processing units 

when the processor is OFF. In other words, the interface function presents a convenient 

mechanism by which the representation of the schedule matrix (through a huge sparse 

matrix of 1’s and 0’s) is translated into a form that can be viewed as one of two 

commands executed by the various components of the platform. The command is written 

from this interfacing function into another file that is accessed by the LP3500 processor 

and executed accordingly.  
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2.4.1 Description of the Scheduler Matrix 

 

For a clear communication between the Scheduler algorithm and the interface, the tabular 

matrix is represented as follows. 

 

1. A time index is the first column of the matrix, which can be synchronized to the 

real-time on the platform either directly or through some scaling factor.  

2. The next eight columns represent the “hardware bits”. Presently, there are three 

bits whose states can be toggled between 0 and 1. The first bit corresponds to the 

ON/OFF state of the PFU processor. The third bit corresponds to the ON/OFF 

state of the AXIS processor and the fourth bit corresponds to the Imager. The 

remaining hardware bits are presently inactive. For the future, the SUSPEND 

state of the PFU processor is to be integrated into the platform. It is to be noted 

that some of the hardware bits are “don’t care” bits, which have been set to 0. 

3.  The next eight bits corresponds to the time indices where a particular application 

or a group of applications start, beginning from application 1 onwards. The 

interface function scans the tabular matrix for all the positions where a particular 

application starts and informs the LP3500 to start the specific hardware resources 

and in addition execute the appropriate software executables that constitute a 

particular application.  

As an example, as shown in fig 2.3, a row of a sample schedule matrix at time t=100 is 

shown along with the various hardware bits.  
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With such a tabular description, it not only becomes easier to communicate with the 

interface but also the total energy of the platform is easier to calculate. The total energy 

of the system is the sum total of the boot, the execution and the shutdown modes. The 

table is scanned and the net energies of each resource in different modes of operation can 

be accumulated to determine the total energy of the platform. The detailed description of 

the scheduling function and the interface function can be viewed through the c-files, 

scheduler.c and schexe.c respectively. These basic models for the schedule optimization 

and the interface can be extended to include online scheduling of events. A generalized 

optimization algorithm that is developed for an arbitrary number of applications based on 

a pure exhaustive search is discussed in detail in the next chapter.  

 

 

 

 

Table 2.1- Description of the hardware bits of the tabular matrix. 
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CHAPTER 3 
 

 

Scheduling for Multiple Applications 
 

3.1 A Generalized Approach 

 

There is often a greater demand to be able to perform a larger set of sensor applications 

on the Smart Objects low-power platform. The sensor application suite typically includes 

network discovery, peer discovery, event detection and scheduling. Each of these 

applications has their own application descriptor files. Initially, the Smart Objects 

interface observes that there is no schedule vector present. It then downloads a schedule 

from a server, which has been set up specifically to share the computational burden. The 

scheduler algorithm that is executed on the remote server is the most robust method for 

the energy optimization scheme on the platform. It performs an exhaustive search on all 

the possible schedules of the applications to find an energy minimum. The schedule that 

determines the lowest possible energy on the platform over the entire application 

episodes is decided to be the optimal schedule. There is a computational complexity vs. 

energy optimality tradeoff involved in such an exhaustive method. In order to perform a 

complete search, it is imperative to perform the search algorithm offline on another node 

specifically set up for the computational burden, especially when the application set is 

large (i.e. >= 4 applications). This would also enable the platform to be devoid of any 

computational complexity for long periods of time, thus supporting the low-power 

capabilities.  
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The advantage of the exhaustive approach is that there will not be any 

computational stress on the low-power platform. However, this approach would not be 

feasible whenever a new application with a very high duty cycle needs to be registered 

into the application pool and needs to be executed. The platform has to wait for the 

optimization to be finished in order to accommodate the new application, leading to an 

over dependence on a remote unit. Furthermore, the network resources on the platform 

are also burdened to communicate with an offline server to transfer the schedule. To 

counter this, approaches involving scheduling hierarchies can be employed wherein old 

optimal schedules for the previous application set are maintained and a new application is 

accommodated (according to its own constraints) into the existing schedule in such a way 

that the net energy on the platform remains optimized. The advantage of such a scheme is 

that the algorithm complexity would remain at the complexity of a 2-application case. 

Moreover, the platform can slowly adapt to the lowest operating energy point through a 

more complete search starting from the initial estimate, which might be a coarse 

evaluation. In addition, certain other techniques would result in the narrowing down the 

search space for task allocation. To be more specific, placing the constraint of the 

deadline values before the exhaustive procedure reduces the search space. This would 

essentially guarantee a search through a smaller space of possible schedules. The tradeoff 

however is that it might also overlook better possibilities that were eliminated during the 

determination of the near-optimal scheme. A brief explanation of the hierarchical 

approach is given in the next section. However, the exhaustive approach is considered in 

all our simulations and the results are discussed in the next chapter. 
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 3.2 kinds of Multi-application Scheduling 

 

3.2.1 The Exhaustive Approach 

 

The complexity of the optimization scheme is clearly in polynomial-time with a degree of 

the number of applications. The algorithm implemented as an exhaustive approach to 

determine a schedule guarantees the global minimum for the net energy consumed. In this 

approach, all the applications are considered in all possible alignments over the entire 

time frame of consideration (typically the least common multiple of the duty cycle times 

of all the applications). Each of the applications is placed in all possible combinations 

with the remaining ones and the set of schedules (that display the start times of each 

application) are gathered. Out of this set, a schedule is chosen that also satisfies the 

constraints of the deadline values. The schedule for this entire frame can be repeated 

from the beginning, provided the number of applications remains fixed for extended 

periods of time. 

3.2.2 The Hierarchical Approach 

 

After the registration stage, a scheduler matrix (or possibly a list of scheduler matrices if 

the global minimum occurs at different sets of search points) is created out of the existing 

scheme (involving an exhaustion approach e.g. for a 2-application case). Each application 

thereafter that is already registered is introduced onto each of these lists and the resultant 

energy is examined to determine if a global minimum is achieved again. To be specific, 
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such variational approaches best serve to operate when new applications are 

accommodated wherever the computationally intensive resources are already in 

execution, performing the earlier applications.   

 

3.3 The Exhaustive Approach for Scheduling 

 

3.3.1 Registration for Multiple Applications 

 

The present scheduling algorithm schedules a set of sensor applications specified in a 

configuration file sent by the application developer to the scheduler. The algorithm is 

classified into two stages. 

A: The registration stage 

B:  The optimization stage 

The registration stage as discussed in the previous chapter, registers a dynamic set of 

sensor applications that need to be executed with specified duty cycles. The descriptor 

files contain all the required parameters to implement an efficient schedule that observes 

a global minimum point in energy. For demonstration purposes, a scenario can be 

considered for an offline scheduling wherein the registration stage of the algorithm 

accommodates a variable set of applications. A configuration file is sent by the 

application developer that contains the number of applications to be scheduled along with 

the filenames of each of the descriptor files. Following this, the descriptor files for each 

application are read and all the resources are registered. 
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  Below is shown a flowchart of the entire optimization structure, with all the 

important functions highlighted. The iteration approach to the exhaustive process is 

depicted in a separate flowchart. The scheduler matrix that results from the exhaustive 

search represents the optimal scheduling scheme that can be re-used until a new set of 

applications are provided by the developer for an efficient scheduling or if a new 

application is added to the existing application pool.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Begin 

Optimization 

Compute an 

LCM time frame 

for the schedule 

Obtain parameters for 

all applications. 

** THE 

EXHAUSTIVE 

FUNCTION 

Pass the entire parameter pool 

DONE 

Explained in detail separately 

Fig. 3.1 – Optimization stage for multiple applications 
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The present approach is verified for a smaller scale of data (to verify the correctness of 

the algorithm) in both the cases of  

A: Larger periods for applications  

B: Application number >= 4 

are being considered for a timing analysis. In the next chapter, various test vectors are 

generated to examine the features of this approach. The test cases vary from simple ones 

in which the duty cycles are multiples of each other to more general cases where the 

LCM is the product of all the periods. The scheduler performance is analyzed for these 

different cases to determine the energy savings attained by operating at the minimum 

point as opposed to an unscheduled event where the probability of working on a worst-

case energy point is very high. In addition, the peak to average power analysis is made 

for the entire exhaustive search in which a fixed battery supply is assumed and the power 

consumed by all the resources in each mode is provided by application developer. The 

histogram provided in the next chapter supports the importance of scheduling in order to 

obtain the minimum operating point.   

3.3.2 Description of the Exhaustive Function 

 

The exhaustive approach is brute-force implementation of the search involved in the 

determination of the global minimum. The idea is to construct a cardinality set for each 

application j, which basically corresponds to all the possible combinations of the start 

times of each instance of each application. All these sets are then considered and each 

combination across such sets is sent into the energy minimization function. The absolute  
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Fig. 3.2 – Flowchart of the exhaustive loop 
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energy minima point is determined by evaluating for all iterations, the corresponding 

table matrix to output an energy value for the entire running time. The exhaustive 

function is divided into smaller subroutine calls (in the sequence shown in the C-code): 

1. AssignTimes: This sub-routine is called in the function ExhaustionApps function. 

In this function, each combination of possible start times from the cardinality set 

of each application is sent in to update the created tabular matrix. The update 

corresponds to the corresponding hardware bits being set for the entire runtime of 

each application.  

2. CreateTable: This subroutine allocates dynamic memory and initializes the 

tabular matrix. 

3. IncrementApps: This function makes sure all the possible combinations are 

considered across each cardinality set. Since the number of such sets is a variable, 

the index of the element position (corresponding to a specific cardinality set) is 

incremented to indicate the completion of a single iteration. 

4. IncrementFrames: This function is similar to the IncrementApps function but 

differs in the way that it runs across all the possible instances of each application 

and exhaustively gathers for every iteration, all the possible start times of all 

instances for a particular application. Each time this function is called, a 

cardinality set for each application is updated. 

5. Exhaust_frames: The Exhaust_frames function calls the IncrementFrames 

function repeatedly to create the cardinality set for each application. Once such a 

set is created for each application, the ExhaustionApps function can run across 
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every cardinality set, pick an element from each set and pass into the energy 

determination function. 

6. ExhaustApps: This function represents the main exhaustive search loop, which 

incorporates the entire possible combinations of start times of each instance of 

each application. 

7. Table_energy: This function takes in the table created for every iteration and 

determines the total energy associated with it. 

 

 3.4 Details of the Energy Measurement Function 

 

3.4.1 The Table Description 

 

The function table_energy takes in as its parameters a specific schedule table created for 

every iteration and measures the total energy consumed for the entire length of time 

allocated by the LCM value of all the duty cycles. The main features of this function are 

described with an emphasis on how each source of energy consumption comes into the 

energy calculations. To begin with, a brief re-explanation of the structure of the scheduler 

table is necessary. The rectangular matrix consists of 17 columns. The first column 

corresponds to the time index followed by 8 hardware bits and 8 software application 

bits. The applications are identified in an ascending order from bits 9 to 17 i.e. 

Application 1 corresponds to bit 9 while application 8 corresponds to bit 17. A unity in 

any time position of the 1
st
, 3
rd
 and 4

th
 bits indicate that the hardware resources PFU, 
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AXIS pre-processor and the camera are in the ON state. Similarly, a unity in any time 

position across bits 9 through 17 indicate that the corresponding application is in the 

execution state till the runtime of the application. 

 

3.4.2 The Energy Management Scheme 

 

The hardware resources PFU, AXIS and the camera can be in three different states- the 

boot, executing/idle and the shutdown states while the power-management preprocessor, 

LP3500 and the IR motion sensor exist in a high-power execution mode and a low-power 

sleep mode. The power.txt file contains the power consumed by each resource in its 

respective mode of operation. The total energy measured is a sum of the component 

energies of each resource in all the possible states it exists as a function of time. For each 

iteration involving a specific set of start times for the application set, the total energy thus 

calculated, is sent back to the optimization stage of the algorithm. The optimization stage 

replaces the existing energy minimum whenever a new minimum occurs. At the end of 

the exhaustive search, the matrix that achieves the global minimum is chosen to be the 

optimal schedule table. The schedule is then sent by the interface to the preprocessor 

LP3500 as a series of commands understood by LP3500, which would enable/disable the 

various operating states of the hardware resources. 
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3.4.3 The Components of the Energy Function 

 

The main functionality of the energy determination function is explained in the present 

section. For each potential schedule vector that is sent as an input to the energy 

calculation function, it is essential to check if it is a feasible schedule or not.  Each 

schedule that is constructed is clearly a function of the start times of the various instances 

of each application. In a specific configuration it might occur that a specific set of 

instances of applications may be aligned in such a way that the resources are transitioned 

from an executing state to a shutdown state and then back to an executing state in a net 

time that does not take into consideration the total shutdown time of the resource. Hence, 

every time a resource transitions from an ON state to a shutdown state i.e. transitioning 

from a 1 to a 0, it is checked that the next time the resource is switched back to a 1 state, 

the time index difference between both the events is at least the shutdown time of the 

resource. If this condition fails, then the resource under consideration is set to remain in 

the 1 state without shutting off. In other words, it is forced to remain in the idle state. 

Another modification that the function brings about in the schedule vector before the 

energy measurements is to observe the BETA values, which denote interference values 

between pairs of applications. Based on the values provided, realignment of application 

start-times can occur. Specifically, applications that are scheduled to occur at the same 

start time and have temporal dependencies or resource conflicts between them are 

executed sequentially depending on the priority in the dependency chain. In the present 

algorithm, cases of all BETA values=0 and all values=1 are considered. 
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Each of the resources, PFU, AXIS and the IMAGER are then perceived as hardware bits 

in the scheduler table and the net energies are analyzed in various states of each of these 

resources. For resources that can be present in the idle state and have a defined power 

associated in that state, a break-even point in the state is determined every time the 

resource transitions from an ON state to a shutdown state. A comparison is made between 

the net transition energy (the shutdown energy after the present execution frame + the 

boot energy for the next execution frame) and the net idle energy for the entire frame. In 

case the net idle energy of the resource is lesser than the transition energy, the resource is 

allowed to settle in an IDLE state for the entire duration. For the means of these 

computations, it is important to observe the states in which the remaining components 

exist. Specifically, the LP3500 and the IR sensor can only exist in the high-power state 

when the other hardware resources are in the ON state. They can be put in the sleep state, 

which is the low-power state, only when the other resources are shutdown. The scheduler 

table is then evaluated sequentially for each resource to get the energy in various modes 

of operations of all the hardware resources of the platform. The calculated energy for 

each potential schedule is then analyzed for the absolute energy minimum in order to 

qualify as the optimal schedule.   

 

An overview of the entire exhaustive search structure is depicted in the form of a 

flowchart above. The total number of iterations depends on the coarseness of the 

exhaustive search. Each of the applications are defined by their own cardinality set, 

which contains the pre-computed results of all the possible start times of all the instance 
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of each application in the allocated maximum cycle of observation. The detail of the 

effects of certain scaling factors that alter the coarseness of the search and thus, the 

optimal value of the energy value is explained in the next section.         

 

3.5 Factors Affecting the Exhaustive Search 

 

3.5.1 Earliest Instance Scaling (linear translation of the first instance) 

 

There are two scaling factors that affect the granularity (coarseness) of the exhaustive 

search. In the scheduler algorithm, the earliest instance scaling factor, represented by 

EAR_SF indicates the jumps in which the first instance of each application occurs. It is 

seen that the first instance can start anywhere from time t=0 to time t=d where d 

represents the period of that specific application. All the remaining instances of each 

application depend on the start time of the first instance. However, the algorithm 

considers that every successive pair of instances of each application is separated by its 

period embedded within a little tolerance frame.  

 

3.5.2 Tolerance Scaling (transitions in the tolerance frame of an instance) 

 

The other scaling factor that affects the performance of the exhaustive search and in a 

more dominant way is the TOL_SF or the tolerance-scaling factor, which determines the 

jumps in which the start time of each instance of a specific application can make in its 
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tolerance frame. This applies to all the instances except the first one as the start time of 

the first instance is determined by the linear translation, described by the term EAR_ SF 

above. To be specific, the tolerance value varies from –T to T around each potential start 

time where T represents the tolerance value specified in the descriptor file of each 

application. As explained earlier, the tolerance values of each application is set to be at 

10% of the duty cycle value. The simulations support the intuition that the number of 

jumps of the start time of a particular instance in each tolerance frame is the dominating 

factor in the total number of exhaustive searches. 

 

 These scaling factors can be varied according to the duty cycle values of each 

application. From the discussion above, it is clear that both these factors simultaneously 

affect the length of the execution time of the exhaustive search and also the least possible 

minimum energy value of the platform. In order to have a reasonable running time, both 

the factors, EAR_SF and TOL_SF are to be placed in order of the magnitude of the 

tolerance values. A detailed set of simulations were performed to examine the effects of 

varying both the scaling factors simultaneously and to observe the effect on the minimum 

energy determined by the scheduler. The main idea was to observe the minimum values 

and determine whether they would converge i.e. the energy gap between successive pairs 

of energy outputs would reduce while increasing the granularity of the search space. 

Specifically, in order to observe the effect on the energy minimum over a more granular 

search space, the scale of the search is decreased through the two scaling factors. Once 

the global minimum is determined for a given set of parameters i.e. TOL_SF and 
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EAR_SF, these are scaled down proportionally to perform a more detailed search and get 

a better estimate of the energy minimum. This enables examination of the effects of these 

parameters over a much wider order of magnitudes of both the parameters, at the expense 

of some uncertainty as to whether the true minimum was found.  
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Chapter 4 

 

Results from scheduler simulations 

 

4.1 Test Vector Analysis 

  

A set of test vector cases was analyzed in detail for a 4-application scenario. The 

simulations were performed to check the sanity of the scheduling algorithm itself by 

comparing it to a pre-computed scheduler and hence its energies. The hand computations 

were done for an ideally chosen set of duty cycle values and these values were compared 

to the simulated results from the scheduling algorithm. 

The simplest test vector was one involving a set of duty cycle values, which 

shared a greatest common divisor belonging to the specified set of duty cycles. Hence to 

begin with, hand calculations were performed with values for 4 applications and the 

BETA values considered were the “all zero” case and the “all one” case. Period values of 

1000,2000,2000 and 4000 and execution times of 1,2,3 and 4 units respectively were 

used. For this simple specification set, it could be seen by observation that the best-case 

energy occurs at a point where application start times overlap as shown in the figures 

above, for both cases. Though this could be one among the set of optimal schedules, it is 

the most visible solution. It is to be noted that the execution time of each application is 

small in magnitude compared to the duty cycles, tolerances of that application and the 

boot times of each resource. So the number of resource boots saved dominates the energy 
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savings. For this test case and in general, the resource and application parameters used 

are tabulated below. 

  

Application Resources  Execution 

time 

(seconds) 

Application 

Period 

(seconds) 

Tolerance 

value 

(seconds) 

App 1 • LP3500 

• PFU 

• IR 

 

1 

 

1000 

 

100 

App 2 • LP3500 

• PFU 

• Imager 

• Axis 

 

2 

 

2000 

 

200 

App 3 • LP3500 

• PFU 

• IR 

 

3 

 

2000 

 

200 

App 4 • LP3500 

• PFU 

• Imager 

• Axis 

 

4 

 

4000 

 

400 

Resource Name 

 

Power consumed  Boot time in Seconds 

LP3500 

 

0.296watts 

PFU(Boot) 

 

2.5 watts 

PFU(Exec) 

 

11.4 watts 

PFU(Idle) 

 

5.8 watts 

Imager(Boot) 

 

3.18watts 

Imager(Exec) 

 

0.8watts 

Axis(Boot) 

 

2.808watts 

Axis(Exec) 

 

0.500watts 

IR 

 

0.108 

 

 

 

Combined value of 15 

seconds for each 

application 

Table 4.1 – Application parameters for the test vectors 

Table 4.2 – hardware resource parameters for the test vectors 
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These assumptions hold for all the energy calculations described below. 

1. The combined boot time of all the resources is fixed at 15 seconds. 

       So energy calculations are:  E = (Sum of Powers of all the resources) * 15. 

2. The shutdown energy for any resource is 0 and the total idle power is 10 m watts. 

The figures below give a pictorial description of the optimal schedule for the 

parameters mentioned above. For the Betas=0 case, all applications can start concurrently 

if scheduled together, while in the Betas=1 case, they have to be executed sequentially. 

These two represent the bounds for the best and worse-cases of the energy representation. 

 

Fig 4.1.a- scheduling for the Betas=0 case 

Fig 4.1.b- scheduling for the Betas=1 case 
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The scheduler simulations were performed in two separate scenarios and compared with 

the hand calculations. The first case was when the resources were shutdown completely 

when not in use and rebooted when needed. Here the shutdown energy was assumed to be 

0 for simplicity of calculations. The energy savings are mainly due to the transition costs. 

The second case is when the resources can be kept in a low-power idle mode wherein the 

total idle power is negligible. The main goal of this test vector analysis was to make sure 

that the algorithm could adapt itself to different specifications provided by the developer 

and also is robust to different hardware platforms. In the last chapter of the thesis, we 

propose other platforms on which the algorithm can be implemented on to analyze the 

energy savings on the platform.  

The table shown below compares the hand calculations to the scheduler results in 

the two cases discussed above. All minimum energy calculations lie between the Betas=0 

and the Betas=1 cases and the simulations were performed under reasonable granularity. 

BETA VALUES Hand 
Calculations 

(Resources 
are 
shutdown 
when not in 
use and no 
idle mode) 

Scheduler 
Simulation 

Hand 
Calculations  
(With total 
idle time 
power = 10 
m watts) 

Scheduler 
simulation 

β1 =β2= β3= β4 = 0 2018.4 J MIN:2046.6 J 

 

 

466.14 J MIN: 476.66 J 

 

 

β1 =β2= β3= β4 = 1 2126.3 J MIN:2200.6 J 

 

 

615.29 J MIN: 629.6 J 

 

 

Table 4.3 – Energy comparison between simulations and hand calculations. 
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4.2 Histogram Analysis of the Scheduler Algorithm 

 

 

In order to achieve a qualitative analysis on resource scheduling for energy harnessing, 

we take a statistical approach towards a scenario where the platform runs without the 

support of a scheduler. The histogram shown below in fig.4.3 plots the energy ranges 

achieved on the platform for a specified set of specifications on the x-axis and the 

frequency of the occurrence of these energy ranges during the entire exhaustive search on 

the Y-axis. From this figure, we can argue that in case of assigning the platform with an 

arbitrary schedule, the probability of falling into the category of an average case energy 

scenario is very high. It can be seen from the figure that the largest frequency of samples 

occurs towards the average of the best and worse case energies, which differ by a factor 

of 2.  

 

 

 

                N
u
m
b
er o

f sa
m
p
les 

    Energy Range (joules) 

Fig. 4.2- Histogram of range of energy values 
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Since the median of the entire set of samples is more than the average energy, we can see 

that there is a much larger probability associated with arriving at an operating point 

greater than the average energy and moreover, weighing more towards the worse case 

energy. Thus, scheduling can be of considerable benefit. If a complete exhaustive 

approach is employed with the finest amount of granularity, it is guaranteed to achieve 

the optimal point, which has the least probability of occurrence. Even with a constraint on 

the execution time on the exhaustive algorithm, we can aim to achieving operating points 

towards the optimal point, by allowing the scheduler to search with a higher level of 

granularity. 

 

4.3 The Working of the Scheduler with the Interface 

 

The interface, which we talked about briefly in earlier chapters, communicates between 

the schedule matrix and the power-management preprocessor, LP3500. The optimal 

schedule matrix is transformed into a series of “sch” and “exe” commands as understood 

by the preprocessor. The schedule that resulted out of the test vector with the assumptions 

stated earlier was used to measure the real-time power measurements obtained from the 

platform. In fig. 4.3 shown below, two plots are shown; the one termed “matlab 

simulation” is a power plot of the optimal schedule through the simulation. The plot 

overlapping it is the real power plot from the platform. This plot is smoothed by 

removing the randomness in the system current around the states where the platform is 

undergoing some activity. It can be seen that the real power plot has system current in the 
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shutdown mode which is the low power mode current of the LP3500 and the IR sensor. 

In addition, just to separate the two plots, the shutdown power was assumed to be 0 in the 

simulation, which is shown as a difference in the real plot during the shutdown state of 

the platform.  

 

 

 

It can be seen that over a long period of time frame (the LCM period of all the periods for 

example), the average power of the platform can best be treated as the average of the low 

power mode and the power during the active cycle. Thus, we analyzed periodic 

Fig. 4.3 - Power Comparison of Platform vs. Simulation 

Shutdown mode 

Bootup mode (On state) Execution mode 
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applications with low duty cycles in this scenario and observed that the average energy 

on the platform can be brought down to a much lower value when compared to the 

energy consumed when all the resources are always in the active state. With low duty 

cycled applications, it is highly advantageous to drive the platform to the lowest energy 

operating point by making sure that the platform remains in the shutoff mode whenever 

applications are not scheduled or no events take place. In addition, the applications that 

can be performed sequentially are executed in such a way so that the transition costs of 

the common resources are saved.  

 

It is seen that most energy savings occur when the set of periodic applications are 

scheduled to execute in a cluster as opposed to discrete executions in a particular time 

frame. This would mostly happen in cases where some periods in the set are multiples of 

others. We have simulated various test cases for a multi-application scenario that satisfy 

this simplified condition and compared the results with manual calculations that achieve 

the optimal schedule. The optimal energy point is a lower bound for the simulations and 

the minimum energy through the simulations should converge to this bound as the 

granularity of the search space gets finer.  The ratio between the worst-case energy and 

the minimum energy through each simulation quantifies the amount of energy saved. 

Based on the application parameters such as the periods and the tolerances associated 

with the duty cycles, the savings ratio can be of magnitude 2, 3 or even higher. For 

instance, we have performed simulations for 4-applictions to determine a maximum of a 
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three-fold improvement. The next section deals with two different sets of simulations, 

which show the improvement in energy consumption.  

 

4.4 Analysis of the Results for a 4-application Case 

 

In the present description, we considered two different scenarios for a set of four 

applications. The duty cycles, the tolerances and the execution times for these sets of 

simulations were chosen so that the energy optimization depended only on the duty cycle 

and the tolerance values. The execution times of the application set were small compared 

to the duty cycle, tolerances and the boot times of the hardware resources. This setup was 

considered to analyze the energy savings in transition costs. Also, the exhaustive search 

on both the sets of applications gave improvements of values close to 2 and 3 

respectively. We considered examples wherein the duty cycles were such that a 

granularity of order equal to the tolerance values of the applications provided the required 

near optimal solution. The examples, however, differ in the manner in which we 

represent the granularity of the search space. Also importantly, in these simulations the 

values of Betas were all assumed to be zero, permitting concurrent execution of 

applications. It should be realized that the entire exhaustive process is a non-linear 

calculation in general. Hence, no particular scaling factor pair is “good enough” for all 

specifications, unless the granularity is made very fine compared to the application 

parameters.  However, both the examples verify the intuition that the minimum energy 

through the exhaustive search converges asymptotically to the theoretical energy 
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minimum. Convergence to the optimal point can be observed through the increase in the 

granularity and the closer the solution is to the optimum, the more monotonically convex 

is the behavior of the energy curve. In the next couple of sections, we detail out the 

applications parameters use for the 4-application case and discuss the influencing factors. 

4.4.a Simulation That Demonstrates a Two-fold Improvement 

 

In the first set of simulations, the parameters used were as follows: 

Duty cycles: 1000,1500,2000,3000  

Tolerances: 10% of duty cycles i.e. 100,150,200 and 300. 

Execution times: 1,2,3 and 4 seconds 

The boot times, duty cycles and the tolerances were much larger than the execution times 

to demonstrate the energy saving obtained in transition costs. In addition, the idle energy 

of the resources was assumed to be negligible compared to the transition energies. 

Fig. 4.4 – Energy Savings plot for the 1
st
 simulation 
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There are two subplots shown in fig. 4-4 above. The subplot on the bottom half shows the 

comparison of the minimum energy on the platform as a function of the granularity 

factor. In this plot, the granularity factor is on the x-axis and the minimum energy for 

each granularity factor is shown on the y-axis.  The granularity factor is defined as the 

inverse of the product of the two scaling factors, discussed in the previous chapter. The 

scaling factors are increased in granularity gradually for each set of simulations such that 

the granularity factor increases on the x-axis and correspondingly achieves a decrease in 

the minimum energy. Instead of providing subplots while fixing one factor and varying 

the other, we consider this product variable for convenience, which results only in a 

single curve. It yields a monotonically convex behavior in convergence. 

 

The subplot on the top half of the plot is the worst-case energy as a function of the same 

granularity factor. It is seen that in the initial coarser searches, the worse case maximum 

energy is not achieved but on a lower granularity it is achieved and remains fixed at the 

       EAR_sf        T_sf   1/EAR_sf     1/T_sf      Granularity Factor      Min.ener  Max.ener 

        

600     500 0.001667 0.002      3.33333E-06 5593 9098.4 

600    400 0.001667 0.0025      4.16667E-06 5566 9638.6 

500    300 0.002 0.003333      6.66667E-06 5138 9638.6 

500    200 0.002 0.005         0.00001 5052 9638.6 

300    300 0.003333 0.003333      1.11111E-05 4505    9638.6 

400    200 0.0025 0.005   0.0000125 4480 9638.6 

300    200 0.003333 0.005      1.66667E-05 4320 9638.6 

Table 4.1- Granularity scaling factors and energy values for the 1
st
 simulation 
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same maximum value at every search of a lower granularity, which agrees with the 

intuition of a theoretical upper bound for the worse-case energy. 

In short, the comparison between the two subplots shows two things: 

1.  The convergence of the minimum energy curve to a constant value as the 

granularity factor increases. 

2. The energy ratio between the worst-case and the optimal energy from the plot is 

equal to 2.3 (with the applied granularity). It asymptotically approaches the value 

of 2.5 (15/6), which is the energy savings obtained though a manual analysis. The 

energy savings is dominated by saving the transition costs of the resources.  

4.4 b Simulation That Demonstrates a Three-fold Improvement 

 

In the second set of simulations, the following parameters were used: 

Duty cycles: 1000,1000,2000,3000  

Tolerances: 10% of duty cycles i.e. 100,100,200 and 300. 

Execution times: 1,2,3 and 4 seconds 

Fig. 4.5 – Energy Savings plot for the 2
nd
 simulation 
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In the bottom part of the plot in fig. 4-5 above, the minimum energy subplot consists of 

three curves, which are dependent on the EAR_sf or the earliest time scaling factor. For 

each value of EAR_sf, the T_sf or the tolerance-scaling factor is decreased, so that the 

tolerance granularity is increased. In this plot, three separate curves are shown (as 

opposed to the combined curve in the first plot) for two reasons. 

 

1. The granularity factor (i.e. the inverse of the product of the two scaling factors) 

did not always behave monotonically with the energy, as in the earlier case. 

2. More importantly, between the two scaling factors, we observe the dominance of 

the tolerance-scaling factor to yield the asymptotic convergence of the minimum 

     EAR_sf           T_sf   1/EAR_sf      1/T_sf 
Granularity 
Factor   Min. ener  Max.ener 

        

600 500 0.001667 0.002 3.33E-06 4442.74  9162.8

600 400 0.001667 0.0025 4.17E-06 4390  9742.76

600 200 0.001667 0.005 8.33E-06 4250  10824.3

500 400 0.002 0.0025 0.000005 4506  10824.3

500 300 0.002 0.003333 6.67E-06 4443  10824.3

500 200 0.002 0.005 0.00001 4390.07  10824.3

400 300 0.0025 0.003333 8.33E-06 4315  10824.3

300 300 0.003333 0.003333 1.11E-05 4391  10824.3

300 250 0.003333 0.004 1.33E-05 4362  10824.3

300 200 0.003333 0.005 1.67E-05 4139.46  10824.3

300 201 0.003333 0.004975 1.66E-05 4164.44  10824.3

200 300 0.005 0.003333 1.67E-05 4315  10824.3

100 300 0.01 0.003333 3.33E-05 4264  10824.3

Table 4.2 - Granularity scaling factors and energy values for the 2
nd
 simulation 
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energy. Clearly, for a fixed EAR_sf, increasing the granularity of T_sf pushes the 

energy value towards the optimal point. 

 

The subplot on the top half of the plot has the worse case energy through the entire set of 

simulations. In short, the comparison between the two subplots is summarized as follows. 

 

1. The energy savings ratio must be asymptotically bounded by the value of 17/6 or 

2.83, which is the theoretical calculation of the energy savings achieved for the 

specified parameters. In our set of simulations, the ratio of the maximum energy 

value (10824 J) to the minimum value (4139 J) stands at 2.6. 

2. The worst-case energy value remains close to 11000 J and the best-case energy 

converges to 4000 J respectively, which provide an energy saving ratio of 2.75. 

 

In the above two cases, we have discussed the possibility of a two-fold and a three-

fold improvement in the energy savings. In fact, the energy savings can be even 

higher and can be verified by similar simulations as the number of applications to be 

scheduled increase. 
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4.5 Discussion of Further Possible Test Capabilities 

 

4.5.1 Scheduling for a General Set of Application Duty Cycles 

 

The above simulations were chosen as two simple cases to demonstrate the energy 

savings obtained for a 4-application scenario. We had simulations performed for sets of 2 

and 3 application scenarios of periodic applications to compare the energy savings 

obtained for varying number of applications. Intuitively it makes sense that the savings 

increase directly with the number of applications provided the applications have periods 

multiple of each other, or at least having a common factor amongst them. The result of 

such simplifying conditions is the conspicuous visibility of the energy savings ratio 

increase. However, all the results of the algorithm presented were so far, confined to 

these simple cases. It is also important to analyze all the scheduler features for an 

application suite with periods that are relatively prime to one another. The Least 

Common Multiple, which is considered to maintain a schedule that is periodic, cannot be 

used as the schedule length if the product of the periods is very large. We have 

considered alternatives for the Least Common Multiple, such as a large multiple of the 

highest period is substituted for the schedule length. There are certain drawbacks with 

this approach. 

 

1. The number of application instances in that schedule length has to be rounded off 

for some applications. This would definitely perturb the energy consumption and 

the energy savings.  
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2. The schedule created cannot be repeated periodically because the schedule length 

is an approximation to the required length of the Least Common Multiple.  This 

approximation can offset the minimum energy point through the simulation from 

the optimal energy point by a large value. 

3. In certain cases, if the period values are closer in value to one another, the 

schedule should be chosen to be a large multiple of the larger period value just to 

accommodate more instances of each application in that time frame. This would 

enable a better result in the energy savings. 

4.5.2 Scheduling for Applications with a Definite Dependency  

 

In our scheduling approach, we have considered only parallel or sequential execution of 

applications. In other words, the optimal energy point generated through the exhaustive 

search for the Betas=0 case and the Betas=1 case are in fact, energy bounds for the all 

cases, even those which include task dependency. We have not implemented the feature 

of task dependency between subsets of applications i.e. some of the pairs can execute 

concurrently while others have to be executed sequentially.  This is considered a separate 

area of research and is considered in the future work. Furthermore, dependency can be 

classified also into the case of resource dependency wherein application can effectively 

share the processing time of each processor in execution. The scheduler can incorporate 

this dependency by considering Beta values between 0 and 1 and indicating the subset of 

applications that require this dependency. Such cases of application suites are more 

realistic to occur, as the set of resources need to be shared in wireless sensor applications. 
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Chapter 5 

 

Conclusion and Future Work 

 

5.1 Conclusion 

 

 

 We have seen an increasing need for energy consumption in wireless sensor 

applications. The present suite of applications have evolved from an earlier class of 

acoustic and seismic applications restricted to target tracking and sensing to a complex 

set involving distributed monitoring, surveillance and networking applications. There is a 

great need for secure communications and reliable date transfer in such applications. For 

the earlier simpler class of applications, dedicated integrated-circuit logic could be 

effectively utilized to obtain good performance with incorporation of efficient power-

optimization schemes. As discussed earlier, the evolution to a more complex nature have 

widened the demands for energy. Traditional hardware architectures with dedicated logic 

processing units cannot certainly satisfy the present requirements. We proposed a newer 

hierarchical architecture with a processor-preprocessor division and the software 

consisting of a complex operating system. The hardware platform runs Linux, which 

supports all the secure lower-level communication protocols and the higher-level 

complex applications. However, the need for higher energy is conspicuous with the 

requirement of supporting such complex networking protocols and image processing 

algorithms. The platform features were given an overview in the first chapter with the 

concept of resource scheduling for a set of energy-aware wireless sensor applications. 
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 The main area of discussion of this thesis is to describe the necessity of 

scheduling for such computationally and resource intensive wireless sensor applications. 

In the first part of the thesis, we defined the various parameters required for the scheduler 

in the context of the application suite. Most importantly, we explained in detail the 

fundamental differences in the present approach and the previous algorithms described in 

literature. We then proposed a solution to determine the optimal schedule that operates 

the platform at the minimum energy point and outlined some variations. 

 The remaining part of the thesis is divided into two separate discussions. The first 

discussion deals with a simple heuristic approach that gives an intuition on a 2-

application scenario. The second discussion, which forms the crux of the thesis deals with 

scheduling of multiple sensor applications, each of them with their specifications. The 

minimum energy point in the scheduler algorithm can be discovered through an 

exhaustive search, which should converge to the theoretical optimum value as the 

granularity of the search space is increased. We discussed the variation in granularity 

through two scaling factors; the lowering of whose values has an increase in the 

execution time of the search algorithm. However, as we discussed in the earlier chapters, 

the energy cost function is a non-linear function in its variables, so it is not possible to 

generalize the effect of increasing granularity to a continuous decrease in the minimum 

energy determined. Two simulations were shown that support the notion of an asymptotic 

convergence to the optimal value as the resolution increases and it was also discussed that 

it is not possible to model the behavior of the energy curve (as a function of the 

granularity) to be entirely convex in nature. The last part of the thesis included a 
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discussion on some non-typical cases of application parameters and the performance 

improvement that could be obtained through scheduling. 

 

5.2 Future Work 

 

In the present work, we had discussed scenarios in which the applications 

scheduled were periodic and moreover, had their periods be multiples of one another. In 

such situations, the least common multiple would be larger compared to the individual 

periods by a small order of magnitude. However, in the previous chapter we mentioned 

that there existed a limitation in the scheduling algorithm to decide the length of the 

schedule when the periods were relative primes. In an extension to the present algorithm, 

we would be working to include the scheduling mechanism for such scenarios. A 

proposition being considered is to construct schedules for windowed subsets of 

applications based on the exhaustive approach. This would result in discrete 

“superframes” of application instances with their own schedules. It is evident that no 

periodic nature exists between the set of superframes. Moreover, we do not consider the 

product of all the periods as the whole schedule length but partition the time frame into 

smaller lengths to accommodate multiple instances of each application. The exhaustive 

approach guarantees an optimal schedule for each of these partitions. In addition, a 

heuristic approach could be used to adjust for minimal energy operations at the 

boundaries of each of these superframes. Thus, it can be concluded that the larger 

scheduling problem could be decomposed efficiently into smaller problems to achieve an 
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optimal schedule for a large enough period of time. However, it can be seen that, the 

number of superframes has a direct effect on the energy optimality in that many 

scheduling computations would be required.  

 

In addition, we highlighted the importance of scheduling to achieve the optimum point. 

The prototype of the Smart Objects platform we considered was shown in the first 

chapter of this thesis. The scheduler algorithm had as its input, the resource parameters of 

the various hardware blocks shown in fig. 1.1. In addition, the power consumed in each 

time unit for the various modes of these resources and the application parameters 

determined the optimal schedule. However, we have demonstrated a robust scheduling 

algorithm that behaves as a many-one mapping of the all the above inputs to produce the 

energy minimum. In other words, this algorithm works for any application and resource 

data supplied by the developer. Presently, another sensor platform is being developed 

with the main processor being the STARGATE processor that has it own advantages in 

terms of the boot and the shutdown times.  

  The main aim of this future work would be to execute the same set of 

applications across these two different platforms and make a comparison of the energy 

savings that occur between the two platforms. In this way, the scheduling algorithm could 

be efficiently tested for robustness in addition to its precision to arrive at a near optimal 

solution. With the advent of such a generalized algorithm, it only becomes easier to deal 

with the varying range of complexities in wireless sensor applications and at the same 

time, successfully implement different hardware platforms to execute those applications. 
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