Robust Deep Learning Pipeline in the Presence of Runtime Sensing Uncertainties

Swapnil Sayan Saha*, Sandeep Singh Sandha* and Mani Srivastava
University of California, Los Angeles

Sensory Challenges in the Wild

• Internet of Things (IoT) can be regarded as large-scale multi-modal sensing systems making rich inferences from big-data in the wild using intelligent techniques.

• Data in the wild has sensing and timing uncertainties:

 - Internet of Things (IoT) can be regarded as large-scale multi-modal sensing systems making rich inferences from big-data in the wild using intelligent techniques.
 - Data in the wild has sensing and timing uncertainties:

Proposed Pipeline

• Add controlled artificial misalignments across multimodal sensors.
• Add jitter in window length.
• Independent mask meta-data channel coupled with window alignment with contained samples popped ahead.
• Robust ensemble of recurrent-convolutional neural networks with conditional activation of finer-grained classifiers.

Handling Imperfect Data in the Wild

• Use sample windows with variable lengths:

 - Time-shift data augmentation:

 - Window alignment with contained samples popped ahead (treats missing samples as 0):

Evaluation and Comparison

• Independent mask channel specifying missing data location (not robust to timing uncertainties):

 \[
 X = \begin{bmatrix}
 X & X & NaN & X & NaN & NaN & X & NaN \\
 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0
 \end{bmatrix}
 \]

 - Window alignment with contained samples popped ahead (treats missing samples as 0):

Conclusion

• Upto 600 ms timing error mitigation via timing and window jitter [1].
• 11 - 24% improvement in complex event recognition via proposed pipeline [2].
• Data processing pipelines require uncertainty injection and be robust to handling imperfect and missing data.