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Chapter 1
Introductory Solid State Physics

Introduction

An understanding of concepts in semiconductor physics and devices requires an elementary
familiarity with principles and applications of quantum mechanics. Up to the end of nineteenth century
all the investigations in physics were conducted using Newton’s Laws of motion and this branch of
physics was called classical physics. The physicists at that time held the opinion that all physical
phenomena can be explained using classical physics. However, as more and more sophisticated
experimental techniques were developed and experiments on atomic size particles were studied,
interesting and unexpected results which could not be interpreted using classical physics were observed.
Physicists were looking for new physical theories to explain the observed experimental results.

To be specific, classical physics was not able to explain the observations in the following instances:

1) Inability to explain the model of the atom.

2) Inability to explain why the light emitted by atoms in an electric discharge tube contains sharp
spectral lines characteristic of each element.

3) Inability to provide a theory for the observed properties in thermal radiation i.e., heat energy
radiated by a hot body.

4) Inability to explain the experimental results obtained in photoelectric emission of electrons from
solids.

Early physicists Planck (thermal radiation), Einstein (photoelectric emission), Bohr (model of the
atom) and few others made some hypothetical and bold assumptions to make their models predict the
experimental results. There was no theoretical basis on which all their assumptions could be justified
and unified. In the 1920s, a revolutionary and amazing observation was made by De Broglie that
particles also behave like waves. Einstein in 1905 had formulated that light energy behaves like particles
called photons to explain the photoelectric results. De Broglie argued that energy and matter are two
fundamental entities. The results of the photoelectric experiments demonstrated that light energy
behaves also like particles and therefore matter also should exhibit wave properties. He predicted that a
particle with a momentum of magnitude p will behave like a plane wave of wavelength, 4 equal to

A= h (1.1)
p

where R is Planck’s constant and numerically equal to
h = 6.625 x 1073* Joules - sec.

This led to the conclusion that both particles and energy (light) exhibited dual properties of
behaving as particles and as waves.



Since Planck’s constant h is extremely small, the De Broglie wavelength is correspondingly small for
particles of large mass and momentum and therefore, the wave properties are not noticeable in our
daily life. However, subatomic particles such as electrons have such a small mass and their momentum is
small to make the wavelength large enough to observe interference and diffraction effects in the
laboratory.

A particle moving with a momentum p is represented by a plane wave of amplitude ¥ (7, t)
given by:

B 7 _

YD) =AeikT-0t) = gl (G-t (12)

- 2 h
where k is the propagation vector of magnitude k equal to 7” ,h = T W= 2 m times the frequency

of the wave and 7, the radius vector is equal to
r=ax+a,y+a,z

and a,, Ey and a, are the unit vectors along the three coordinate axes. The radius vector denotes the
position where the amplitude is evaluated. The wavelength of the plane wave according to equation
(1.1), is given by

h 2T

A== W

(1.3)
W (7,t) is also called the wave-function or state function. The expression for the plane wave given in
equation (1.2) shows that the amplitude of the plane wave varies sinusoidally with time t and position x.
For illustrating the plane wave properties we will consider a plane wave travelling from negative infinity
to positive infinity. Figure (1.1a) shows the amplitude of the plane wave at as a sinusoidal function of
time t at some value x = x4. Figure (1.1b) shows the amplitude varying as a sinusoidal function of
position x at some time t = t;.



Plane wave

& | -l - .fﬁfﬁ
.,-'-“"-FPJ-- o
J :-::'-
-1 T LT
..r"‘”ff _,«-""f
_.-""P‘f _f-/-"'ﬂ/
S— ™ 7
- F i
3 w‘-., PO Y i
2/ ' \ y
= % K LY
e vl ;,-‘ ' L !’f
< '\\ hY ri
b &
j T
a) Amplitude as a function of time, t at x = X,
. F e
%- ™ -

. g F .. Fd
3 1'-., AU Y S
3/ % W g
= % g i
g— -.l. I Jlllllf 'I.\. lIl"lllI
< '\\- 3 A

b o
..f”; e

b) Amplitude as a function of position, x at t= t

Figure (1.1): (a) Plane wave travelling from negative infinity to positive infinity, a) the amplitude of the
plane wave as a function of time, t at some value x = x4, (b) the amplitude of the plane wave as a
function of x at some time t = t;

The dynamic behavior of a physical system such as a single or a collection of particles can be
deduced from ¥, the wave-function of the system. In quantum mechanics, the wave-function is
obtained by solving an equation called Schrédinger equation. Another consequence of applying
guantum mechanical principles to electrons is that the momentum and position of the particle say an
electron, cannot be measured or known accurately at the same time to any precision that the measuring
equipment is capable of. Either the momentum or the position alone can be measured to any accuracy
the measuring equipment is capable of; but both of them cannot be measured at the same time to the
accuracy or precision that each property can be measured separately. This is called the Heisenberg
Uncertainly Principle. That is, the more precisely position or momentum is measured, the other can be
measured only less precisely. The physics underlying the uncertainty principle is that the act of
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measurement of one property disturbs the physical state of the system making measurement of the
other property less accurate. In quantum mechanics, there are other examples of pairs of physical
properties that obey the Heisenberg Uncertainty Principle. For example, energy and time is another pair
that obeys the Uncertainty Principle.

Mathematically the uncertainty principle says that the product of the uncertainty in
simultaneous measurement of position and momentum of a particle has to be higher than a minimum
value of the order of Planck’s constant h, AP, Ax > h. The uncertainly principle is not observable in
the size and mass of particles in our daily life where the uncertainties of the properties are too small to
observe because of the small value of Planck’s constant. When we deal with atomic particles such as
electrons the uncertainty effects become significant.

When the wave-function is determined by solving Schrédinger equation for an electron that is
confined to a narrow region of space along the x-axis, say between x =0 and x = L, the result shows
that the x - component of momentum can have only discrete values given by

h
Px = n, L_
x

where n, is called a quantum number, and is an integer (n = +1,+2,43,..etc.). Thus the x -
component of momentum, P, can have only discrete values and are said to be discretized or quantized
and hence n, is called a quantum number. If the electron is constrained to move in a restricted region in
the x - y plane, then 2 quantum numbers n, and n,, will be needed to quantize the x and y components
of the momentum. In the case when the electron is confined to a small three dimensional region, the
electron state will be specified by three quantum numbers n, and n,, and n,, as discussed in the next
section.

Free Electron Model

The electric current in a conducting solid such as a metal is explained in solid state physics using
the Free Electron Model. According to this model, each atom of the solid contributes one (or two in
some cases) electron to form a sea of electrons in the solid and these electrons are free to roam around
in the solid instead of being attached to the parent atom. If an electric field is applied in the solid, the
electrons will move due to the force of the electric field and each electron will carry a charge - g
coulomb thus giving rise to the flow of an electric current. Thus free electrons in the solid are treated
guantum mechanically as equivalent to electrons in a box of the same dimensions as the solid. We will
now derive some properties of the free electrons in a conducting solid by using free electron model.

Let us now consider an electron of mass m that is confined to move within a three dimensional
box. Let the box be rectangular with dimensions Ly, L, and L,. As shown in Figure (1.2), we will choose
the origin of our Cartesian coordinate system at one corner and the x, y and z axes to be along the
three edges of the box.

We assume that the potential energy to be constant and that it does not vary with position
inside the box. Since force is equal to the gradient of the potential energy, there is no force acting on the
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electron because the gradient is zero. The electron is said to be in a force free region. Let the potential
energy be taken as zero. A particle moving in force-free region has a constant momentum and is
therefore represented by a plane wave as discussed earlier. The wave-function for the particle is
therefore given by

W (Ft)=A pilk T—wt) — g gi(k 7T)p—iwt — W(F)eiwt (1.4)
where
YE) =Ael
P (T) can be written as, in rectangular coordinates,
Y@ =Y (1,3,2) = 4, e™7A4, "V 4, et

where

Figure (1.2): Electron in a box

We can also write

Y (x,y,2) = P ()P, )P, (2) (1.5)

Where
Py (x) = Ay etx™ (16)
Yy, (v) = 4, e (1.7)
Y, (z) = A, e™* (18)



The boundary condition on the wave-function is that the wave-function is the same in amplitude
and phase when x is incremented by Ly, y is incremented by L,, and z is incremented by L, i.e.

Y(,y,z2) =y (x+L,y,z)=9y (x,y + Ly,z) =y (x,y,z+L,) (1.9)
This boundary condition is called the Periodic Boundary Condition.

The above boundary condition requires

Uy () =P (x + Ly ) (1.10)
vy, M=y, (y+1Ly) (1.12)
and

Y, (2) =y, (z+L;) (1.12)

By applying the boundary condition given in Equation (1.6) to Equation (1.10), we obtain
Ax eikxx — Ax eikx(x+Lx) (1.13)
This implies that
k.L,=2mn, (1.14)

where n, is a positive or negative integer. Therefore,

271
k,=—n, (1.15)
Ly
and
. Zﬂnx
i—=x
Y, (x) =A,e Lx (1.16)
The x-component of the momentum, equal to iik,, is therefore quantized with values,
h 2h 3h 4h
P =0,t—,+—,£—,+— -etc. (1.17)
Lx X LX LX

Thus the x-component of the momentum is quantized with the same quantum number n,.

The kinetic energy is related to the momentum. The kinetic energy due to the motion of the
particle along the x-axis is also quantized. Let us denote the kinetic energy due to motion along the x-
axis as E;.

pf _ h°ki _ h’n%

T 2m

E = 1.18
1 2m  2mlI2 (1.18)

Thus p,, k, and E are all quantized with the same quantum number n,.




Example

Let us now calculate k,. , p, and E; for an electron in a state n,, = 1 in a box of dimension 10 A x 20 A x
30 A along the x, y and z axes respectively. Remembering 1 A is 10™1%m,

k,=2En, =281 = 2% —gr8x 109 m!
XL, X 10x10-10 1079
6.626 x 1073* , . .
Px = By = —————— X 6628 X 10° = 6.26 X 1075 K gm — ™/
_ DPx _ 15 _ -19 _
Ej= == —"—-=241 x 107" Joules = 1.50 eV

2m 2x9.11x 10731

ky, k, and k, are related to x, y and z components of momentum through the De Broglie relation. By

2 2
using the boundary condition for k,, and k, , it can be shown k,, = " and k, = "2 \where n,
y z
and n, are quantum numbers similar to n,.
The kinetic energy due to motion along the y and z axes are denoted by E5 and E3
h’kZ  hn2
E,=—2=—2 (1.19)
2m ZmLy
and
n’kZ _ hPnZ
E; =—=—: (1.20)

- 2
2m 2mlLs

In Figure (1.3), E is plotted as a function of k,. Since k, is quantized, E is also quantized. Since the
adjacent values of k, and E lie so close to each other, the plot looks like a continuous curve. We say
k, and E, are qusai-continuous. The total wave-function is obtained as a product function of

Yy, Py and P, and is given by

Y (x,y,2) =P, (X) Y, Y, (2) (1.21)

— Ax Ay AZ ei(kxx+kyy+kzz) (1.22)

= A, A, A ek T (1.23)

where k is called the propagation vector and is given by

k = ayk, +a,k, +ak, (1.24)
~ 2mTn L 27N ~ 2mTn

=a, = +a, Y +a, z (1.25)
Ly Ly L,



where 7" = radius vector, and a,, ﬁy and a, are the unit vectors along the x,y and z axes respectively.
E’, the total kinetic energy is equal to
h2k2 n? [n2

, n2 n2

2m 2m [LF L5 2

where k is the magnitude of the propagation vector k. The number n,, nyand n, are called quantum
numbers, and once you assign a particular set of three integers to these three quantum numbers, you
have specified the momentum states for the particle i.e., the value of momentum the particle will have
in that state. We therefore denote the wave-function by the subscripts ny, n, and n,.

i2m QX LYY ner

Uninyn, = Ax Ay Aze e by Lz (1.27)

i/ .
f
0 —
|'<l-—b-
Figure (1.3): Energy E; vs. k,
The state n,=1, ny,=2 and n, = —1, represents a state in which the particle is moving with a
momentum p equal to
- ay , 2ay 3, ay |, 2ay a3,
p =2rh [—+———= =h|—+—2-—--= (1.28)
Ly Ly L Ly Ly Ly

Since n,, n, and n, determine the momentum state, and can be only integers, we see that the p, value

h h
changes by I from one state to the next and similarly the p,, and p, values change by I and I
x y z

respectively.

h
It should not be surprising that adjacent values of p,, differ by L_ The maximum uncertainty in
X

the x-component of position is Ax = L, since the particle can be anywhere in the box. Therefore the
uncertainty in the x-component of momentum is required from the Uncertainty Principle to satisfy the
condition



Apx>_

h
=

h
The adjacent values differing by L are consistent with the Uncertainty Principle.
pe

Consider a three dimensional space (imaginary of course!) in which the three axes are p,, Py
and p, as shown in Figure (1.4). Each set of integers for n, n,, and n, generates a point in this space
(called the momentum space) and each point represents a particular momentum state. Such points in
momentum space are called representative points or phase points.

Figure (1.4): Momentum space with p, p, and p, axes

The momentum space comprises an infinite number of phase points each separated from its
. h . h . h . .. . .
neighbor by T along the p,, axis or T along the p,, axis or . along the p, axis. The origin of this space is
X y z
located at p = 0, and hence represents the state with no kinetic energy. The vector connecting the
origin of the momentum space to a point with coordinate numbers n, n, and n, represents the

. h h
momentum vector of the state with x-component p, = 7. Mx, y-component p, = ~mn,, and z -
X y

h
componentp, = ~1,.
z
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Figure (1.5): ABCDEFGH represents the elementary volume in the momentum space containing
one momentum state.

We obtained three quantum numbers because we restricted the motion of the particle to be
within the small box of volume L,L,L, If we constrain the particle to only a small region in one
dimension, say along the x axis, we get one quantum number n,, and the momentum along the x axis is
quantized. Similarly, if we restrict the particle to a small area in the xy plane, we will get two quantum
numbers n, and ny, and the momentum along the x and y axes will be quantized. If we restrict the
particle to a three dimensional space, three quantum numbers n,, n,, and n, will be needed to specify
the momentum state.

Let us consider a specific state characterized by a particular set of quantum numbers n,n, and

. . . . . . h h h
n,. This state is represented by a point A in the momentum space with coordinates o Ny and N,
X y z

as shown in Figure(1.5). The rectangular volume contained in the momentum space within coordinate
numbers (nyn,n,), (ny, +1, n, n,), (ngeny, +1,n,), (nyn, n,+1), (n, +1,n, +1, n,),
(ne, ny +1, n, + 1), (n,e +1, n, +1, n, + 1) are the corner has eight adjacent states, one at each of

its corners, and no states inside the rectangular volume. The rectangular volume has sides Ap,

3

h h h
= —,Apy, = —and Ap, = —, and has a volume equal to
Ly Ly L,

. Since each corner is shared by eight
x Lylz
3

adjacent rectangular volumes, we can think that each rectangular volume equal to contains only

LyLyL,
one momentum state. The density of momentum states in the momentum space is the reciprocal of this
volume. Refer to Figure (1.5).

According to quantum mechanics, the electron state is completely specified by four quantum
numbers which are the three quantum numbers such as n,n, and n, obtained by constraining the
particle to a small three dimensional volume and a fourth quantum number called the spin quantum

. . 1 1 e .
number. The spin quantum number can either be Sor-- for electrons. Thus for a specific set of integers
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. 1 .

for nynyand n,, we have 2 quantum states one with numbers n, n,, and n, and > and the other with
1

nynyandn, and - 7

3
there are two electron states.

In the momentum space, in a rectangular volume equal to
xbylz
h3 h3
Another way of saying this is that each electron state is contained within a volume Il of the
xbyLlz

momentum space where the volume V of the box is LyL,L,. We can write that the number of states in
2V

unit volume of the momentum space is equal toF and this is called the density of electron states in

momentum space. If we take the potential energy to be zero (by suitably choosing the zero reference

for the energy), then the total energy E, is equal to the kinetic energy. If we describe a sphere of radius

P in the momentum space with the origin at the center of the sphere, all states lying on the surface of

the sphere will have the same energy. This leads us to conclude that the constant energy surface, i.e., a
surface generated by connecting all states with the same energy, is a spherical in the momentum space.

Suppose we want to determine the number of electron states having momentum components
between p, and p, + dp,, py and p, + dp,, p, and p, + dp,. We consider an elementary rectangular
volume of sides dp,dp, dp, with its corner at the coordinates p, p, and p, in the momentum space as
shown in Figure (1.6), and count the number of states within this volume. Instead of counting, we can

. . , 2V
simply multiply the volume of the elementary rectangular momentum space by the density of states PEl

to obtain the number of states.

The magnitude of the momentum p, is given by

p= \/ i+ i g

Usually, we are more interested in finding the number of states having the magnitude of momentum
between p and p + dp. In the momentum space if we describe two spheres around the origin, one with
the radius equal to p and the other with radius equal to p + dp as shown in Figure (1.6), all the states in
the interspace between the surfaces of these two spheres correspond to momentum magnitude
between p and p + dp. The volume of the interspace between the two spheres is equal to 4mp?dp. If

1%
we multiply this volume by the density of states (%) in the momentum space, we obtain Z(p)dp the

number of states with the magnitude of momentum in the range between p and p + dp. The number
of states having magnitude of momentum between p and p + dp as

2V
Z(p)dp = F‘szdp

8tV 2

= P dp (1.29)
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Figure (1.6): Constant momentum (magnitude) and constant energy surface

Fermi-Dirac Statistics

When we have a single electron, this electron will occupy the state with the lowest
energy. If we have a very large number of electrons in the box, all these electrons cannot occupy the
same lowest energy state. According to a famous principle in physics called Pauli exclusion principle,
only one electron can occupy a given quantum state i.e., a state specified by the assignment of four
quantum numbers. We start therefore filling the states, starting from the lowest energy state, until we
have exhausted all the electrons. The last electron fills the state with the highest energy among all
occupied states. This kind of distribution of electrons among the states is called the Fermi-Dirac
statistics or distribution.

According to Fermi-Dirac statistics, the probability that a given state is occupied by an electron
is given by the following function:

f(E) = —E—;F (1.30)

e kT +1

This function given by Equation (1.30) is called the Fermi function and the parameter Ef is
called the Fermi energy. This function is plotted in Figure (1.7).

At absolute zero temperature, f(E)is 0 for E > Ep and is 1 for E < Ep. This means that at
T = 0°K, states with energy less than Ef are occupied and states with higher energy are empty.
Er represents the maximum value of the energy of occupied states. The Fermi energy acts as a
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threshold energy separating the occupied states and the vacant states. The Fermi function exhibits a
discontinuity at T = 0°K in going from avalueof 1to O at E = Ep.

As the temperature is raised, the electrons in states close to the Fermi energy get excited by
thermal energy to states with energy higher than the Fermi energy. This leads to a gradual variation with
energy of the Fermi function from 1 to 0 around E. Since the thermal energy is of the order of kT
which is very much smaller than Ef, the region of transition from 1 to O is very small compared with Ex
as shown in Figure (1.7). Even at higher temperature, states with energy less than the Fermi energy by
several kT, have a probability of 1 for occupation by an electron. Similarly, states with energy greater
than the Fermi energy by several kT have a probability of nearly 0 for occupation by an electron. The

probability of a state with energy equal to Er, being occupied by an electron is % .

Determination of Fermi energy

We denote the number of electrons having the magnitude of momentum between p and
p +dp as dN,. dN,, is obtained by multiplying Equation (1.29) and Equation (1.30).

8tV 1
dN, = Z(p)dp f(E) = —5 —g=g— p*dp (131)

e kT +1

Let us now determine the distribution of electrons as a function of energy E. We want to find
the number of electrons having energy between E and E 4+ dE. Let us denote this number by dNg. In
Figure (1.6) the surfaces of the two spheres with radius p and p + dp are constant energy surfaces one
with energy E and the other with E + dE. Therefore dNg is the same as dN,,, but dNg needs to be
expressed in terms of E instead of in terms of p. Since E, the total energy equal to the kinetic energy,
when the potential energy is taken as zero,

Differentiating,

2pd d
dE_Pp b ap

= = — (1.32)
pdp =mdE (1.33)
and

p=+vV2mkE (1.34)

Substituting these in Equation (1.31), we obtain

3 1
dNg = dN, = 28— p2dp= 20 2 — dE (139)
e kT +1 e kT +1
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Figure (1.7): Fermi function (also called the Fermi-Dirac distribution function)

This can also be written in the form

dNg = f(E)Z(E)dE (1.36)

where f(E) is the Fermi function and Z(E) is given by

3
4mv(iem)z 1

Z(E) =— 7 E> (1.37)

Z(E) is called the density of states (in energy) and can be interpreted as the number of quantum states
in unit energy interval i.e., Z(E)dE is the number of states having energy between E and E + dE.

Figure (1.8) shows a plot of the density of state function, Z(E). This figure gives the distribution
1
of states as a function of energy. We see that the density of states is proportional to E2. We multiply

Z(E) by the Fermi function f (E) or divide Equation (1.35) by dE to obtain % , the distribution of

. an .
electrons as a function of energy. d—: dE represents the number of electrons with energy between E

and E + dE and is plotted in Figure (1.9). At T = 0°K, no electron has energy larger than E. However,
at high temperatures, a few electrons occupy states with larger energy. The higher the temperature, the

more electrons there are with higher and higher energy. This process is referred to as thermal excitation
of electrons to higher energy states.
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Figure (1.8): Distribution of states as a function of energy

The Fermi energy, Ef, can be obtained by a simple treatment as shown below: At absolute zero
temperature, the total number of occupied states in the momentum space shown in Figure (1.6) are
those which lie within a sphere on whose surface the energy is equal to Er and this should be equal to N

the total number of electrons in the box. A sphere bounded by the constant surface Er has a radius
Pr given by

2
Pr
— = Ej
2m
4 2V
The volume of the sphere is equal to ?"p,é . Multiplying this by the density of states, 5 e obtain
41 2V
N=="p
3 PF o3
8wV 3
3n3 PF

3
_ 8mnV

3 =
e (2m)z E} (1.38)

We used the relation between pr and Er in the above equation. We can now rearrange this equation to
express Er as

2

3 h3 N 3
8w (2m)2
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3 h3
=|——n (1.39)

8m (2m)

N W

Figure (1.9): Electron distribution as a function of energy

where n = v is the number of electrons per unit volume (i.e. density) in the box. The Fermi energy is

dependent only on the density and not on the total number of electrons. As we will see later on,
electrons in metallic solids that are free to roam around in the solid are modeled as electrons in a box of
the same dimensions as the piece of solid. We can determine the Fermi energy of the solid, knowing n,
the density of electrons. Whether a solid is large or small in size, the Fermi energy is the same
independent of size because it depends only on the density of electrons.

Example

Let us calculate the Fermi energy of a solid that has 10> cm™ free electrons. These electrons are free in
the sense that they can move from one region of the solid to another region. Therefore they can be
treated as electrons in a box of the same dimension as the solid.

n = 10?2 ¢m™3
= 10?8 meter™3
m=9.11 x 10731 K gm
h =6.63 x 1073* Joules — sec
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Substituting these values in the expression for Fermi energy given in Equation (38) we obtain the value
of Fermi energy as

2
3

3 x 1028

Ep = X (6.63 x 10734)2

3
8 Xxm X(2x911 x 10731)2

=2.71 x 10719 Joules = 1.69 eV

According to classical physics, all motions stop at T = 0°K. But according to quantum
mechanics, even at T = 0°K electrons move with speeds distributed between 0 and a maximum value
Vg, Where v is the speed of electrons with energy equal to Er. We can calculate the speed v of the

. N . 1 . .
electron with energy (kinetic) E, through the relation E = > m v?. The maximum velocity that an

electron can have at T = 0°K is given by

1
Ep =5m v (1.40)

_ |2EF
vp = =" (1.41)

We can determine the average speed or momentum or energy of a collection of electrons in a

. C . dNp dN
box since we know the distribution functions d—;, d—; for the electrons. In the example below we

calculate the average speed of electrons in a box at absolute zero temperature.

Example

v, the speed, is equal to % and hence the average speed at T = 0 %K is given by

<v>=<£>

L zp)fE)dp

[T Z®)f(E)dp

To evaluate this integral we take advantage of the property that f(E) is equal to 1 when p is between 0
and pr and is equal to 0 when p is greater than pp at absolute zero temperature.
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I3F & p2dp

<v>=
J3F p2ap

—PE 3

" am 3
PF

3 pr 3

__:_v

4 m 4 F

.3 .
Thus we see that the average speed of the electrons is " of the maximum speed vg.

If we want to localize the position of the electron in the box, by representing it as a wave packet,
we superimpose a large number of plane waves of suitable amplitude and phase and of different k
values with an average value of k. The velocity of the electron is the group velocity of the wave packet
and is equal to

do _ 1 dE

= (1.42)
dk h dk

determined at k = k. Referring to Figure (1.10), the velocity of the electron for the state k = k,, is
related to the slope of the energy E vs k plot at k = k. Since we have

hZk?2

2m

the velocity of the electron in the state k = k is equal to

_ 1 dE _ hko
Ve = Vg = . _— = (1.43)
This is the usual result that velocity is momentum divided by m. We considered the potential energy to
be constant inside the box. However, the potential energy inside the solid will be periodically varying.
When we assume that the potential energy inside the box is varying periodically, an interestingly
different E vs k diagram is obtained and the velocity is not equal to the momentum divided by the mass.

In the treatment of electrons in a box, the potential energy was assumed to be constant and
hence there was no force on the electron. Hence the electrons were said to be free. When we apply this
model to treat the case of electrons in a metallic solid, we call it the free electron model of the solid. We
found that the energy levels are discrete (quantized). However, since the dimensions of the solid are
large in comparison with atomic distances, the discrete energy levels are very close to each other and
hence for all practical purposes can be considered to be continuous. This is particularly true when we
consider higher energy states where the quantum numbers are large and the separation in energy
between adjacent states expressed as a fraction of the energy of the state becomes extremely small. For
this reason, the energy is said to be “quasi-continuous”. For the same reason the corresponding
momentum k, k, and k, as well as the magnitude of |k| are quasi-continuous. This model is applicable
to describe the behavior of conduction electrons in metallic solids. You will see in the next chapter that,
in a metallic solid, each atom of the solid contributes an electron or two to form a sea of electrons that
belong to the whole solid and are free to move in the solid like electrons in a box. This model does not
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explain why some solids are conductors and some others are not. We have to use a new model called
the “Band Theory of Solids” to understand the conducting properties of solids.

2m

r's
ﬂ\;\ E = f_i"’_i_"'_ in arbitrary unils
!

>
0 . I 1 k (arbitrary units)

Figure (1.10): E vs k digram

Band Theory of Solids

In a typical solid with free electrons, the electrons are subjected to an internal force due to the
positively charged ions of the atoms. The potential energy varies periodically due to the periodic
arrangement of the atoms in the solid. This force acting on the electrons is called the internal force as
distinct from an externally applied force such as that due to an electric field arising from the application
of a voltage between the two ends of the solid.

To illustrate the concept of “allowed” and “forbidden” bands of energy, let us assume a one-
dimensional solid as shown in Figure (1.11). The positive ions are assumed to be situated periodically
along the x-axis with an inter-atomic distance of ‘a’ units. The electrons can move only along the x-axis
in either direction (i.e., in only one dimension). The potential energy of the electron due to the attractive
electrostatic force of the positive ions varies periodically with x as shown in Figure (1.12). Due to the
periodic potential energy, the electron states are allowed to have energy values only in certain ranges
and not in others. The range of energy values in which the electron has states is called an allowed band
of energy. The allowed bands are separated by forbidden (or disallowed) bands of energy in which the
electrons have no states and the forbidden bands are called energy gaps, (see Figure 1.13).

In the free electron model, the electron energy varies quasi-continuously from 0 to e as shown
in Figure (1.14). In this figure, the kinetic energy, which is the same as the total energy since the
potential energy is constant and can be taken as zero by a proper choice of the zero reference for
energy, is plotted as a function of k. Motion is possible only along one dimension. k varies quasi-
continuously from —eo to + oo,
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Figure (1.11) Positive ions and free electrons in a one-dimensional solid
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Figure (1.12) Electrostatic potential energy variation with distance
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Figure (1.13) Bands of allowed and forbidden energy

Let us assume that the potential energy varies periodically with the periodicity a and is given by

Ux)=U(x+a) (1.44)
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When the existence of the periodic potential energy is treated quantum mechanically, it is shown in
solid state physics books that the energy varies with k as shown in Figure (1.15). Notice that the energy
of the states is split into bands. The solid line in the Figure (1.15) represents the energy according to the
band theory. Let us now examine the essential features of the band theory.

ANE

Figure (1.14): E — k diagram for free electrons. Quasi-continuous distribution of energy as a
function of the magnetitude of the momentum. Notice that the energy values extend from 0 to o

i ) .
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——— - — — . —

N
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Figure (1.15): A plot of energy as a function of k (E vs k) in the band theory in the one-dimensional
approximation. Notice that the energy values are broken into bands of allowed and forbidden values.

As the magnitude of k is increased from 0, the energy increases symmetrically with k for

both positive and negative values of k until k becomes equal to + g . At this value of k, the energy has a
discontinuity and if k is increased beyond Z then the energy again increases. The discontinuity in
energy at g is called the energy gap or the bandgap. The continuous range of energy for values of k

between - Z and + g is called the first energy band. It can be noticed that another energy gap occurs

at-2 Z and + 2 g is called the second band of energy. In general, the bandgap occursatk = + %T

where n is an integer. Thus, according to the band theory of solids, the energy values are split into
allowed and forbidden bands of energy. The forbidden band of energy is also referred to as bandgap and
the allowed band is referred to as energy band. At the bottom and at the top of the energy band, the
energy plot has zero slope. In the middle of the band, the energy has a parabolic dependence on k, i.e.,
is proportional to k? as in the free electron model. Notice that, in the region of the band, the dotted line
and the solid line overlap showing that the behavior of electrons in this region of the band is similar to
the free electron behavior.

It is shown in text books in solid state physics that in a band, two states whose k value

. 2n . . . . .
differs by Tn where n is a positive or negative integer are equivalent states if they also have the same

2
energy. Referring to the Figure (1.16), A and B are equivalent states because the k values differ by Tn
and they have the same energy. Similarly, C and D are equivalent states.

Since the velocity of the electron is the group velocity of the wave-packet as given by
Equation (1.42), we notice that the electron velocity varies in the bandgap due to the variation of the
dE
slope in the E versus k plot i.e., P in the band. The electron has zero velocity in the bottom and in the

top of the band since the slope is zero. It has maximum velocity in the middle of the band where the
inflection point occurs.
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Figure (1.16): One dimensional energy band diagram illustrating equivalent states

Effect of an Applied Electric Field

We will now examine the behavior of the electrons in a band under the application of an
external field. Let us assume that the electric field € is switched on at time t = 0. There is a force on the

electron equal to - g€. In a short interval of time §t, the electron moves a distance v §t and gains an
energy equal to

O0FE = —q Evét (1.45)
The energy of the electron is changed by §F, and it should be now in a new state k + k.

The differential in energy 6F is given by

dE
0F = (—) 6k (1.46)
dk
The velocity was seen earlier to be equal to the group velocity of the wave packet i.e.
v = = aE (1.47)
U T hak '
Hence 6E can be expressed in terms of the velocity of the electron as
O0F = hvdk ' (1.48)
Equating this expression for §E with that given in equation (1.45), we obtain after rearrangement
dk
—q&=h— 1.49
q i (1.49)
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dk . . I
Thus we see that 7 s equal to the external force on the electron due to the applied electric field. We
can infer, therefore, that the effect of an external force is to make the k value change with time at a rate
given by

dk _ external force
at h

(1.50)

What do we mean by a change in k value? The electron changes or makes a transition from
a state of some k value to another of different k value. Under the application of the external field
(force) the electron goes from one k state to the next higher k state and from that state to the next
higher k state and thus keeps on making these transitions as long as the external force is applied. In
other words, the electron changes its k state under the application of an external force.

Referring to Figure (1.16), an electron in the state P will jump to the next higher state Q due
to the external field. Then it will jump to a next higher k state and keep on moving to higher k states
until it reaches the state A. According to Equation (1.45), the velocity of the electron in any given state is
proportional to the slope of the energy versus k plot known usually as E — k plot. In the upper left half
of the bandgap, the E — k plot is concave downwards which means that the slope (velocity) decreases
as k is increased. As the electron changes its state progressively from P to A, the electron velocity is
decreasing i.e., the electron is slowing down. Since the slope is zero at A, the electron velocity becomes

zero. The k value cannot increase to a value higher than — since there is an energy discontinuity.

However, the state B is equivalent to 4 and therefore when the electron is in the state k = g , itis
. Lo . dk
equivalent to being in the state = —g . Now, k can increase at the rate o from the state B, where

T . dE . . T . . .
k=-— e Since s negative, the velocity is negative. The electron starts to move in the opposite

direction and the magnitude of the velocity in the negative direction increases from zero when it is in
the state B to a maximum value when it reaches the state P Then it starts to slow down and reaches
zero velocity in the state denoted by 0. As the force continues to act on the electron, the electron starts
to move in the positive direction and its velocity increases until it reaches the state P. When the
electron goes from state P to a higher k state, it starts to slow down and comes to rest when it reaches
the state A. This cycle keeps on repeating as long as the force continues to act on the electron. The
electron changes states in the band in a cyclic fashion. When a band is completely full, all the electrons
are continually changing states in a cyclic fashion. At any given instant, there are as many electrons
traveling in the positive direction as those in the negative direction. This is because electrons occupying

states between k = 0 (state O) and k = g(state A) correspond to electrons traveling in the positive

direction while electrons occupying states between k = 0 (state O) and k = — g (state B) travel in the

negative direction. The average velocity is therefore zero and hence a completely filled band does not
contribute to electrical conductivity.

When the electron is in a state between state P and state A4, the effect of the external field
is to decelerate the electron (i.e., as time progresses its velocity decreases). Normally, when we consider
free electrons, the electron will accelerate under the action of the external field. It is as though an
electron in states between P and A has a negative mass. Similarly, the electron behavior in states
between P’'and B is as though the electron has a negative mass. We define therefore, an effective
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mass m*, which, when multiplied by the acceleration, gives the force on the electron. Since states in the
upper half of the band correspond to deceleration of electrons, they have a negative effective mass
while those in the bottom half of the band have a positive effective mass.

The acceleration of the electron is given by

_dv d(l dE)_l d’E 1 d?E dk (L.51)
~dt  dt\n dk) A dtdk h dk? dt '
. dk
But the force -g€ is equalto A plt Hence
a—idz—E(hﬁ)—iﬂ(— 8)—idz—E><F0rce (1.52)
"~ h2 dk? at) " waz V1) T R we :
1 d’E . . .
The term TS relates acceleration to the applied force just as mass relates total force and
acceleration. We thus define the effective mass m* as
N
m = E (1.53)
dk?

d?E
The curvature Tz of the E vs k plot is positive in the lower half of the band and hence m* is positive.

The curvature is negative in the upper half of the band, and hence the effective mass is negative.

What is the philosophical interpretation of the effective mass? The effective mass relates
the acceleration of the electron to the external force. If one were to include all the forces internal and
external, then indeed the relation between the acceleration and the total force will be through the real
mass of the electron. We are relating only the external force to the acceleration and hence we need to
define an effective mass.

The effective mass is a useful concept since it enables one to determine the behavior of
electrons by treating them as though they are free from any internal force (i.e., constant potential
energy) and replacing the true mass by the effective mass m* in the expressions describing its dynamic
behavior. In the 3-dimensional solid, the effective mass m* is a second-order tensor which relates the
external force along one direction to the acceleration along another direction. For example, in a general
case, unless the external force is applied along one of the three principal axes of the crystal, the
resulting acceleration will not be in the same direction as the force. However, for the purposes of our
discussion, we will assume that the effectiveness m* is a scalar quantity i.e., the external force and the
acceleration are in the same direction.

Conductors, Insulators and Semiconductors

Let us now consider a material in which the upper most occupied band is partially filled
while all the lower bands are completely filled. There is no contribution to the electrical conductivity
from the lower bands since they are full as stated earlier. On the other hand, the electrons in the
partially filled (highest) band move continuously to higher k states under the action of the eternal force.
In a time interval At, the electrons would have changed to new states that differ in the k value by
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external force
h

Ak =

At (1.54)

One would expect that the electrons will be continually changing states in this fashion but
this does not occur. The electrons collide with scattering centers such as impurities and other atoms of
the crystal that have been displaced from their normal atomic sites. The scattering causes them to give
up their excess energy and return to lower energy states. This process is called a relaxation process. The
electrons are never able to go to very high energy states due to the relaxation process. According to solid
state theory, it is possible to assume that, under steady state conditions, the distribution of electrons in
the presence of the electric field €, is the same as what one would obtain if the field € acted on the
electrons for a time period 7. T.is called the relaxation time. Referring to Figure (1.17), we find that
under steady state conditions, all the electrons have shifted to new k states separated from the original
states by an amount

Ak = % (—q€) 1, (1.55)

All the states below the dotted line in the energy axis have equal number of electrons going
in the positive direction as in the negative direction. Only those electrons lying above the dotted line
travel in the positive direction without an equal number traveling in the opposite direction. There is thus
a net flow of electrons in the positive direction. These electrons contribute to electrical conductivity. We
can conclude therefore that only partially filled bands contribute to electrical conductivity.
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Figure (1.17) Electron distribution in the presence of an electric field

We can distinguish three classes of materials: conductors, insulators and semiconductors.
An insulator is one in which the top-most occupied band is completely filled as shown in Figure (1.18).
The top most filled band is called the valence band since the electrons in this band are the ones which
give rise to the chemical bonding. The next higher band is called the conduction band, since any electron
excited to this band will give rise to electrical conductivity due to the fact that the conduction band
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becomes partially filled. The difference in energy between the top of the valence and the bottom of the
conduction band is the energy gap. Insulators’ energy gap which is also called the bandgap, is very large
and hence even at very high temperatures only a negligible number of electrons is excited into the
conduction band and the material does not carry electrical current. On the other hand, if the bandgap is
small, then, even at moderately low temperatures, electrons will be excited from the valence band into
the conduction band and we will get electrical conductivity from both the partially filled valence and
conduction bands. Such materials are called semiconductors. At absolute zero temperature, the
semiconductor is an insulator since there are no electrons in the conduction band. However, as the
temperature is raised, electrons are thermally excited from the valence band to the conduction band
and the material starts to conduct electricity. Conductors are materials in which the highest occupied
band is only partially filled. The band structure for conductors is shown in Figure (1.19). The metallic
solids have this feature, i.e., the highest occupied band is partially filled, and hence is a good conductor.
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Figure (1.19): Band structure of a conductor
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Concept of Holes

We saw in the last section that a semiconductor has a small bandgap with its valence band
completely filled while its conduction band is empty at very low temperatures. As the temperature is
raised by heating the semiconductor, electrons are thermally excited from the valence band to the
conduction band. This gives rise to a partially filled conduction band and the electrons in the conduction
band can give rise to electrical conduction. Similarly, the remaining electrons in the valence band can
give rise to electrical conduction since the valence band is now only partially filled. However, it is a very
difficult task to determine the contribution of the large number of electrons in the valence band. A
simple technique can be employed to calculate the contribution of the valence band electrons to
electrical conduction.

For the sake of simplicity, let us assume that only one electron is excited from the valence
band to the conduction band, leaving a vacant state in the valence band. The electron in the conduction
band gives rise to electrical conduction as though it is a free electron with an effective mass, m,,
appropriate to the state it occupies in the conduction band. The electron will occupy only a low energy
state in the bottom of the band and therefore its effective mass is positive. On the other hand the
vacant state in the valence band is in the top of the band and the effective mass is negative. An electron
with an effective mass —m,,, can occupy the vacant state in the valence band, and make the valence

band fully occupied. Assume that we introduce two fictitious particles one with a charge - g coulomb
and a mass —m,, and the other with a charge q coulomb and a mass m,,. The particle with the negative
charge and negative effective mass fills the vacant state making the valence band completely filled.
However, the particle with the positive charge and positive effective mass will now be free to move
around the crystal and contribute to the electrical conductivity. This fictitious particle with a positive
charge and a positive effective mass is called a hole. It behaves like a free particle and carries a charge. It
therefore contributes to electrical conductivity. For every electron excited from the valence band, there
is hole in the valence band. We obtain electrical conductivity due to both electrons and holes.

The number of electrons in the conduction band is small in comparison with the total
number of states in the conduction band. Hence, the electrons occupy a narrow range of states in the
bottom of the conduction band. We can therefore assume that all these electrons have the same
effective mass and calculate the electrical conductivity due to them by using the free electron model
(electrons in a box) except that we will use the effective mass m. in the place of the true mass. Similarly,
all the holes are nearly at the top of the valence band and occupy a narrow range of states in the
valence band. Therefore they all have the same effective mass, m,,, corresponding to the curvature of
the top of the valence band. These holes can be treated as holes in a box. Thus, we can calculate the
electrical conductivity of the semiconductor using free electron and free hole models.

-29-



Chapter 2

Semiconductor Material Electronic Properties

Intrinsic Semiconductor

We will briefly review, in this chapter, the essential aspects of semiconductor physics that will
be relevant to the discussion of device physics. A semiconductor is a material that has an electrical
conductivity much less than a metallic conductor but is much more conducting than an insulator.
Furthermore, its electrical conductivity is zero at absolute zero degree temperature and increases with
temperature. The atoms in a semiconducting crystal are held together by covalent bonds. In order to
understand what a covalent bond is consider two hydrogen atoms which are initially infinitely apart. On
bring these two atoms closer, the electron in each atom is simultaneously subjected to the attractive
forces of both the nuclei and the potential energy of each electron is lowered. The lowering of the
potential energy with decrease in the distance between the two nuclei corresponds to an attractive
force. The reason the two nuclei do not collapse on each other is because of a repulsive force that arises
between the two nuclei (Coulomb repulsion) at very close inter-nuclear distance. The two nuclei are in
stable equilibrium at a separation where the attractive force is exactly balanced by the repulsive force.
The two electrons have a very high probability of being found midway between the two nuclei and
therefore the electrons spend most of the time midway between the two nuclei. This will not violate
Pauli’s exclusion principle because each atom has only one 1s electron. The electron in one atom can
have opposite spin to the electron in the other atom and therefore these two electrons can
simultaneously exist in the same place. It is as though each atom has two electrons in the 1s orbit.
However if we bring two helium atoms together, a covalent bond will not result because of the fact that
Pauli’s exclusion principle is violated since each atom already has a filled 1s state (usually called 1s
orbital). Therefore we can conclude that for covalent bonds to exist, each atom should have a partially-
filled orbital.

The same covalent bond gives rise to the bonding force in many of the solids like carbon,
nitrogen, and oxygen. The covalent bond is directional and therefore these atoms crystallize in
structures which satisfy the directionality of the covalent bond. An atom with N electrons outside the
close-shell structure requires (8-N) electrons to complete the s and p sub-shell. Since two neighboring
atoms each contribute one electron to the bond between them, an atom with N valence electrons
requires (8-N) nearest neighbors and the crystal structure that results has to provide (8-N) nearest
neighbors which are symmetrical situated with respect to the first atom. For example, carbon
(diamond), silicon, and germanium, each has two s electrons and two p electrons. Therefore they
require 4 nearest neighbors and this is obtained in the diamond structure. Figure (2.1) shows the crystal
structure of diamond in which each atom is surrounded by four covalently bonded neighboring atoms.
Silicon and Germanium also have similar crystalline structure.

It might be asked how Pauli’s exclusion principle is not violated when we have the s-orbitals
filled in each of the carbon atoms. This is explained by assuming a rearrangement of the states of the
four electrons. One of the 2s electrons goes into a 2p state and thereby, we have half-filled s-orbitals
and half filled p-orbitals. Such a rearrangement is called hybridization. The four new orbitals thus

-30-



obtained are (sp3) hybrids. Figure (2.2) shows how the energy bands are formed by hybridization of
s and p orbitals.

The covalent crystals exhibit great hardness, low electrical conductivity at low temperature and
in pure state. These usually have strong binding but some of the crystals (semiconductors) have weaker
binding. These semiconductors exhibit electronic conductivity at high temperatures.
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Figure (2.2): Energy band formation in diamond by hybridization of s and p orbitals
Band Structure of Semiconductors

Some of the common semiconductor materials are made up of atoms of Group IV elements like
germanium and silicon; these materials are referred to as elemental semiconductors. Semiconductor
materials such as gallium arsenide or indium antimonide are made up of compounds of atoms of Group
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III and Group V elements and therefore these materials are known as compound semiconductors. The
energy band structure of some common semiconductors is given in Figure (2.3). In this figure, the
energy is plotted as a function of the wave vector (proportional to the momentum) (in two
crystallographic directions viz., [111] and [100]. In all the semiconductors, the states in the lower bands
are completely filled with electrons and the states in the higher bands are empty at very low
temperatures. The electrons in the lower bands are the ones that participate in covalent bonding and as
such, they are not free to move around in the crystal. Since the electrons in the lower bands are the
ones in the covalent bond, the lower bands are called the valence band. The states in the higher band
are empty; therefore, there are no electrons to move around in the crystal. At very low temperatures
there is no broken bond and the valence band is completely filled.

Figure (2.3): Energy band structure of some typical semiconductors

According to the principles of solid state physics, electrons in a completely filled band do not
contribute to electrical conductivity and only the electrons in a partially filled band contribute to
electrical conductivity.

When a covalent bond is broken and an electron is freed to move around in the solid, this
electron is in one of the states in the higher bands. The missing electron in the broken covalent bond is
represented by a vacant state in the valence band. Electrons in the higher bands are called free
electrons since they are free to move around in the solid.

As the temperature of the crystal is increased, some electrons break loose from the covalent
band and become free to move around in the crystal. That is, some electrons are thermally excited to
the states in the higher bands. The higher bands (which were empty at low temperatures) become
partially occupied at higher temperatures and thus, these electrons give rise to electrical conductivity.
For this reason, the higher bands are called the conduction band.

At higher temperatures, the valence band (which was fully occupied by electrons at low
temperatures) become partially occupied and hence, gives rise to electrical conductivity. When there is
a vacancy in an otherwise completely filled valence band, the collective behavior of the rest of the
electrons in the valence band is equivalent to that of a fictitious particle called the hole, which has a
positive effective mass and a positive charge. The holes are free to move around in the solid and thus
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called “free holes.” An electron in the conduction band is free to move around in the crystal and a hole
in the valence band is free to move around in the crystal as shown in Figure (2.4).

Figure (2.4): Generation of electron-hole pairs

In Figure (2.5), the lowest energy in the conduction band is denoted E, and the highest energy
in the valence band is denoted E,,. The minimum energy needed to excite an electron from the valence
band to the conduction band is obviously E- E;, and is called the energy gap, E;. We notice that there is
a difference between elemental semiconductors and compound semiconductors. In silicon and
germanium, the minimum energy in the conduction band, E_, occurs at a momentum value different
from that at which the maximum energy in the conduction band, E,,, occurs. In order to excite an
electron from the top of the valence band to the bottom of the conduction band, not only does energy
need to be given, but also some momentum needs to be imparted. A photon does not have momentum
and can excite an electron in the valence band to a state with the same momentum in the conduction
band. This is referred to as vertical transition. The minimum energy needed to excite an electron to the
conduction band is E; = E.- E,,. However in silicon and germanium, to excite an electron to the
conduction band with the minimum energy, additional momentum also needs to be given. Hence, in
these materials, a phonon is also involved to supply the needed change in the momentum between the
initial and final states. For this reason, these materials are called indirect semiconductors. In gallium
arsenide and other materials, in which the bottom of the conduction band, E_, also occurs at zero
momentum values, it is possible to excite an electron optically from the top of the valence band to the
bottom of the conduction band directly (or vertically) without the need of a phonon. These materials are
called direct semiconductors for this reason. The direct and indirect transitions are illustrated in Figure
(2.5).
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Figure (2.5): lllustration of direct and indirect gap semiconductors

We will now simplify our discussion by denoting the conduction and the valence band by two
horizontal lines—one for E,. and another for E,, with the understanding that the conduction band states
are above the E, line and the valence band states are below the E,, line as illustrated in Figure (2.5). In
this figure, E.. is the bottom of the conduction band, and E, is the top of the valence band. The
difference E.- E, is the energy gap where there are no electron states.

In a crystal, on which no external radiation is incident, or in which no externally applied electric
fields are present, the excitation energy for the electron to jump from the valence band to the
conduction band comes from the thermal energy. For this reason, this process is called the thermal
excitation process and the electron is said to be thermally excited from the valence band to the
conduction band. In a pure crystal, which contains no impurities, thermal excitation from the valence
band (breaking up of covalent bonds) is the mechanism for generating electrons and holes. (Usually in
literature, electrons in valence bands are referred to as valence electrons and electrons in conduction
bands as conduction electrons.) Since in a thermal excitation process the number of electrons in the
conduction band is a function of the intrinsic properties of the crystal such as the band-gap, effective
mass, etc., a semiconducting material in which free electrons (and holes) are only obtained by thermal
excitation from the valence band to the conduction band is called an intrinsic semiconductor. It is
customary to denote the number of electrons per unit volume (concentration or density) in the
conduction band as n and the number of holes per unit volume in the valence band (concentration or
density as p. In an intrinsic semiconducting material

n; = pi (2.1)
where the subscript i is purposely used to denote that the material is intrinsic.

The main requirement for a crystal to be a semiconductor is that the bonds between the atoms
of the crystal should be covalent and also comparatively a small amount of energy should be needed to
break up the bond. Table (2.I) gives the energy gap of some of the typical Group IV elemental
semiconductors and Group IlI-V intermetallic compound semiconductors.
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Material Chemical Symbol Energy Gap (eV)
Diamond (Carbon) C 53
Silicon Si 1.17
Germanium Ge 0.72
Gallium Phosphide GaP 2.25
Gallium Arsenide GaAs 1.34
Indium Phosphide InP 1.27
Indium Antimonide InSb 0.18

Table (2.1): Energy Gap in typical semiconductdors

Figure (2.6): An electron in a state with energy E in the conduction band has a kinetic energy equal
to E — E,. The kinetic energy is small compared with the band gap energy E. — E,,. This figure is not
drawn to scale

Let us now calculate the density (concentration) of electrons in the conduction band. When an
electron is in a state which is at the bottom of the conduction band i.e., a state with energy E_, it has no
velocity and therefore no kinetic energy. Hence, we can say that the electron in this state has only
potential energy. Therefore the potential energy of the electron is taken as equal to E.. The kinetic
energy of the electron in a state in the conduction band with energy E is therefore equal to E — E as
shown in Figure (2.6). We have already seen that the conduction electrons can be considered nearly
free, and therefore we can apply the techniques of free electron theory i.e., treat them as electrons in a
box. The density of states in the conduction band close to the bottom of the band i.e., close to E., can
be approximated by the density of states of free electrons or electrons in a box with one assumption.
The mass of the electron is to be replaced by the effective mass determined by the curvature of the
conduction band near E.. Since only states that are nearly at the bottom of the conduction band are
occupied, treating these electrons as free electrons subject to the assumption of the same effective
mass for all electrons is valid. The momentum p of the conduction electrons can be readily written from
the box model as

p = 2m, (E —E.) (2.2)

The density of states for electrons in the conduction band is then given by
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3
ZC(E) _ 4TV (ZmC)Z

(E Ec)z (2.3)
where V is the volume of the semiconductor solid and the subscript c in Z.(E) has been used to denote
the density of states in the conduction band. The density of states for electrons is shown in Figure (2.7).

The number of electrons dng, with energy between E and E 4+ dE per unit volume of the
crystal, is then given by

Z(E)f(E)AE _ 4m (2m )2 (E—E,)ZdE
v T n3 E-Ef (2.4)
(e FT +1)

dnE =

Where f(E) is the Fermi function.

The concentration (density) of free electrons can now be obtained by integrating Equation (2.4)
between the limits E; and E,, where E;,, is the top of the conduction band i.e., the maximum energy
of the conduction band.

Etop
n= f dng

Ec

Typically, the concentration of free electrons is very low; hence the states in the lower portion
of the conduction band will be occupied. Two further assumptions can then be made: one, E,, can be
assumed to be infinite i.e., the upper limit of the integral can be assumed to be < instead of E;,
without any appreciable error, and two, the effective mass m_. is assumed to be the same for all the
electrons since the curvature of the band is the same for all the states in the bottom of the conduction
band. Hence m, can be considered constant and taken outside the integral. Under these conditions, the
density of electrons is given by

(E—E)2dE EC)ZdE
(ch) f T E-Ep (2.5)

(e kT +1)

This integral has to be evaluated numerically as it stands. However, some simplifications can be made.

Let us assume that E. — Ep>> kT i.e., the Fermi energy lies in the band gap at least a few kT below the

conduction band minimum E_. Since the lower value that E can have is E, E >> E, and hence E-Ep

>> kT. The equation for the electron density n can now be simplified by neglecting the unity term in the

denominator to yield

1 (Ep-E
S s

(ZmC)Zf (E—Ec)zelw )dE (2.6)

. . E-E
Let us define a new variablenp = <

17 - 5% o) = eyt f (50 o) g (£)

kT kT

-36 -



3 (EF—EC

1
= kTze\ kT )f775€_77 dr’ (2.7)
Hence
3

3 Ep-Ec 3 o 1
n= 4 am,): o )(kT)sz nz e dn (2.8)

The integral in the right hand side of the above equation is just equal to g The equation for n can then

be simplified to
3
= Ec—E
2 tmckT —(Zc—ZE
n=2 (—h: )Ze ( kT ) (2.9)

The above equation is usually written as

n = Nce‘(EC{f £) (2.10)
where
3
N, =2 (Zm;—;kT)E (2.11)

This quantity N, is called the effective density of states in the conduction band. The reason why
_(Ec—Ef
N, is called so is as follows: The factor e ( kT ) in the expression for n, gives the probability that a

state located at level E,. will be occupied, since it can be shown that when E,. — Ep > kT,
Ec-E

1 —(==ZE

fE) =5 ~e S

e kT +1

(2.12)

If there are N, states located at E = E_ then we will have for n the same expression as derived above.

We can similarly calculate the number of holes in the valence band per unit volume of the
crystal. While we can calculate the density of states in the valence band by methods similar to what we
did for the conduction band, we must use (1 - f(E)) as the probability that a hole will exist in a state
of energy E, which is the probability that an electron will not exist in that state.

We will consider the holes as free particles in a box. A hole at the top of the valence band has no
velocity and therefore has no kinetic energy. As we go to lower energy states in the valence band, the
velocity of the hole increases and therefore the kinetic energy increases. It is therefore possible to write
the kinetic energy of the hole as E,, — E, where E,, is the energy of the top of the valence band. The
density of states expression is the same as for electrons except for kinetic energy we write E;,, — E and is
given by

3
4V (2my)2
h3

1
Z,(E) = (E, —E)? (2.13)

The density of states in the valence band is plotted in Figure (2.8).
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We can calculate as we did for the electrons, the number of holes per unit volume of the crystal.
We again assume that the Fermi Energy is at least a few kT above E,,, the valence band maximum. Then
proceeding exactly similar to the case of electrons, we can show

3
2mmykT \2 —(EE=Ev —(EE=Ev
p:Z(h—:) e(kT):Nve(kT) (2.14)
where N, is the effective density of states in the valence band, and is defined as
3
2 tmy,kT \2
N, =2 (T) (2.15)

When the Fermi energy Er is a few kT below E, and also a few kT above E,,, the material is
called a non-degenerate semiconductor. When this condition is not satisfied, the material is called a
degenerate semiconductor.

We denote the Fermi energy in an intrinsic material E;. Since n; = p; according to Equation
(2.1), we can write

EC_Ei El—Ev)

Nce_( ) = Nve_( kT (2.16)

And also

Ec—E; E;—Ey Ec—Eyp

E
nl.Z = n; Xp; = N, Nve_( KT )e_( KT ) = N, Nv((?) =N, Nve_k_?" (2.17)

This is an important result. This shows that the electron density (as well as the hole density) in an
intrinsic material depends on the width of the energy gap (band gap). This result helps us to determine
the location of E;, the Fermi energy in an intrinsic material. If we multiply both sides of Equation (2.16)

E;
by o and rearrange terms we get

e kT = v e kT (218)
c
. . . L. KT
Taking logarithms of both sides and multiplying by - we get
kT N. E-+E
E; =—In (—") + == (2.19)
2 N, 2

Ec+E,
2
Secondly, if the effective mass of the electrons and that of the holes are nearly equal, the first term in

We notice first that

represents an energy level exactly in the middle of the band gap.

the right hand side of the above equation is very nearly equal to 0. Hence we conclude that E;, the
Fermi energy in the intrinsic material, is nearly at the middle of the band gap.
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Example

Let us now calculate the effective density of states in a semiconductor at room temperature (T= 300 °K).
Let us assume that the effective mass m, of the electron is the same as m,, the mass of an electron in
vacuum.

me ~my =9.11 x 10731 kgm

k=138 x 10-23 J24E
degree
h=6.63 x 10~ J2LE
degree

Substituting these values in the expression for N, we get

3
2 X m X 911x1073 x 1.38x 10723 x 300)\2

N, =2
¢ (6.63 X 10-34)2

=2.51 X 10%°> meter=3 =251 x 10 em=3

If we assume similarly that the effective mass of the hole m,, is the same as that of the electron in
vacuum, we will get the same value for N,

We can now determine n;, the density of electrons or holes, in the intrinsic semiconductor. By taking
the square root of both sides of Equation (2.17) we can write
Eg
n; =+ N.N,e zkr (2.20)

In order to express the carrier density at any temperature in terms of the number for the density of
states that were calculated for T =300 °K, we rearrange the terms to yield

3 3

n; = 2.51 x 101° (m;l—rg”)z (;E)Ee_z% cm™3 (2.21)

Where m, is the mass of an electron in vacuum. This expression can more readily be used to calculate
n;, the intrinsic carrier density at any temperature.

Example

Let us now calculate n;, the intrinsic electron concentration in silicon at room temperature. Substituting
the following values

m. = 0.29 m,

-39-



m, = 0.57 m,

E,(T =300K) = 1.12eV

We get for n;

_ [, (27 % 300 x 138 x 1023 x 9.1x10731 3 (029 X 0.57)3
L (6.63 X 10-34)2 ' '

_( 1.12x1.6x107 17 )
X e \2x300x1.38x10723

=254 x10%°cm=3

We must point out that the above calculation is in error since it does not take into account the
fact that there are six conduction bands in silicon and hence the effective density of states N, that we
calculated must be multiplied by a factor 6. Hence the value for n; has to be multiplied by a factor V6.
For our purpose, we approximate n; as

n; = 1.00 x 101° ¢m™3

We will use this value for n; for silicon at room temperature throughout this book.

Figure (2.7): Density of states for electrons in the conduction band

[

Figure (2.8): Density of states for holes in the valence band
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Extrinsic Semiconductor

The properties of the intrinsic (i.e., pure) semiconductor can be altered by adding a small
amount of impurity atoms to occupy the lattice sites originally occupied by the atoms of the intrinsic
material. The semiconductor is then said to be extrinsic, since its properties depend on the externally
added impurities: the impurities are said to be substitutionally added since they substitute the original
atom in the lattice site.

Consider, for example, an element belonging to Group lll in the Periodic Table which is trivalent,
such as boron, aluminum, gallium or indium. Such an atom has three valence electrons and so, when it
substitutes for a tetravalent atom of the semiconductor, the site into which it goes has only three of the
four bonds completed and has the fourth bond incomplete. The boron atom is in the neutral state. This
is illustrated in Figure (2.9 A), with boron as the impurity atom. As electron from one of the covalent
bonds of a nearby silicon atom can break free from its bond and jump into the incomplete bond of the
boron atom. When that happens, all the four bonds surrounding the boron atom are completed, and an
electron ( a negative charge) is bound to the boron atom as shown in Figure (2.9 A). The boron atom is
now negatively ionized as shown in Figure (2.9 B). In this process, we have a bound electron (at the site
of the boron atom) and a broken bond in a nearby semiconductor atom. The broken bond represents a
free hole. Since the boron atom (and all other group Il elements) accepts an electron, releasing a hole in
the valence band, boron and other group Il elements are called acceptor impurities. When the acceptor
atom accepts an electron, it becomes ionized. Each ionized acceptor atom gives rise to a free hole.

If instead of a group Il element, we substitute an atom of the elements of group V which is
penta-valent, such as phosphorous, we will then have one electron more than the number needed to
complete the four covalent bonds (tetra-valent bond) as shown in Figure (2.10 A). This fifth electron
requires very little energy to get freed from the parent phosphorous atom; when it is freed, we have a
free electron in the crystal and an ionized phosphorous atom as shown in Figure (2.10 B). We can think
of the removal of the fifth electron as a positive charge bound to the site of the phosphorous atom. The
bound positive charge in the phosphorous atom donates a free electron. It is called a donor impurity. A
donor atom donates an electron when it is ionized. Each ionized donor atom gives rise to a free electron.

In Table (2.2), we give the ionization energy (energy required to free an electron from the donor
atom, or to free a hole from the acceptor atom) for some of the common impurity atoms in germanium
and silicon.

Table (2.2 A): lonization Energy in eV of Donor Atoms

Impurity  Si Ge

P 0.044 0.012
4 As 0.049 0.013

Sb 0.039 0.096

Bi 0.067
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Table (2.2 B): lonization Energy in eV of Acceptor Atoms

Impurity  Si Ge
B 0.045 0.01
4 Al 0.057 0.01
Ga 0.067 0.11
In 0.11

Figure (2.9): Substitution of trivalent boron for one of the tetravalent silicon: A)Boron atom is
neutral and an electron is missing from the covalent bond. B) An electron breaks loose from the covalent
bond of a neighboring silicon atom and jumps into the covalent bond of the boron atom in which an
electron was missing. The boron atom is now negatively charged. The broken covalent bond in the
neighboring silicon atom can be thought of as a free hole.

From Table (2.2), it can be seen that the ionization energy is approximately of the same order
for all the different impurities in a given semiconductor. In the case of a neutral donor atom, a single
(the fifth) electron is orbiting around a positive charge in a space characterized by the dielectric constant
of the semiconductor. It is like a hydrogen atom, which can be described by the Bohr model. We can
therefore substitute the value of permittivity of the semiconductor for the permittivity of free space in
the expression for the ionization energy of the hydrogen atom to obtain the ionization energy of the
donor atom. We can treat the acceptor atom similarly, where we assume a positive charge to be
revolving around a fixed negative charge. It is therefore usual to assume that the energy level of the
acceptor atoms is typically about 0.05 eV above the top of the valence band, and that the energy level
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of the donor atoms is typically about 0.05 eV below the bottom of the conduction band in silicon. This is
illustrated in Figure (2.11).

In a neutral material, the charge neutrality condition should hold. The magnitude of negative
charge per unit volume should be equal to the amount of positive charge per unit volume. If in a
material there are Npdonor atoms in unit volume of the crystal, the amount of positive charge per unit
volume is equal to

q(p + Np)
and the magnitude of negative charge per unit volume is equal to
an
Equating the two we get
n=p+ Ny (2.23)

Where N} is the number of positively ionized donor impurities per unit volume. We have free electrons
due to two reasons: (1) thermal excitation of the valence electrons, and (2) donor ionization. In the
above equation, the first term on the right hand side represents the density of electrons due to thermal
excitation from the valence band and the second term represents the density of electrons due to
ionization of donor atoms.

Since both electrons and holes carry a charge, they are called charge carriers or, more simply,
carriers. In a material in which we have donor type of impurities we have more electrons than holes per
unit volume since, from the above equation, it can be inferred that n is larger than p. For this reason, the
electrons are called majority carriers, and the holes are called minority carriers. For the same reason,
this material is called a n-type semiconductor.

If we have a material with only acceptor type of impurities of density N4, then charge neutrality
requires

p=n+ Ny (2.24)

where N, is the number of negatively ionized acceptor atoms per unit volume. Free holes are created
due to two reasons: (1) thermal excitation of valence electrons, and (2) acceptor ionization. As before,
the first term on the right hand side of the above equation represents the density of holes due to
thermal excitation and the second term the density of holes due to ionization of acceptor atoms. Holes
are majority carriers in this material, and electrons are minority carriers. This type of material is called p-
type material. To denote the carrier density and other parameters in an extrinsic material, we use a
subscript p in p-type material, and a subscript n in n-type material.

In practice, the purest semiconductors prepared in the laboratory have an impurity ration of 1 in
10" or 10™. This corresponds to approximately 10 or 10" impurity atoms per cubic centimeter.
Therefore, the acceptor and donor impurities that are added should be greater than 10" per cubic
centimeter to sensibly alter the properties of this material.
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f@t pphosphonous

Figure (2.10): Substitution of a pentavalent phosphorus atom for one of the tetravalent silicon: a)
Phosphorus atom is neutral and there is an extra electron orbiting around the phosphorous atom similar
to the electron in the hydrogen atom b) The orbiting electron breaks loose due to the imparting of a
small amount of energy. The phosphorous atom is positively ionized. The electron is now free to move
around in the crystal and is called the free electron.
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Figure (2.11): Impurity energy levels in silicon and generation of free carriers.
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Carrier densities in extrinsic semiconductors

The expression for the thermal equilibrium density of free electrons n and free holes p in an
extrinsic semiconductor is the same as what we derived earlier for an intrinsic semiconductor, since in
these derivations we did not use any intrinsic property of the material. Denoting the thermal equilibrium
carrier densities with a subscript 0,

EC_Ei E[_EU)

ny = Nce_( ) and py = Nve_( KT (2.25)

as long as the Fermi energy, Er , is at least a few kT below E, and a few kT above E,, i.e., the material is
non-degenerate.

When the impurity concentration Np, is approximately equal to or larger than N, in an n-type
material, or when the impurity concentration N, is equal to or greater than Ny, in a p-type material, Ex
is closer to E, or E,, by less than a few kT, and the material is said to be degenerate material. In these
cases the majority carrier density is given by Equation (2.5) for electrons or a similar one for holes and
not by the simplified expressions in Equation (2.25).

The expression for the center densities in Equation (2.25) is the same for both the intrinsic and
the non-degenerate extrinsic material. The difference between the values of the carrier concentrations
in intrinsic and extrinsic semiconductors arises due to the difference in the positions of the Fermi level in
the two cases. Also we note, as before, that in the non-degenerate semiconductor,

Eg
No Po = NCNve_(ﬁ) = n? (2.26)

This relationship is called the law of mass action which is valid even in the extrinsic material as long as it
is non-degenerate.

While Np and N, are the impurity concentrations in n and p type materials respectively, N
and N, are respectively the ionized impurity densities. The probability that an acceptor atom will be
ionized is the probability that an electron will occupy a state with energy equal to E4 and this is given by
the Fermi Dirac statistics. Therefore®,

N4y

Ep-EF
1+e kT

N, = (2.27)

Similarly the probability that donor atom will be ionized is equal to the probability that an electron will
not occupy a state with energy equal to the donor energy. Hence?,

1

Ep-EF
e kT 1

Nf=Np(1- (2.28)

YIn reality the expression for N, should include a factor in the denominator called the degeneracy factor but we
will ignor that here for the purpose of simplicity.
2 Again we have neglected the degeneracy factor but it will not introduce any serious error.
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It is possible to have both types of impurities simultaneously present in the same region of the
material. Then the material becomes n or p dependent on the type of impurity which is higher in
density. For example, if the donor density is larger than the acceptor density, the material will be n type
and if the opposite is true, the material will be p type. If the densities of acceptor and donor atoms are
equal, then the electron and hole densities will be equal and the material is like an intrinsic material.
This type of material is called a compensated material.

In the fabrication of semiconductor devices, regions of n and p type are formed in the same
wafer by first starting with a particular type of semiconductor with the lightest doping. Then the wafer is
covered with an oxide layer by oxidizing the wafer in a furnace at high temperature. Next windows are
cut in the oxide layer and impurities of the opposite type to the type of the starting wafer are diffused. If
the wafer initially had an impurity concentration of acceptors, then donor type of impurities will be
diffused through the windows in the oxide such that in a region close to the window there are more
donor atoms than acceptor atoms i.e., Np> Ny. This region will therefore have a net donor type of
impurities of density Np- N4, and hence will be n-type. The majority carrier density will be equal to the
net donor density. We have to use the net donor density in the calculation of the carrier densities
instead of the total donor density. If on the other hand, Ny is greater than Np, the material will be p-
type and we will use the net acceptor density N4- Npin the calculation of the carrier density instead of
the total acceptor density.

n-type material:

Let us consider a non-degenerate n-type semiconductor. Using the subscript n for the n-type
material and the subscript 0 for the thermal equilibrium, we have

Nypo = Ng + Dno

Hence
_(EC_Ei) 1 _(EF_EU)
N_.e kt ) = Np|1-— “Ep—Ep . + N,e kT (2.29)
o kT T1

The above expression is difficult to solve, and has to be solved numerically. At absolute zero
temperature, no donor atom is ionized and no free carriers exist. Therefore, n,,o = 0. The Fermi energy
lies halfway between E,. and E},, since a slight increase in the temperature will give rise to an equal
number of electrons in the conduction band and ionized donor atoms. As the temperature is gradually
raised, more and more donor atoms are ionized, and so the Fermi level moves downward. When the
Fermi level is between E, and Ej, the material is said to be in the freeze-out region. In this range of
temperatures, only some of the donor atoms are ionized. This is referred to as partial ionization of the
donor atoms. When the Fermi energy is close to E, such that the electrons in the conduction band are
essentially due to ionization of donor atoms, the material is said to be in the extrinsic region. When the
Fermi level goes way below E}, as the temperature is increased further, the material is said to be in the
exhaustion region, since in this case the donor energy lies above the Fermi energy and all the donor
atoms are ionized. No increase in electron density can arise due to further ionization of donor atoms,
since all the donor atoms are already ionized. Any further increase of electron density can arise only due
to thermal excitation of the valence electrons and this happens when the temperature is increased to a
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much higher value. The Fermi level decreases with temperature and asymptotically approaches the
intrinsic Fermi level E; at high temperature (n,o becomes equal to p,,o). At high temperatures the
material becomes intrinsic. It can be seen, then that if we want to take advantage of the properties
brought about by external impurities in the semiconductor, we must limit the operating temperature so
that the material is used in the extrinsic, or exhaustion range. The variation of Fermi level with
temperature is shown in the upper half of Figure (2.12) for an n-type material for various concentrations
of impurity atoms. The effect of increasing the concentration of impurities is to extend the extrinsic and
exhaustion range of temperatures to higher values.

The minority carrier densities in a semiconductor can be obtained from the law of mass action
(Equation (2.26)). In an n-type material the thermal equilibrium minority carrier density is therefore
obtained as

2
n;

Pno = o (2.30)

FERMI LEVEL (E.)

TEMPERATURE (K)

Fig. (2.12): Variation of Fermi Level with Temperature for n- and p-type semiconductor

From Equation (2.23) (charge neutrality expression in an n-type material), we get

2
— NF — — Nt nj
Npo = Np + Ppo =Nyo = Np + n—l (2.32)
no
Rearranging terms we obtain the following quadratic equation:
nZ, —nyoNF —n? =0 (2.32)

The solution to this equation is
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NE+ /(Ng)2+4 n?

Nyo = . (2.33)

This solution to the quadratic equation corresponding to the negative sign before the radical is
neglected since it will not give physically meaningful solution. It can be seen that this expression for n,
approaches n; and N7 in the two limits of small and large Nj} respectively. When N3 >> n;, as in n-type
semiconductors at moderate and low temperatures,

Ny = Ny (2.34)
and
M (2.35)
Pno = o N3 :
When n;>> Nj as at very high temperatures,
Npo = Ny
_ oo
Pno= — =14 (2.36)
Nno
Example

Let us calculate the carrier densities in a n-type material in which the donor density is 10** cm.
Assume all the donor atoms are ionized at room temperature.

+ +)? 2
_ Np+[(Np) +4nE 101441107544 x1020 ~ 10 em?®
Nyo = . = . ~ 10** cm

and

p-type material:

Let us now consider a p-type material. Using the subscripts p for the p type material and 0 for
thermal equilibrium in the charge neutrality equation (Equation (2.24)) we get

ppo = NA_ + npo (2.37)
where N, is the density of ionized acceptors. But

1
Ep-ER
P

N7 =N, (2.38)
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Therefore

_(EF-Ev N _(Ec—EF
ppo :N'Ue ( kT ): EATAF_'_:L +NCe ( kT ) (239)
e KT

This equation has to be solved numerically as before and the variation of the Fermi level with
temperature is plotted in the lower half of Figure (2.12). For convenience we are plotting the Fermi
energy variation with temperature for both n and p type materials in the same figure. In the pure p-type
material, the Fermi level lies between E, and E,, at low temperatures, and approaches the intrinsic
Fermi level as the temperature is increased. The p-type material is also characterized by freeze-out,
extrinsic, exhaustion and intrinsic ranges of temperatures.

Using the law of mass action, transforming Equation (2.37) into a quadratic equation and solving, we get

_ Ng+ [(N7)* +4n? (2.40)

ppO 2

As before, if Ny >>n; as in a p-type semiconductor at moderate and low temperatures,

Ppo = Ny (2.41)
and
N,.n = n—‘z =~ n—lz (2.42)
po Ppo Ny
When n; > N, as at very high temperatures,
Ppo = 1 (2.43)
and
Nyo = n—lz =n; (2.44)
Ppo

Determination of the Fermi Energy

We will now derive an expression for the Fermi energy location in the band gap for an extrinsic
semiconductor. As stated before the material is assumed to be a non-degenerated semiconductor.

n-type material.

In the non-degenerate n-type semiconductor, the majority carrier density can also be expressed
from Equation (2.25) as

N, = N.e _(ECk_TEF)
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Dividing both sides by N, and taking logarithms of each side and rearranging terms, we get

Ep = kT In (’;‘0) +E, (2.45)
Since N, & NF

Epr = kT ln( ) + E. (2.46)

+
Since N7 is less than N, in the non-degenerate semiconductor, the term In(N ) is negative. Hence Er is
c

below E- by an amount equal to kT In (N ) This is illustrated in Figure (2.13 A). At room temperature

c

all the donor atoms can be assumed to be ionized and hence Nj = Nj,.

Therefore,

Ep = kT In (32 ) + E, (2.47)

p-type material

The majority carrier density in the non-degenerate p-type semiconductor can be expressed
using Equation (2.25) as

(B&5)
ppO = Nve kT
Proceeding as we did in the case of the n-type material, we get
Er —len< )+E (2.48)
Ppo
But ppo= N4 . Hence,
Epr = kT ln( )+E (2.49)

The Fermi Energy is above the valence band in a p-type semiconductor by an amount equal to
kT In (N ) as illustrated in Figure (2.13 B). At room temperature all the acceptor atoms are assumed to
A

be ionized. Hence,

Therefore,
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Epr = kT In (—) + E, (2.50)

m

(a)

m

Figure (2.13): Location of the Fermi energy in an extrinsic semiconductor: (A) n-type material (B) p-type
material.

Example

Let us now determine the location of the Fermi energy in an n-type material with a net impurity
concentration of N, = 5 X 10%° cm™ at room temperature. Let us assume that the effective mass of the
electron is the same as that of the electron in vacuum. We had calculated in an earlier example that N,
under these assumptions is equal to 2.51 x 10" cm™. All the donor atoms can be assumed to be ionized
at room temperature.

kT =1.38x 10°3x 300 Joules

— 0.02589 eV
E. =kT1 (ND) +E
F= n N, C
= 0.02581 5 X107 +E
- M 251x109) " Fc
= —0.22eV +E,
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The Fermi energy is located in the band gap 0.22 eV below the conduction band.

Carrier Densities in terms of E;

Starting from the expression for the thermal equilibrium carrier densities n and p in terms of the
Fermi energy as given in Equation (2.25), it is easy to show (left as a homework exercise) that

(EF_Ei)
Nyo = Nje\ kT (2.51)
and
_(EF_Ei)
Pxo = Nje \ kT (2.52)

where E; stands for the intrinsic Fermi energy and the subscript x stands for n in a n-type material and
for p in a p-type material. Therefore

Er = kT In (%) + E; (2.53)
and
Er =kT In (:—‘0) + E; (2.54)
In an n-type material,
Nyo = Nyo = ND+ (2.55)
Hence
+
Ep = kT In (*22) + E; = kT In (Z2) + E, (2.56)

It is trivial to show that starting from Equation (2.54) and putting x = n;, we will get the same result.
Similarly in a p-type material,

) +E = kT In (;_;) +E =E —kT In (’1—"‘) (2.57)

.

Ppo
The location of the Fermi energy with respect to E; is illustrated in Figure (2.14 A) for n type material
and in Figure (2.14 B) for p type material.

Example

Let us determine the location of the Fermi energy with respect to E; in a p-type semiconductor with
N4 = 105 cm™ at room temperature. At room temperature it is reasonable to assume that all the
acceptor atoms are ionized, i.e., Ny = Nj.

-52-



E. =KkT (ni>+E
F= n N, i

1010
= 0.0259 In <m> +E;

= —0.297 eV + E,

The Fermi energy is 0.2976 eV below E; in the bandgap. This is illustrated in Figure (2.14).

E x =
' £ N
R
= h, 4 =
| (@) - B
= x
S OAF— N
| &7 1 ‘\f‘)
| '\ g
. ¥ =

m
|
m

(b)

Figure (2.14): Fermi energy in terms of the intrinsic Fermi energy: (A) n-type material (B) p-type material

Electric Current in Semiconductors

We will now study the flow of electric current in semiconductors. According to thermodynamic
treatments, the Fermi energy is equal to the sum of chemical potential (energy) and the internal
electrostatic potential energy. The electrochemical potential C for electrons is given by

C=pu—qy

where L is the chemical potential and Y is the electrostatic potential. Thus we see that the Fermi energy
is the electrochemical p[otential in a solid in which equilitbrim conditions exist i.e., no externally applied
electric field or no radiation is present. When we apply a voltage across a piece of semiconductor, the
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thermal equilibrium conditions are disturbed. Even then, as long as there are no excess carriers, the
Fermi energy is equal to the electrochemical potential. The electrochemical potential is different at the
two ends of the semiconductor across which the voltage is applied. The difference is equal to the
amount of the applied voltage multiplied by the electron charge. Hence, the Fermi level at one end of
the semiconductor is shifted in energy with respect to the Fermi level at the other end by g times the
applied voltage as shown in Figure (2.15). Since the material is uniform i.e., the carrier density is the
same everywhere, the conduction band and the valence band vary in direct accordance with the
variation in the Fermi energy. In other words, the conduction band and the valence band are shifted
from one end of the crystal to the other by the amount —qV where V is the applied voltage. The electric
field is the negative gradient of the electrostatic potential .

E=- |71/) (2.58)
In one dimension
E= — id (2.59)
dx

The electrostatic potential i is the potential energy divided by charge. We saw earlier that E. the
bottom of the conduction band, is the potential energy of the electron. The electrostatic potential is
obtained by dividing by —g, and is therefore equal to

E E; E
= —ZL=-=-14 (2.60)
q qa 2q
and
d 1dE, 1dE;
c— _ W _ 1dE. _ 14dE (2.61)

dx q dx q dx

The energy band diagram in the presence of an electric field is represented in Figure (2.15). The electric
field is shown as being in the —x direction in this figure. Hence the gradient, according to Equation (2.61)
is also negative and hence the bands are tilted downward to the right. The slope is constant since the
electric field is constant.

We saw earlier that in the presence of an electric field, the k values and the momentum p
values change by an amount proportional to the external force under steady state.
Force __ —q¢€

N T, = TTC (2.62)

Ak =

Where 7. is the scattering relaxation time and Force is the externally applied force due to the electric
field. The change in momentum correspondingly is

Ap = hdk = —q€ 1, (2.63)
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m

Figure (2.15): Energy band diagram in the presence of an electric field

Before the application of the electric field, the average momentum was zero since for every electron
having a particular value of momentum, there was another electron having the opposite momentum. In
the presence of the electric field, all the electrons have the same net change in momentum given by
Equation (2.63). Since all the electrons suffer the same net change in momentum, the average
momentum of the electrons is equal to the net change, and is given by

Pav = —qE T, (2.64)

Since the momentum is given by p = m* v where m* is the effective mass of the electron and v is its
velocity, the average velocity, which is also called the drift velocity v, is given by
Pav _ q€ ¢

v, = = 2.65
a= - - (2.65)

Equation (2.65) shows that the drift (average) velocity is proportional to the electric field €. This is
usually expressed as

Vg = —uE& (2.66)

The proportionality constant p is called the mobility of the electron and is given in units of velocity per
unit electric field. Typically we express mobility in units of cm?V ~1sec™1. Since we will be discussing the
drift velocity of electrons as well as that of holes, we denote the parameters with a subscript n for
electrons and p for holes. Therefore, for electrons

Van = —Un € (2.67)
and
o = T (2.68)
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For holes we must bear in mind that the charge is positive and therefore the externally applied force is
g€. Hence,

q€
Vap = T~ Ten = > (2.69)
P
and
_ 4%y
1%
£ £

Figure (2.16): Motion of an Electron with and without an Electric Field

In the above equations, m,, and m,, are the effective masses for electrons and holes. The

relaxation time due to scattering T is also different for electrons and holes; hence different subscripts
are also used to denote the relaxation time. Figure (2.16) shows on the left the random motion of the
electron in the absence of an electric field and the average velocity is zero. On the right, the motion of
the electrons has a drift velocity v ,superimposed on the random motion in the presence of the electric
field. If the charge carriers viz., electrons and holes, have a non-zero drift velocity, then an electric
current flows. The particle flux density can be determined as follows: Since all the particles are moving
with the same velocity v, the particles passing through a unit cross sectional area in the next one
second will be only those that are within a distance numerically equal to v4,and they are equal to

Particle Flux density = n vy, (2.72)

The electric current density is obtained by multiplying the particle flux density by the charge —q and
hence the electric current density due to electron flow is

Jn = —qnugy = qn pp€ (2.72)

The current flow due to the electric field is called drift current. Similarly, the electric current density due
to hole flow is given by

Jp = —qnug, = qn uy€ (2.73)

The total drift current density is ] = J,, + Jp, Hence
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J= qnu,€+qnu,&

The total electric current density is proportional to the applied electric field. This is called Ohm’s Law.
The electrical conductivity is the electric current density per unit electric field and is given by

O'=§

Therefore

o=qMu, +pup) (2.74)

The resistivity p is the reciprocal of o.

1

1
P o q (n up+p pp)
It must be pointed out that the drift current is essentially determined by the majority carriers and the
contribution of the minority carriers is negligible since the majority carrier density is orders of

magnitude larger than the minority carrier density.

Interpretation of 7., and 7,

The mobility defines the ease with which the carriers move in the semiconductor under the
application of an external field. It depends primarily on the effective mass of the carrier and the
relaxation time 7. T, can be interpreted as the average or mean time between scattering or collisions
suffered by the electron with a similar interpretation for 7.,. Since the random motion of the electron
is due to thermal velocity, the average or mean distance traveled by the electron between collisions,
which is denoted L,,, is given by

Ly, = Vip Ten (2.75)

Where v, is the average of the magnitude of thermal velocity. The parameter [, is called the mean free
path. 1/ T, can be interpreted as the probability per unit time that an electron will be scattered.
Collisions or scattering of the electrons can be due to several mechanisms such as lattice (phonon)
scattering and impurity scattering. Therefore when several scattering mechanisms are simultaneously
present, the probabilities of scattering due to each of the mechanisms are added.

1 1 1

= + (2.76)
Ten Tnph Tnimp

where is the probability per unit time of scattering due to lattice vibrations or phonons and

Tnph

" is the probability per unit time of scattering due to impurities. Therefore,
nimp
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1 1 1
—_— = + (2.77)
Hn Hnph Hn imp

Here [y pp and Wy, imp are respectively the mobilities that the electron would have had if only
scattering due to lattice vibrations alone was present or if only scattering due to impurities alone was
present. The two scattering mechanisms have different temperature dependence. For example,

3
unpha T 2

and

1

3
Hn imp a (T2>

Similar arguments apply for hole mobility.

imp
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Figure (2.17): Electron mobility versus temperature in silicon (From Sze)

Figure (2.17) gives the variation of electron mobility with temperature for different donor
concentrations. The mobility at low temperatures is limited by impurity scattering. The impurity
scattering probability decreases with an increase in temperature and the mobility therefore increases
with temperature. At higher temperatures the lattice or phonon scattering probability becomes
significant and the mobility starts to fall off with temperature since the scattering probability due to
lattice vibrations increases with temperature. The mobility thus exhibits a peak at some temperature
where the influence of the two scattering mechanisms is comparable. The peak shifts to the right and
falls off also in height as the impurity concentrations increase since the probability of scattering due to
impurity scattering increases with donor concentration.

Figure (2.18) gives the variation of mobility with impurity concentration. The mobility is high and
fairly constant with impurity density until about 10'® cm™ after which it falls to a lower value. The figure
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gives both the electron and the hole mobility variation with the total impurity concentration. In
compensated materials the mobility should be determined from this figure using the total density of
impurities (the sum of donor and acceptor impurity densities). The resistivity at room temperature for
silicon for different donor or acceptor concentrations is given in Figure (2.19). Once we know the
resistivity, we know the impurity concentration. Similarly when we know the impurity concentration, we
know the resistivity.
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Figure: (2.18) Electron and Hole mobility variation with impurity concentration in silicon at T = 300 °K
(From Mueller and Kamins)
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Figure (2.19): Resistivity variation with dopant concentration in silicon. (From Sze)

Diffusion

An electric current can also flow in a semiconductor due to a variation of the density of
electrons and holes. The process by which the concentration variation produces carrier flow is called
diffusion. In a diffusion process the particles flow from regions of high concentration to regions of low
concentration. In Figure (2.20), we have assumed an electron concentration that increases with x; hence
electrons tend to flow from right to left. The particle flux density is proportional to the concentration
gradient. The direction of the flow is opposite to the gradient.

Particle flux density = — D,Vn (2.78)

Where D,, is the proportionality constant. It is called the electron diffusion constant. The negative sign in
the equation for the particle flux density indicates that the flux of particles is in the opposite direction to
the concentration gradient. Vn is the electron concentration gradient. Since the dimension of the left —
hand side of the above equation is cm~2sec™'and the dimension of the concentration gradient is cm ™%,
we infer that the dimension of the diffusion constant, D,,, is cm?sec™1. Since each electron carries a

charge equal to —q coulombs, the electric current density due to diffusion is given by

Jn= qD,Vn (2.79)
In one dimension this becomes equal to
an
Jn= aDn—- (2.80)

When one calculates the current flow due to hole diffusion noting that each carries a charge +q,
we get for the hole current density

_ dp
Jp=—aDy— (2.81)

The electric current due to the density gradient is called the diffusion current. We saw earlier

that the electric current cue to the presence of the electric field is called the drift current. The electric
current density caused by electron flow is due to both diffusion and drift and is given by

an
Jn=aqnu€+ qDp—~ (2.82)
and similarly the hole electric current density is given by

d
Jo = 4P UpE — quﬁ (2.83)

The total electric current density is the sum of electron and hole electric current densities and is
given by

J =Tt )p (2.84)
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In our discussions, we will be concerned with the diffusion current due to the minority carriers only. The
diffusion current due to majority carrier density gradient will be seen to be balanced by a drift current
arising from a self-induced electric field.

Einstein Relation

The mobility and diffusion constants are related as follows:

™ % D, (2.85)

and
W, = % D, (2.86)

This relationship is called Einstein relationship. Although this relationship can be derived, it is
sufficient for our purposes to assume the relationship. It is easy to remember this relationship if one

. . . . - . . _ - . kT . .
bears in mind the dimensions of mobility has the dimension cm?V ~1sec™ 1. Since i has the dimension

. e s KT . . .
of volt it is easy to remember that the mobility times 7 is the diffusion constant.

Y

Figure (2.20): Variation of electron concentration with distance

Generation Recombination Process

We saw that free electrons and holes were created by thermal excitation of electrons from the
valence band into the conduction band. The process of creating electrons and holes is called generation.
Generation can be either due to thermal excitation i.e., by imparting to the electron in the valence band
an amount of thermal energy sufficient to be excited to the conduction band, or by other means such as
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optically exciting the valence band or by bombardment with high energy particles. Electrons in the
valence band are those that are localized in the covalent bonds. As shown in figure (2.21), when a
covalent bond is broken the free electron is the electron in the conduction band and the vacancy
represented in the broken bond is the hole in the valence band.

Im
0
O
()

Figure (2.21): lllustration of connection between free electrons and free holes in the semiconductor and
electrons in the conduction band and hole in the valence band

A free electron moving in the crystal can recombine with a free hole resulting in the loss of both
the electron and hole. This process is called the recombination of an electron and a hole.

There are two mechanisms by which generation-recombination process takes place: 1) band to
band generation or recombination; 2) generation or recombination through an impurity or a defect. In
the first process electrons and holes recombine directly by an electron in the conduction band jumping
back to a vacant state in the valence band. Physically, the recombination process is one in which the free
electron wanders to the site of a broken bond and the covalent bond gets completed when the electron
jumps into the broken bond. This results in the loss of a free electron and a free hole.

In the second process electrons and holes recombine through the intermediary of an impurity or
trap which has an energy level in the band gap. Such impurities or traps are called generation-
recombination centers or g-r centers. Recombination takes place by the recombination center first
capturing an electron or a hole and then subsequently capturing a carrier of the opposite charge. This
gives rise to the annihilation or recombination of an electron and a hole. The recombination centers also
generate electrons and holes. The generation takes place by the center emitting an electron or a hole
first and subsequently emitting a carrier of the opposite charge. Generation requires imparting of
energy to the solid and recombination results in the release of energy. In band to band recombination
energy is released in the form of light or photons. In recombination through g-r centers energy is
released as thermal (phonon) energy.

These processes of generation and recombination always require the involvement of both an
electron and a hole each time the process takes place and it is customary to say that the recombination
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of an electron-hole pair or the generation of an electron-hole pair occurs. In silicon the generation-
recombination process occurs mostly through g-r centers and the band to band process is highly
improbable.

Independent of the actual process, direct or indirect, the rate of recombination R, equal to the
number of electron-hole pairs lost due to recombination per unit volume in unit time, is proportional to
the density of electrons and the density of holes. During the proportionality constant as r, we have

R=rnp (2.87)

In thermal equilibrium, the generation rate G, which is equal to the number of electron-hole
pairs generated per unit volume in unit time, should be equal to the recombination rate R. What do we
mean by thermal equilibrium? When there is no externally applied electric, magnetic or electromagnetic
field, the solid is in thermal equilibrium with its surroundings. Under that condition, the temperature is
constant everywhere within the solid and the only way electrons are excited into the conduction band is
by thermal excitation and this process is called thermal generation. In thermal equilibrium, no electric
current flows. We denote the carrier densities n and p with subscript 0 such as n, and p, to denote
thermal equilibrium carrier densities. Denoting the recombination rate in thermal equilibrium R, , and
denoting the thermal generation rate G, , we have

Gin = Ry =1 1ngpy =717 (2.88)

If we increase the density of one type of carriers, the probability of recombination for the other
type of carriers increases. Hence the density of the second type of carriers decreases. This is the basis of
law of mass action.

The thermal generation rate G, is the rate at which electron-hole pairs are generated thermally
at a given temperature, and therefore has the same value whether thermal equilibrium conditions hold
no or not.

The recombination-generation process involving a g-r center has been modeled by a theoretical
treatment developed by Schockley, Read and Hall. This model is called the Schockley-Read Hall model or
S-R-H model. According to the S-R-H model, the constant r is given as,

1

r= n+ny | P+pq (2'89)

NtO'pr ' Nto'n'l;n

where
N, = density of traps or g-r centers,

0n, Op = capture cross-sections for electrons and holes respectively,

. . . f3 kT .
Up, U, =thermal velocity of electrons and holes respectively and is equal to - where m* is the

effective mass of the carrier,

(2.90)



_Et—Ev>

p. = N, e( kT (2.91)

E; = the trap energy level.

The capture cross-section ¢'s relate to the ability (probability) of the g-r centers to capture the
charge carriers. n; and p; are short-hand notations for the expression given in the above equations.
However, one can assign a physical meaning to them. n is equal to the number of free electrons per
unit volume in the semiconductor when the Fermi energy is at the same level as the trap energy level.
Similarly, p, is the number of holes per unit volume if the Fermi energy is at the same level as the trap
level.

Let us define the terms involving electron and hole capture as follows:

1
Thg = —— (2.92)
no Nionpvn
and
1
Tpo = v (2.93)
Ntapvp
Then
1
r = (2.94)

(n+ nq) Tpo+ @+ P1) Tho
The recombination rate R and G, can then be written as

— np
(n+ n1) Tpo+ @+ P1) Tno

2
n;

(n+ nq) Tpo+ @+ P1) Tno

Gen (2.95)
The net recombination rate is the difference between R and Gy, In regions where there is thermal

equilibrium, the np product is equal to nlz and hence the net recombination rate is zero. In regions

where there is no thermal equilibrium, if the np product is more than nl-z, a net recombination will
occur. If the np product is less than nl-z, then a net generation of electron-hole pairs will occur. Let us

now illustrate these points by considering an extrinsic semiconductor.

Extrinsic semiconductor

We will consider an n-type semiconductor although the discussion will be similar for a p-type
semiconductor. Let us consider the thermal equilibrium recombination rate first.

R., = Nno Pno
th (Mpo+ n1) Tpo+(Pnot P1) Tno
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n?

= : (2.96)
NpoTpotNiTpot P1Tno

We neglected the term involving p,,o in the denominator of the above equation since p;,p K 1n,0.
Expressing n, and p; in terms of n;,

n?

J— 1
Rth o Et—E; (E¢—Ey)

NnoTpo+NiTpoe KT +njTpee KT

Pno

= 2.97
ny Et—Eq _(Et-Ey) (2.97)
Tpo +% Tpoe kT +1n0e kT
Equation (2.97) can be rewritten as
p
R =2 (2.98)
Tp
where
1 ! (2.99)
- = - .
Tp Tpo +ﬁ'[p0 +inl0Tn0

1
We can infer from Equation (2.98) that —can be interpreted as the probability per unit time that a hole,
P

(i.e., a minority carrier) will combine. Using this interpretation one can show that 7,, is the average time
that a minority carrier spends before it is lost due to recombination. Hence it is called the minority
carrier lifetime. Equation (2.99) tells us that the minority carrier lifetime depends on the energy of the
g-r center is near the middle of the band gap.

When the trap levels are close to the middle of the gap, then the minority carrier lifetime 7,
becomes

Tp = Tpo (2.100)

The thermal generation rate, G, is equal to R;;, and hence,

2

ng
Gep =
Npo Tpot N1Tpo+P1 Tno
= Pno (2.101)
Tp
We can rewrite the above equation as
Pno = Gin Tp (2.102)

Which gives the interpretation that the thermal equilibrium minority carrier density is the thermal
generation rate times the lifetime.
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Till now we considered a g-r center with a discrete energy level. However, generally the g-r
centers are distributed over a range of energies. Then the minority carrier lifetime is obtained by adding
the contributions of all the g-r centers.

Excess carriers

Suppose that excess carriers over and above the thermal equilibrium densities are created by
illuminating the semiconductor with light or by electrical injection as we will see later on in our study of
p-n junctions. This corresponds to a non-thermal equilibrium situation. The carrier densities n and p can
be written as

n= nyy+ An (2.103)

D = Pno+ Ap (2.104)

Where n,y and p,,¢ are thermal equilibrium carrier densities and An and Ap are called excess carrier
densities. When excess carrier densities are created optically, equal number of excess holes and
electrons are created and hence An = Ap. When excess minority carriers are inject ted as in a p-n
junction, excess majority carriers will flow into this region to preserve charge neutrality and hence again
An = Ap. The recombination rate in the presence of excess carriers is therefore given by

— np
(n+nq) Tpo+ @+ P1) Tno

_ (nno+Ap)(Pno+4p) P
(npo+Ap+mny) Tpo"‘(pno +Ap+ p1) Tho

(2.105)

The net recombination rate, U, is the difference between the recombination rate and the generation
rate. The latter is the thermal generation rate

U=R— Gy

(Mo +AP) (Pro+4p) D . n?

(Mpo+Ap+ ny) Tpo+(Pno+Ap+ P1) Tho  Mno Tpot N1Tpo+P1 Tno

NpoPnot(Mno +pno)Ap+Ap2 . niz

(Mpo+Ap+ n1)Tpo+Pno+AP+ P1)Tho  Mno Tpot N1Tpo+P1 Tno

(2.106)

We will now distinguish two limiting cases, one called low injection and the other called high injection.
The low injection conditions are obtained when Ap > n,,.

Under low injection conditions, Ap? term is negligible and p,,o and Ap are also negligible in comparison
with n,,g. Hence,

(Mno+Pno)AP+ NuoPno nlz

(Mpo+Ap+ n1)Tpo+Pno+AD+ P1)Tho  (Mno+N1)Tpo+P1 Tno
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(NnoAp)+nf n?

1
(Mpo+n1)TpotP1Tno  (Mpo+n1)Tpo+P1 Tno

2
. Ap . n;
- ni P1
Tpoty stnsTno  (Mno+M1)Tpo+P1 Tno
Ap Ap
_ - b (2.107)
Tpo +%Tp0 +_nn0Tn0 Tp

The net recombination is due to excess carriers. Therefore U is the rate of excess carrier recombination

and is proportional to Ap. In other words, —is the probability per unit time that an excess carrier will be
P

lost due to recombination. Therefore the excess carrier lifetime is also 7, which is minority carrier
lifetime.

Under high injection Ap > n,, and hence the term (n,, + n,)Ap is negligible in comparison
with Ap?. Then

n=n,,+Ap = Ap (2.108)
Also G, is negligible in comparison with R. Under this condition
U= Ap”
(Mno + Ap + n1)Tpo + (Pro + AP + P1)Tno
__ M
B Ap(rp() + Tno)

Ap _ Ap

Tpot+Tno Thi

(2.109)

Where Ty; is the lifetime of the excess carrier at high injection. Under high injection conditions, the
excess carrier lifetime becomes the sum of 7,,¢ and 7. At intermediate injection, the lifetime is
between the high injection value and the low injection value.

Depletion Region

We will see in our study of p-n junctions with an applied voltage that it is possible to have
regions within the semiconductor under non-thermal equilibrium condition, in which the carrier
densities n and p are much less than the thermal equilibrium carrier densities. Under this condition
(n = p = 0)the recombination rate R is negligible for

np Nivoop

R=——=0 (2.110)
n+n1+p+p1

The thermal generation rate G, is equal to
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2

n:
G = i
th —
(n+ ny) Tpo + (@ + p1) Tho
n? n;
- Nt Toon + N E—E; —(Et—E;)
1%p0 T P1ryo Tpo€ KT +Tpoe KT
ni
= — (2.111)
214
Where 1 is defined as the generation lifetime and equal to
1 Et—E; _(Et l)
Tg = 5 |Tpo€ kT + T,0€ kT (2.112)

The generation rate is maximum only when the trap level E; is in the middle of the band gap i.e.,
when n; = p; = n;. Another way of stating this is that only those traps which are within a few kT above
or below E; will be effective as generation centers. When E; = Ej, T4is a minimum and equal to

_ Tp0+Tn0
Ty = 2 (2.113)

Thus we conclude that the thermal generation rate is ? in the non-thermal equilibrium
g

depletion region, while in the neutral region it is equal to pTLO
P

Continuity Equation

Let us consider an elementary volume AV in an n-type semiconductor. In this elementary
volume minority carriers are being thermally generated at a rate G;;, and let us further assume that
minority carriers are also generated at a rate G,,; due to external light sources. Minority carriers are
also lost due to recombination at rate R. In addition, if there is an outward flow of current out of this
elementary volume, then the minority carriers will be lost if the minority carriers are holes, and minority
carries will increase in number if the minority carriers are electrons. Since we are considering an n-type
semiconductor, the minority carriers are holes in our example.

The total outward flow of current out of a volume surrounded by a surface is equal to

fsurface]—P)' ﬁ =fm,lv E dv (2.114)

In an elementary volume AV, the outward flow of current reduces to V -E AV. The outward flow
1 —_
represents the charge flow, and hence the number of holes lost in unit time is equal to EV LAV

Hence we can write the rate of increase of the number of holes in the elementary volume as
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op . 1 —
EAV =AV(—=R + G, + G, — ;V J,) (2.115)

Dividing the above equation by VI we get

op 1 -
vl —R+ Gep + Gopr — ;V Jp (2.116)
This equation is called the continuity equation. From our earlier discussion, we know that
A
R—Gy =2 (2.117)
Tp
Hence the continuity equation reduces to
ép _ 6(Ap) _  Ap 1. —
E‘T__;-FGOW_EV ]p (2.118)
But
I» = quppE — qD,Vp (2.119)
In one dimension, the continuity equation reduces to
8(Ap) Ap 1dJp
—=—-——+40G - 2.120
ot Tp T opt q dx ( )
The expression for the hole current density is given by
ép
= E—qD,— 2.121
Jp = qupp€ — D, o (2.121)
Let us assume that the electric field £ is zero.
ép
= —qgD.. =
Then
S(lp) _  Ap 8°p
St —; + Gope + Dy o (2.122)

A simple example:

Let us assume that light is incident on the semiconductor to generate excess carrier uniformly
within the semiconductor.

Growth of excess carriers

Let the light be switched on a time t = 0. Since the excess carriers are uniformly generated
everywhere in the semiconductor, there is no concentration gradient, and hence the term due to the
current flow can be dropped in the continuity equation. The continuity equation governing the growth
of the excess carriers is then given by
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dAp Ap
—=—40G 2.123
dt Tp + opt ( )

The solution to this equation can be readily seen to be

t t
Ap(t) = Gope Ty !1 —e Tp] = Ap, <1 —e TP) (2.124)

Where Apy = Gt Tp is the excess carrier density at t = o, i.e., when steady state conditions have been
reached. Equation (2.124) describes that the excess carrier density grows exponentially with time, from
zero to its steady state value.

Decay of excess carriers

Let us assume that the light has been on for a long time, and that steady state conditions have
been reached. Now, let the light be turned off at time t = oo. The decay of excess carrier density will be
governed by putting G,,; = 0 in the continuity equation, which will then be

dA A
p_ _2p (2.125)
dt Tp
The solution to this equation is
_t
Ap(t) = Apge ™ (2.126)

Where Ap, is the excess carrier density just when the light was turned off, i.e., at t = 0.

From the above treatment, we can conclude that the time taken to reach steady state during
the growth and the decay of excess carriers is determined by the minority carrier lifetime.
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Summary

A semiconductor behaves like an insulator at very low temperatures, but it exhibits increasing
electrical conductivity as the temperature is increased. The electrical conductivity of a semiconductor at
room temperature is much lower than that of a conductor but very much higher than that of an
insulator. As the temperature is raised, in a semiconductor, some of the electrons get enough thermal
energy to break loose from the covalent bond and become free electrons. Similarly, the broken bonds
represent free holes. In terms of a band picture, at very low temperatures the valence band is
completely full and the conduction band is empty. Additionally, the band gap (the separation in energy
between the conduction and valence bands) is small. As the temperature is increased, the electrons get
excited from the valence band to the conduction band. The electrons in the conduction band are the
free electrons while the vacant states in the valence band are the fee holes. Since an electron has a
charge of — g coulombs and a hole has a charge of g coulombs, the charge moves with them when they
move. Hence electrons and holes are called charge carriers, or simply carriers.

An intrinsic semiconductor is one in which electrons and holes are generated only by thermal
excitation from the valence band to the conduction band. The free electron density is equal to the free
hole density (n; = p;). The electron has no velocity when it occupies a state at the bottom of the
conduction band, and hence has no kinetic energy. Hence E, the bottom of the conduction band, is the
potential energy of the electron. An electron that occupies a state with energy E has a kinetic energy is
E — E. Similarly, the potential energy of the hole is E}, and its kinetic energy is E;; — E. In other words,
the kinetic energy of the hole increases as we go deeper into the valence band.

Free holes and free electrons can be treated as particles in a box by assuming the appropriate
effective masses for the electrons and holes. The probability of occupation of a state by an electron is
given by the Fermi function, f(E). The probability of occupation of a state by a hole is the probability
that an electron will not occupy that state, (1 — f(E)).

In deriving the expression for the density of electrons and holes, a numerical integration is
necessary. This procedure can be simplified by assuming that the Fermi energy is at least a few kT
below the conduction band and at least a few kT above the valence band. When the assumption is not
valid in a material, the semiconductor is said to be degenerate. The Fermi function approximates the
Boltzmann distribution function. Hence this approximation is also called the Boltzmann approximation.

The electron (and hole) density in an intrinsic semiconductor is determined by the band gap
energy E; and the effective masses. It is also a strong function of temperature. The Fermi energy is
approximately at the middle of the band gap in an intrinsic material. If the effective masses of the holes
and the electrons are assumed to be equal to the mass of the electron in vacuum, then the Fermi energy
lies exactly at the middle of the band gap. The Fermi energy in an intrinsic material is denoted by E;, and
hence it is customary to denote the middle of the bandgap as E;.

An extrinsic semiconductor is one in which controlled amount of trace impurities are
substitutionally added to increase one type or the other type of carriers. When elements of group V are
added as impurities in silicon, the electron density is increased without a corresponding increase in the
free hole density. These impurities are called donors, and the material is called an n-type
semiconductor. In an n-type semiconductor, electrons are called majority carriers and holes are called
minority carriers since electron density is much larger than hole density. On the other hand, when
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impurity atoms belonging to an element in group Il of the periodic table are added, the hole density is
larger than electron density. This type of material is called a p-type semiconductor. In this type of
material, holes are called majority carriers and electrons are called minority carriers.

In an n-type semiconductor, free electrons arise due to two reasons: thermal excitation from
the valence band, and thermal excitation from the donor atoms (ionization of the donor atoms). The
holes in an n-type material arise only due to thermal excitation of electrons from the valence band. The
positive charge in an n-type semiconductor arises due to free holes and positively ionized donor atoms
while the negative charge arises due to free electrons.

In a p-type semiconductor, free holes arise due to two reasons: thermal excitation of electrons
from the valence band, and ionization of acceptor atoms. The electrons arise only due to thermal
excitation from the valence band. The positive charge in a p-type material arises due to free holes, while
the negative charge in an n-type material arises due to electrons and negatively ionized acceptor atoms.
In a neutral semiconductor, (n-type or p-type) the net charge density is zero. When both acceptors and
donors are present in the same region, the net impurity density (the donor density minus the acceptor
density) determines the type of semiconductor. Such a material is called a compensated material.

The expression for the carrier density in an extrinsic semiconductor can be derived similarly to
the expression for an intrinsic material. For a high density of impurities, the carrier density can only be
obtained by numerical; integration. However, when the impurity density is not that high, the material
can be considered to be non-degenerate and the expression for the carrier density is of the same form
as what is obtained in the intrinsic case under non-degenerate assumption. In a non-degenerate
semiconductor, np = niz. This is called the law of mass action. When the electron density is increased by
adding donor impurities, the hole density decreases. Similarly, when the hole density is increased by
adding acceptor impurities, the electron density decreases. The number of ionized impurities increases
with temperature. At moderate and low temperatures, the majority carrier density is equal to the
ionized net impurity atoms.

In an n-type material the Fermi energy lies in the upper half of the band gap. As the donor
density is increased, the Fermi energy moves closer to the conduction band. In a p-type material the
Fermi energy lies in the lower half of the band gap. As the acceptor density is increased, the Fermi
energy moves closer to the valence band.

At high temperatures, all the impurity atoms are ionized and an increase in carrier density arises
only by thermal excitation from the valence band. At still higher temperatures, the electron and hole
densities become equal and the material becomes intrinsic.

An electric current in a semiconductor can arise due to either a drift process or a diffusion
process. In the drift process, an externally applied electric field drives the charge carriers. The resulting
current is called the drift current. The drift current can be expressed in terms of a parameter called the
mobility. The drift current is generally due to majority carriers. In the diffusion process, carriers diffuse
from regions of high concentration to regions of low concentration. The resulting current is called the
diffusion current. The diffusion current is expressed in terms of a constant called the diffusion constant.
The diffusion current is due to minority carriers only.
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kT
The diffusion constant is related to the mobility by a factor rE This relationship is called the

Einstein relation. The mobility is limited by scattering from impurity atoms or scattering from phonons.
The two processes have different temperature dependence.

In a semiconductor, electrons and holes are constantly being created (generated) and lost due
to recombination. Recombination is the process in which an electron in the conduction band jumps back
to a vacant state in the valence band. In this manner, both an electron and a hole have been annihilated.
In steady state, the generation rate is equal to the recombination rate.

There are two mechanisms for generation-recombination to occur. One is what is called the
band to band generation-recombination. The other is called generation-recombination through a trap or
a generation-recombination (g-r) center. In silicon, the second is the dominant mechanism. The average
time that a minority carrier spends in its band before it is lost due to recombination is called the
minority carrier lifetime. The thermal equilibrium minority carrier density is given by the product of the
thermal generation rate and the minority carrier lifetime. The minority carrier lifetime is inversely
proportional to the density of g-r centers. When excess carriers are generated, the process is called
injection of carriers. The average time an excess carrier spends in its band before it is lost due to
recombination is called excess carrier lifetime. The steady state excess carrier density is given by the
product of the excess carrier generation rate and the excess carrier lifetime.

When the excess carrier density is much less than the thermal equilibrium majority carrier
density, it is called a low injection process. When the excess carrier density is comparable to or higher
than the thermal equilibrium majority carrier density, then it is called a high injection process. Under
low injection, the excess carrier lifetime is the same as the minority carrier lifetime. The growth and
decay of excess carriers is governed by the excess carrier lifetime when the generation process is
switched on or off respectively.

The flow and growth (or decay) of excess carriers is determined by solving the continuity
equation.
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Glossary

dng  =number of electrons with energy between E and E + dE per unit volume of the crystal

av = elementary volume

D, = electron diffusion constant

D, = hole diffusion constant

E = energy

E, = acceptor energy level

Ec = bottom of the conduction band, also the potential energy of an electron in the bottom of the

conduction band

Ep = donor energy level

Er = Fermi energy

E, = bandgap equal to E. — Ey

E; = Fermi energy in an intrinsic material, usually referred to as the intrinsic Fermi energy
E; = trap level or energy level of the g-r center

Etop  =top of the conduction band or the maximum energy of the conduction band

£ = electric field

f(E) =Fermifunction; the probability of occupation by an electro

G = generation rate

Gope = rate at which minority carriers are generated by an external light source
Gen = thermal generation rate

h = Planck’s constant

Ji = total current density

In = electric current density due to electron flow

In = electric current density due to hole flow

k = Boltzmann constant

L, = average distance travelled by the electron between collisions
my = the mass of an electron in vacuum

me = effective mass of an electron in the conduction band

my, m, = effective masses for electrons and holes respectively
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m, = effective mass of hole in the valence band

m* = effective mass of the carrier
no& py = thermal equilibrium carrier densities

ny = number of free electrons per unit volume in the semiconductor when the Fermi energy is at
the same level as the trap energy level

n = electron density

n; = density of electrons or holes in the intrinsic semiconductor

ng =thermal equilibrium electron density in the n-region

Nyo = thermal equilibrium electron density in the x-type of semiconductor where x isn orp
N = effective density of states in the conduction band

N, = density of traps or g-r centers

Ny = effective density of states in the valence band

Ny = density of acceptor atoms

Ny = density of ionized acceptors, number of negatively ionized atoms per unit volume
Np = density of donor atoms

N7 = density of ionized donors, number of positively ionized atoms per unit volume

p = density of free holes

P = momentum of carriers

D1 = number of holes per unit volume if the Fermi energy is at the same level as the trap level
Pno = thermal equilibrium hole (minority carrier) density in an n-type semiconductor
Ppo = thermal equilibrium hole (majority carrier) density in a p-type semiconductor

Pxo = thermal equilibrium hole density in x-type material where x isn or p

q = charge

r = proportionality constant for recombination rate

R = recombination rate

Rin = recombination rate at thermal equilibrium

t =time

T = temperature in degrees Kelvin

U = net recombination rate, the recombination rate minus the generation rate
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v = velocity

vy = average velocity, also called the drift velocity
Vin = drift velocity of electrons
Vap = drift velocity of holes

Un, Vp = thermal velocity of electrons and holes respectively
%4 = volume of a semiconductor solid

Z-(E) =density of states for electrons in the conduction band

An = excess electron density

Ap = excess hole density

Ap = change in momentum

Ap,  =excess carrier density at £ = o
AV = elementary volume

i = ideality factor

u = mobility of the carriers

Un = electron mobility

Un imp = mobility that an electron would have if scattering were due only to impurities

Unpn = mobility that an electron would have if scattering were due only to lattice vibration

Up = hole mobility

p = resistivity, the reciprocal of o
o = electrical conductivity

o = capture cross-section

0n,0p = capture cross-sections for electrons and holes respectively

Tc = scattering relaxation time or average time between collisions

Tcn = average time between scattering or collisions suffered by the electron

Tep = average time between scattering or collisions suffered by the hole

Ty = hole lifetime, i.e. average time that a minority carrier spends before it is lost due to

recombination
)] = electrostatic potential

Y = electrostatic potential
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10.

Problems

Derive an expression for the density of holes in a non-degenerate semiconductor using a
method similar to that used in the text for the derivation of an expression for the density of
electrons.

Giventhatn; = 10'° cm™2 at T = 300°K, calculate n; at T = 200°K and at T = 150°K
assuming E; = 1.12 eV at all temperatures (i.e., neglecting variation of E; with temperature).

A piece of silicon is doped with 2x10%° phosphorus atoms per cm3. What are the majority and
minority carrier concentrations at room temperature?
Suppose that the hole concentration in a piece of silicon at room temperature is 10> cm ™3,

find

(a) the electron concentration
(b) the location of the Fermi energy

A sample of silicon is first doped with 101> cm ™3 boron atoms, and then doped with 4x101°

3 arsenic atoms.

cm™
(a) What is the type of the semiconductor?

(b) Find the location of the Fermi energy.

In an n-type semiconductor, the temperature is lowered such that only half the donor atoms
are ionized. Neglecting the degeneracy factor, show that

In an n-type semiconductor say n-type, at higher temperatures the electrons come from

ionization of the donor atoms as well as from excitation of electrons from the valence band to
the conduction band. If N} is the donor density, show that the intrinsic carrier density, at the

temperature at which the electron density is twice that of the hole density, is \/7N5'.

Find the resistivity of the same in Problem 4. Take the mobility values from the figure in the
text.

Using the mobility curves in the text, find the resistivity of the sample in the Problem 5.

A piece of n-type silicon has a resistivity of 5 2 — cm at room temperature (27° C). Find the
thermal equilibrium concentration at 17°C .
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11.

12.

13.

14.

15.

16.

Two scattering mechanisms are present in a semiconductor. The mobility, if the first
mechanism alone is present is 500 cm? V=1 s~1. The mobility, if the second mechanism alone
is present, is 900 cm? V1 s~1 . What is the mobility of the carrier in the sample?

If an intrinsic piece of silicon is illuminated such that carriers are generated at the rate of 1018

3

cm~3 s™1 uniformly everywhere in the sample, and if the lifetime of the carriers is 107° s,

determine the change in the electrical conductivity.

Write the expression for the total electron current in a semiconductor. From this write the
. : . d .
relation between the concentration gradient d—: and n(x) under conditions of no current

flow.

Show that the probability that a hole will survive without recombining for t seconds is given by
t

e P assuming that it was created at time t = 0 and that — s the probability that a hole will
14

recombine in unit time.

Show that the average time that a hole lasts without recombining is 7,, seconds. Assume that
the hole was created at time t = 0. (This is why 7,, is called the hole lifetime.)

Consider an n-type silicon sample with N; = 1016cm™3. Calculate the location of the Fermi
level at a) 300°K, and b) 200°K.
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Chapter 3

P- N Junction

A p-n junction is a device structure in which a single crystal of a semiconductor say silicon, has
one region doped with donor impurities to make it n-type while the rest of the semiconductor is doped
with acceptor impurities to make it p-type. For example, Figure (3.1) shows the impurity variation from
one end of the crystal to the other. This figure is called the impurity profile. The ordinate is the net
impurity concentration Np- Nywhich is positive in the n-type region and negative in the p-type region.
The abscissa is x, position.

Let us now consider an isolated p-type semiconductor. The net impurity concentration Np- Ny is
negative. The density of states in the two bands is plotted in Figure (3.2 A). The Fermi distribution
function is plotted for a p-type material in Figure (3.2 B). The Fermi energy is close to the valence band
as shown in Figure (3.2 B). The probability of occupation by electrons i.e., the Fermi function, is nearly
zero in value for states in the conduction band whereas the probability of occupation by holes i.e., 1
minus the Fermi function, is much larger for states in the valence band. The distribution of electrons in
the conduction band and the holes in the valence band is obtained by multiplying the density of states
and the probability of occupation, and is given in Figure (3.2 C). The area under these distribution curves
gives the number of carriers in the conduction and the valence band. As is to be expected in a p-type
semiconductor, a small density of electrons and a large density of holes are obtained.

Let us now similarly consider an isolated n-type semiconductor. The net impurity concentration
Np- N, is positive. Again the density states in two bands is plotted in Figure (3.3 A). The probability
functions for the occupation of states by electrons and holes are plotted in Figure (3.3 B). The
distribution of carriers in the two bands is given in Figure (3.3 C). We see now in the n-type material a
small density of holes and a large density of electrons are obtained.

Before going further we will now show that the gradient in Fermi energy is zero when no electric
current flows. Let us consider the electric current due to electron flow. The electric current is given by

dn
Jn=qnun&+qDn—- (3.1)
But we know that under thermal equilibrium,
EF_Ei
ng = n;e kT (3.2)

Where we have used the subscript g to denote thermal equilibrium densities, and

e @ _ 145

(3.3)
dx q dx
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Figure(3.1): Impurity profile in a p-n junction. This junction is called an abrupt junction since the net
impurities change from one type to the other abruptly.
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Figure (3.2): Carrier distribution in an isolated p-type semiconductor. A) Plot of the distribution of
density of states in the valence and in the conduction band. B) Plot of f(E) (Fermi function) and
1 — f(E). c) Distribution of electrons and holes in the respective bands.
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Figure (3.3): Carrier distribution in an isolated n-type semiconductor. A) Plot of the distribution of
density of states in the valence and in the conduction band. B) Plot of f(E) (Fermi function) and

1 — f(E). C) Distribution of electrons and holes in the respective bands.

differentiating the equation for n we get

dno _ no (dEF dEl)
dx kT \ dx dx

d
Substituting the above values of ﬁ and € in Equation (3.1) we get

1 dE; No (dEF dEl')
=aqgn - D —(—-—
]n qn Hn q dx T qn kT \ dx dx

Recalling Einstein relation which is

q
Un :Dnﬁ

we can write J, as

] —n dE; +n dEgp n dE; n dEp
n = o Un 0oHn 0Hn o = Toln 7
Similarly
_ dER
Jp = Doty
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dEp . . . .
When d—xF is equal to zero, [, is zero, which means that under conditions of no current flow,

EF is constant and does not vary with distance. Under that condition J,, is also zero. Another way of
stating this is that under thermal equilibrium conditions, no current flows and that the Fermi energy
does not vary with x.

P-N junction Under Thermal Equilibrium

The p-n junction is in thermal equilibrium when no external voltage is applied. Hence no electric
current flows through the junction and the Fermi energy is constant and does not vary with distance. Let
us define the metallurgical junction as the plane at which the semiconductor changes from p-type to n-
type and assume that it is located at x = 0. Ep is closer to Ey, on the p-side and closer to E on the n-
side. (Recall the discussion on the location of the Fermi energy in the band gap of extrinsic
semiconductor in chapter 2.) This means that in order for Er to be constant with x, E- has to decrease
with x as we pass through the metallurgical junction from the p-side to the n-side. On the p-side far
away from the junction, there is no electric field and hence E is constant i.e., does not vary with
distance and is separated from Er by an amount determined by the net ionized acceptor concentration
N, . Ef is below the intrinsic Fermi energy level E;, by an amount given by

E; — Ep = kT In(32) (3.9)
l
Similarly on the n-side far away from the junction, E is constant and is separated from E by an
amount determined by the net ionized donor concentration Nj}. Ej is above the intrinsic Fermi energy
level E; by an amount given by

+
Er —E; =kT In (Z—D) (3.10)
l

However, close to the junction, E. (potential energy) and therefore E; and Ey, vary gradually
from their respective values on the p-side to their values on the n-side. This region where the potential
energy varies is called the transition region. In this region there is an electric field since E. and the
electrostatic potential varies. Outside the transition region the electric field is zero. Since the electric
field lines emanate (flow out) from the positive charges and terminate on negative charges, the
transition region comprises positive charges on one side and negative charges on the other side. The
charge density in the transition region is non-zero whereas the charge density is zero outside the
transition region. For this reason the transition region is called the space-charge region since it has a net
charge density. The region outside the transition region is called the neutral region since it has no net
charge density. How does a space charge arise? In the transition region on the n-side, electron density is
much less than the thermal equilibrium majority carrier density and therefore a charge density equal to
the magnitude of the electrical charge times the ionized donor atom density arises in this region.
Similarly hole density is less than the thermal equilibrium majority carrier density value in the transition
region on the p-side. Thus there is a region on the p-side close to the metallurgical junction with a net
negative charge density equal to the electron charge times the ionized acceptor atom density. Electric
lines of force emanate from the positive charge on the n-side and terminate on the negative charge on
the p-side.
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Another way of looking at the origin of the transition region is as follows: Again let us assume
that the p-n junction is formed by joining a p-type semiconductor and a n-type semiconductor and
fusing them. As soon as the two pieces of semiconductor have been joined together, electrons, which
are large in number in the n-region diffuse to the p-region where there are only a few of them. Thus
there is a diffusion current. The diffusion of electrons charges the p-region negative with respect to the
n-region and therefore the potential energy of the electrons on the p-side raises relative to the n-side
i.e., a potential energy barrier arises between the n and p regions. This give rise to an electric field in the
transition region due to the gradient of the potential energy since the potential energy changes with x
from the p-side to n-side. This electric field causes a drift flow of electron current in the direction from
the p-side to the n-side i.e., in the opposite direction to the diffusion current. The potential energy
barrier in the transition region reduces the diffusion current and hence fewer electrons diffuse and
therefore the potential energy rises less. Ultimately a steady state condition is reached in which the
potential energy barrier is of such a magnitude that the drift current is exactly equal and opposite to the
diffusion current. Hence no net current flows through the junction. In the transition region on the n-side
there is a net positive charge density due to the ionized donor atoms since electrons left this region to
go initially to the p-side. Similarly in the transition region on the p-side, there is a net negative charge
density due to the majority carriers viz., holes having been neutralized by the electrons that came from
the n-side. We discussed this model as though electrons initially went from the n-side to the p-side. We
would have arrived at the same conclusion if we had assumed that holes initially diffused form the p-
side to the n-side.

Let us now define the electrostatic potential @ as
Ec Ei Eg
Q=— " + constant = — 7 2 + constant (3.11)

The constant is for the purpose of referencing our electrostatic potential to a particular reference or

. . . . E E
zero value. Since Ef is constant with distance, choose the constant as i + FF' Then @ becomes

E; E (EF—E;)
0= —=L £ =270 (3.12)
q q q
@, the electrostatic potential, varies with distance x in the transition region. Since ng, the thermal

equilibrium density of electrons, is given by

(EF-Ej)
Ng=n;e kT (3.13)
We can express no as
q9
ng = n;e kr (3.14)

Similarly, since pg, the thermal equilibrium density of holes, is given by

(Ei-EF)
Do =N;e kT (3.15)

we can express pg as
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q0
Do = n;e kT (3.16)

Thus both the electron and the hole densities vary with distance x in the transition region. By taking the
logarithm of both sides of Equations (3.14) and (3.16), we can express the electrostatic potential in
terms of the thermal equilibrium carrier densities.

Q= %Tln (Z—l) (3.17)
and also
Q=- kq—Tln (i—‘z) (3.18)

These two equations relate the potential variation with thermal equilibrium carrier density variation.

@, the electrostatic potential, defined as above, can also be used in the neutral semiconductor. In a

neutral n-type semiconductor, ny, the thermal equilibrium electron density, is equal to n,q, the thermal
equilibrium majority carrier density which is equal to N7, the ionized donor density, Substituting N3 for
n, in Equation (3.14) we find that @, the electrostatic potential in the neutral semiconductor, is given by

On = %Tln (Nn—?) (3.19)

where we have used a subscript n in @ to denote that we talking about the electrostatic potential in a
neutral n-type semiconductor. Similarly we can define an electrostatic potential for a p-type material as

@, = —%Tln (%) (3.20)

where we have used a subscript p in @ to denote the electrostatic potential in a neutral p-type
semiconductor.

Example

Let us now calculate the electrostatic potential @ for a p-type silicon which has a concentration of

10 1°cm™ acceptor atoms at room temperature. We assume that at room temperature all the impurity

atoms are ionized, i.e., N; = N,. Let us take n; as equal to 1 X 101%cm™3.

kT Ny
0= )
q n;
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10 16
= —.02585 X In <m>

= —0.02585 x 13.81 = —0.357V

Let us now go back to the space-charge region. Differentiating n, given in Equation (3.14) we obtain

dn dao
e T e (3.21)
dx KT dx
This yields
dny, = n, Lag (3.22)
kT

which can be written as
kT dno

q Ny

do

(3.23)

We can integrate Equation (3.23) to obtain the potential difference between two points say A
and B in a semiconductor. The potential difference @ ,_p is equal to

Dap = f; dp = <L (A% -y (n—A) (3.24)

q B ng q ng

We can use this result to obtain an expression for the potential barrier that exists between the
n-side and the p-side in a p-n junction. This potential barrier is called the built-in voltage since it is
already in existence in a p-n junction under thermal equilibrium. This built-in voltage which is denoted
by Vi is the potential difference between the neutral n-side and the neutral p-side and according to the
above equation, is equal to

——
v, = in (@> = (nL’Z”“’) =L (%) (3.25)

q Npo q n; q n;

Equation (3.25) can be rewritten as

V=2 (10 () 410 () 529

We could have arrived at the same result by a different route also. We know @, and @, the
electrostatic potentials of the neutral p and the n region respectively. The built-in voltage V; is the
electrostatic potential difference between the neutral n and the p regions.

Hence
Vpi = 0n, — 0y (3.27)

Since @, is negative from Equation (3.20) we can write
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ng nj

U= 0 410, = (10 (2) + 1n (25)) 529

which is the same result that we obtained before.

Example

Let us now determine the built-in potential for a p-n junction in which the n-region is uniformly doped
with a net donor concentration of 2 x 10" cm™ and the p region is uniformly doped with a net acceptor
concentration of 1 x 10 cm™. Assume room temperature and that all the impurity atoms are ionized.
From Equation 25 we find

2x10%x1x101>
V,; = 0.02585 x In

(1 x 1010)2
= 0.02585 X 26.02
=0.673V

An abrupt p-n junction is one in which the net acceptor density is uniform in the p-region and
the net donor density is uniform in the n-region. The impurities change from acceptor to donor type
abruptly as we go across the metallurgical junction. In Figure (3.4 A) the abrupt junction is shown with
the metallurgical junction at x = 0. The p and the n regions are connected externally by a copper wire.
The junction is therefore in thermal equilibrium. In Figure (3.4 B) is shown the band-bending i.e., the
bending of E., E; and Ey, that occurs in the transition region as we go from the p-side to the n-side. The
built-in voltage is the difference between the potential energy in the p-side and that in the n-side
divided by q. In other words, it is equal to the amount of band-bending divided by q. In Figure (3.4 C) the
space charge distribution is shown in the transition region. The charge density in the transition region is
due to the ionized impurity atoms that are not compensated by equal number of majority carriers.
Hence the charge density in the space charge regionis p = —q N4 on the p-side and p = +g Np on
the n-side. Since the p-n junction is in thermal equilibrium, Eg is constant and does not vary with x. On
the other hand E; varies with x in the depletion region. The electron density and the hole density in the
specie-charge region are given by

EFp—E;
n=n;e kT

and

_Er—E;
p=n;e kT

Hence n and p vary with position, x, in the depletion region. The electron density decreases from n,,,
the thermal equilibrium majority carrier concentration on the n-side, to n,, the thermal equilibrium
minority carrier concentration on the p-side. The electron density in the portion of the transition (space
charge) region lying on the n-side is less than n,, the thermal equilibrium majority carrier density in the
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neutral n-region. Hence this region has a net charge density equal to a N7 and is depleted of electrons.
By a similar argument, the portion of the transition region on the p-side is depleted of holes and the
charge density in this region Is —gN,. The carrier densities are smaller than the thermal equilibrium
majority carrier densities in respective portions of the entire space-charge region. Hence the space-
charge region is said to be depleted of charge carriers and the space-charge region is usually referred to
as the depletion region. The product of the electron and the hole densities anywhere in the transition
region is equal to the square of the intrinsic carrier concentration since the junction is in thermal
equilibrium, i.e., the law of mass action is obeyed. At the two edges of the space-charge region the
charge density gradually approaches zero as shown in Figure (3.4 C) since the carrier densities change
gradually. However for ease of calculation and analysis, we approximate the space charge density
distribution as a rectangular distribution in which the charge density becomes zero abruptly at the two
edges as shown in Figure (3.4 D). We assume here that the negative charge density due to ionized
acceptors exists between x = —x,, and x = 0 and the positive charge density due to ionized donors
exists between x = 0 and x = x,,. The electric field variation in the space region is shown in Figure (3.4
E). Outside the space charge region, the electric field is zero. Inside the space charge region, the electric
field varies linearly and the magnitude reaches a maximum value at the metallurgical junction. The
electric field is the negative gradient of the electrostatic potential. Therefore the line integral of the
electric field yields the electrostatic potential difference between two points. The area under the plot of
the electric field in Figure (3.4 E) is equal to the built-in voltage V;;. The linear variation of the electric
field in the space-charge region is due to the assumption that the impurity density is constant in each
region and that it changes from one type to the other abruptly at the metallurgical junction.
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Figure (3.4): (A) An abrupt p-n junction with the metallurgical junction at x = 0. (B) Bending of the band
at the junction. The built-in voltage is the difference in the potential energy between the two sides
divided by the electron charge q. (C) The actual space charge region with the charge density gradually
approaching zero at the two edges. (D) Approximation by a rectangular charge density in which the
density abruptly goes to zero at the edges. (E) Electric field variation in the space charge region.

Space Charge Region

We will now calculate the potential distribution and the width of the space charge region in the
abrupt junction. There are two ways by which one can determine the space charge region
characteristics. One is using Poisson equation. Another is to use Gauss theorem. Both the approaches
are the same from the physics point of view. In certain cases one method may be more direct while in
some other cases the other method may be more direct. Hence we will consider both the methods.

Poisson Equation

The Poisson equation is given by

azo
G2 (3.29)
dx? €
Let us assume that the metallurgical junction is at x = 0 and the space charge region is approximated by
the rectangular density shown in Figure (34 D) bounded by x = —x,, on the p side and x = x,, on the n

side. The charge density in the various regions can then be written as

For X < —Xp, p=0
For —x, <x<0 p=—qNg
For 0<x< x, p =—qNj
For x> xp p=0

In the space-charge region, under steady state conditions, all the impurity atoms are ionized even at low
temperatures®i.e., Nj = Np and N; = N,. This is in contrast to the neutral region where the impurity
atoms are partially ionized at low temperatures.

Let us consider the space charge region (the depletion region) on the p side.
p=—qNg =—qN,
The Poisson equation is given by

dZQ _ gqN 4
dx? €

(3.30)

® The theoretical reason for this is that the electric field in the depletion region ionizes all the impurity atoms even
at low temperatures
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Integrating the above equation we get

ag qNax
— = C 3.31
dx €s T 1 ( )
where (C; is an integration constant.
d
Since the electric field in the neutral region is O, d—i must be equal to 0 at x = —x,. Applying
this boundary condition we obtain
qN px
C, =——= (3.32)
€s
I . . . do
And substituting this value of C; in the equation for = e get
dp _ qNgy
—=—\{XTX 3.33
Again integrating
N N
p= 174 2 4 q—Axpx + C, (3.34)
2€5 €s
Where C, is an integration constant.
Starting with the charge density in the n-side, which is equal to
=gNi=agN
p=4qN0Np =qNp
We get
dazp N
— =12 (3.35)
dx €s
Integrating,
ao Npx
Z=_12T, (3.36)
dx €g

. . . . . — g\ .
Where Cj is an integration constant. Using the boundary condition that the electric field (— a) is zero

. . ag . '
in the neutral n region and hence =, lszero atx = x,, we find

., qNpx,
Cl -
€s

Hence,

ao Npx Npx Np(xpn—x

a0 _ _aNpx | aNpXn_4 p (xn—x) (337)

dx €g €g €s
Integrating
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@=— 2 2 +qunx+C3 (3.38)

265 €s
where Cj is an integration constant.

Realizing that @ given by Equations (3.34) and (3.38), should have the same value at x = 0, we
put C; = C3. Therefore, the potential @ at - x = —x,, is given, from Equation (3.34), by

qNax3  qNax} qN x5
X =—Xx,)= — C, = — C 3.39
Q( p) 2€g Eg t 2 2€g t 2 ( )

Similarly, the potential @ at x = x;, is obtained from Equation (3.38) as

Npx2 Npx2 Npx2
B(x =x,) = —qz’z n_ 1My ¢, = qZD L+ C, (3.40)
N S

The total potential difference between the neutral n side and the neutral p side is given by

Vi = B0x = %) — 0(x = —x,)

Npx?2 N, x2
:m‘FCZ—(—M‘FCz)

2€, 2€;
Npx% | qNax3
= 10— Ab (3.41)
26 26

The amount of positive charge in the n-side of the space-charge region, per unit area of the
junction, is equal to g Npx,,. Similarly the amount of negative charge in the p-side of the space-charge
region, per unit area of the junction, is equal to —qN,x,,. Since the positive charge in the n side of the
depletion region should be equal to the magnitude of the negative charge in the p side, we get

Nyx, = Npxyp (3.42)
Using this equality we can express V,; as
V. = qNp e qNAx v = qNp o4 qNpXnXy
bi — n prp — n
2€, 2¢€, 2€, 2€,
_ qNDxn qNpXxy Npxy
= L2 (x, +x,) = L2 (3 + NA)

aNpx7 (1 n @) _ aNpxsi (Na+Np)
2€g Ny 2€g Ny

Therefore

2€Vpi N
x, = |—=X& A (3.43)
q Np(Nag+Np)

Similarly it can be shown that
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26V N
x, = |—H_—=2 (3.44)
4 Na(Na+Np)

The total depletion region width x is equal to

Xqg = Xp + Xp
_ ZESVbl NA ND
Q(NA+ND) ND NA
_ 26Vp; (NA+ND)
q(Na+Np) \JNpN4y

_ |2&sVpi(Nga+Np)
q(NpNy)

(3.45)

It must be pointed out that the temperature dependence of x; arises due to the temperature
dependence of V},; as expressed in Equation (3.28). In that equation we expressed the built-in voltage as
sum of two components @, and @,. We have to remember that these two components are not the
potential drop across the depletion region on the n side and the potential drop across the depletion
region on the p side. In Equation (3.41) we again expressed V}; as sum of two components. However in
this equation, the first component expresses the potential drop across the depletion region in the n side
while the second component is the potential drop across the depletion region in the p side.

Let us now express the potential as a function of distance in the depletion region. The
electrostatic potential @ given in Equation (3.34) is measured with respect to some arbitrary zero
reference by an appropriate choice of C,. Let us measure the potential with respect to the neutral p-
side i.e., choose the electrostatic potential on the neutral p-side as zero, and denote this potential by 1.
1 can be obtained from @ proper choice of C,. Using Equation (3.34) we obtain i for the region
—xp <x<0as

N N
Y=t Ay x + (3.46)
2€g €s
where Cé is the new constant which should make equal to zero at x = —x,,. By putting this condition in
the above equation we obtain
qNAxp
C, =——*+ 3.47
2 2. (3.47)

By substituting this in the above equation for i) we get

N N aNax:  gN
Y=LAx2 p Ay x + Ap—qA( +x) (3.48)
2¢, € 2¢

P at x = 0 is obtained as

-91 -



qNax3

Px=0) = LA

2€g

Equation (3.48) describes the potential variation in the depletion region on the p side, the

(3.49)

potential being measured with respect to the neutral p region. Since we are measuring the potential, Y,

with respect to the neutral p region, the value of 1 at x = —x,, given by Equation (3.49) is equal to the

potential drop across the segment of the transition region lying on the p-side.

Using Equation (3.38) we can express the potential variation in the depletion region on the n
side with respect to the same zero reference also by using the same constant C; , and show that the

potential Y (x ) in the depletion region on the nsidei.e., for 0 < x <x, as

N N qN 4x2
Yx)=—T2x2 4 T2y x4 L
26 € 26

This is equivalent to putting the constant C5 in Equation (3.38) as equal to

qNaxh
2€g

(3.50)

We could have started also with the zero reference for the potential as that on the neutral n
region and derived a similar set of expressions for the potential in the depletion regions on the two sides

of the metallurgical junction.

We summarize in Table (3.1), the step by step solution of Poisson equation in the space charge

region of an abrupt p-n junction. The solutions to the Poisson equation with two different zero

references are also given in this table.

Table (3.1). The summary of the step by step solution of Poisson equation in the space charge region of

an abrupt p-n junction

Region

Region

—xp<x<0

0<x<x,
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0 N, “alp
dx? €s €s
dg qNyx qNpx ,
— C - C
dx € + 0 € 1
do fel0)
Boundary condition ax 0 at x=1x, e 0 at x=x,
C, = qNAxp c = qNpx,
Integration constant 1 €5 1 €5
ag qNa qNp (x, — %)
dx e (x + xp) —fs
qNa ,  qNy qNp qNp
174 174 C _4% >
) Ze. X<+ . xXpx + G, Ze. x“ + . XpXx + C3
Boundary condition at C, Cs=Cy
zero: @(x = 0)
Zero reference (Z)(x = —xp) =0
qNux; qN,x}
Integration Constant G = 2—65 2€,
2 2 2
9 qNa(xp + )" _ qNaxj x W 2 oy ANy
= 14— 26 €5 26,
2¢€g 2¢€; Xp
Zero reference Px=x,)=0
Integration constant oo qNpx? = _qNDx,ZL
2 2€ 3 2€g
? aN XpX X7 _aloxn L (xn —x)? = 2ot (1 - i)z
€s \'? 2 26, 26, " 26 Xn

Gauss Theorem Approach

The origin of the electric field in the depletion region is more intuitively understood if the
depletion region is examined using Gauss Theorem. We will now derive the same result using Gauss
theorem. As before let us assume that the depletion region charge is rectangular as shown in Figure (3.5

A).
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If we were imagine a cylindrical section of the depletion region, with unit area of cross-section,
as shown in Figure (3.5 B), then the total negative charge contained between - x,, and x = 0 in the
cylindrical section is equal in magnitude to the total positive charge in the cylinder between x = 0 an
X, This equality of charge magnitude is required according to Gauss theorem due to the fact that the
electric field is zero outside the depletion region i.e., in the neutral n and p regions. The electric field at
any point x in the depletion region can be obtained by partitioning the cylinder with a plane at x and
considering the charge contained in either part of the cylinder. For example, in Figure (3.5 C), the left
part of the cylinder contained between x = x,, and x is shown. The electric field at x is the charge
contained in the left part of the cylinder divided by €, the permittivity of the semiconductor.

E(x) =

In the above discussion we assume that x is located between - x;, and 0 i.e., in the p-side of the

_ qNA(xE_(_xP)) _ aNa(x+xp) (3.51)

s €s

depletion region. The field lines come from the right to the left and hence the field is negative. x in
Equation (3.51) is also negative.

The electric field, £(x), at x is also equal to the charge contained in the right part of the cylinder
between x and x,, as shown in Figure (3.5 D), divided by €, , the permititivity. Hence,

£0x) = [qNA(x—m N qND(xn—O)] __ [qu_Ax N qu_Dx] a.52)

s €s

Since Npx,, = NAxp, , this expression for £, the electric field, can be seen to be the same as the one in
Equation (3.51). It is always convenient to consider the charge contained in that part of the cylindrical
section in which the impurity atoms are of the same type. Hence Equation (3.51) is the preferred choice
to express E(x) for —x, < x <O0.

If x was chosen to be between 0 and x,, i.e., in the n-side of the depletion region, then we can
write £(x) as the charge contained in the right part of the cylinder divided by €.

E(x) =— —qND(:: — ) (3.53)

We can obtain the potential variation as a function of x by taking the line integral of £(x). If we
take the zero reference for the potential as that at the neutral p-region, then

) = - [, E(dx

~Xp €s
N4 [x? x
=124 [ + 31
S _xp
qNa [x + xp 2
T e pX 2 Xp
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N x2 xZ
=14 [—+xpx+—p]
€g 2 2
_4Na 1.2 2
= e [x +2xpx+xp]
__ qNy 2
= 2—65 [X + xp] (3.54)

This is the same result that we obtained in Equation (3.48) by solving Poisson equation.

Figure (3.5): The charge distribution in the depletion region of an abrupt p-n junction: A) rectangular
profile of the charge distribution. B) a cylindrical section of unit cross-sectional area of the entire
depletion region. C) the left part of the cylindrical section obtained by partitioning the cylindrical section
with a plane at x. We have chosen x to be in the p-side of the depletion region. D) the right part of the
cylindrical section.

A review of the p-n junction under thermal equilibrium

Let us now examine the p-n junction under thermal equilibrium i.e., when no external voltage is
applied across the junction. Free carriers are present in the two neutral regions with their densities
equal to the thermal equilibrium values. In the depletion region, the carrier densities decrease from the
thermal equilibrium majority carrier density values at one end of the depletion region to the thermal
equilibrium minority carrier density value at the other end. Therefore there is a diffusion of electrons
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across the depletion region from the n-side to the p-side, and a diffusion of holes from the p-side to the
n-side. The electric current due to the diffusion action is called the diffusion current.

The electric field in the depletion region drives the minority carriers entering the depletion
region from one neutral side to the opposite neutral side. For example, electrons entering the depletion
region (due to the random thermal motion) from the neutral p-region where they are minority carriers
will be driven by the depletion region electric field to the neutral n-region. The holes will similarly be
driven from the neutral n-region to the neutral p-region. The resulting electric current is called the drift
current. The direction of the drift current balances out exactly the diffusion current and hence the net
current through the junction is zero.

This process of diffusion and drift can be understood by reference to Figure (3.6 A). This figure
shows in addition to the band diagram of the p-n junction under thermal equilibrium, the electron and
hole distributions in the two neutral regions. The carrier distribution functions are rotated by 90 degrees
from the way they are drawn in Figure (3.2 C) and Figure (3.3 C) since the variation of energy is vertical
in this figure. The electrons in the n-region lying above the dotted line represent those that have the
kinetic energy larger than the barrier height and therefore will be able to diffuse to the p-region.

Figure (3.6): Energy band diagram of a p-n junction and the carrier distribution under (A) thermal
equilibrium (B) a forward bias and (C) a reverse bias.

P- N Junction under Forward Bias

When an external voltage source such as a battery is connected across the p-n junction such
that the positive terminal of the battery is connected to the p-side and the negative terminal is
connected to the n-side as shown in Figure (3.7), the p-n junction is said to be forward biased. The
potential energy of the electrons on the n-side is increased relative to the potential energy of the
electrons on the p-side by an amount equal to qVr where V. is the externally applied voltage. The
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junction is said to be forward biased under this condition. The band diagram under forward bias is
illustrated in Figure (3.6 B). The amount of band-bending is equal to the difference between E. (the
potential energy of the electrons) in the neutral p region and that in the neutral n region: The potential
energy barrier height, is now q(V}; — Vr). The barrier height is hence reduced by an amount gV under
forward bias. In the neutral regions far away from the depletion region, the carrier densities are at their
thermal equilibrium values and the Fermi energy is located in the band gap at a level determined by the
net impurity (acceptor and donor) concentrations. The Fermi energy in the neutral n region (far away
from the depletion region) is shifted upward by gV from the Fermi energy in the neutral p region (far
away from the metallurgical junction).

The expression for the depletion region width under forward bias can be derived exactly the
same way as we did for the thermal equilibrium case either by solving the Poisson equation or by using
Gauss theorem. The expression for the depletion region width will have essentially the same form
excerpt the potential barrier height V}; will be replaced by (V};-VE). Using the same notation for the
depletion region width as in the thermal equilibrium case, we have

1

_ ZESND L E
— [ 2ESIVA (V _ V )]%
*n = qNp(Na+Np) * P F 3-56)

and

Xqg = Xp + Xy

1

_ [2es(Na+Np) 2

= [— (Voi = Vi) (3.57)
qNpN4

We denote that the depletion region width is smaller under forward bias conditions than under thermal

equilibrium. The potential barrier is less under forward bias conditions, and hence less charge is needed

to sustain in a smaller potential barrier. The depletion region has a smaller width.




Figure (3.7): A p-n junction under forward bias. V is the voltage applied across the p-n

Example

Calculate the depletion region width in an abrupt p-n junction with a net impurity density of Ny =
10%® cm ™3 on the n-side at room temperature (a) in thermal equilibrium and (b) at a forward applied
voltage bias of 0.4 V. Take n; as equal to 101 cm™3. Using Equation (3.25) we get

016x10"°

Vi = 0.0259 x In(*—57—) = 0.656 V
(a) Thermal equilibrium:

1
2x11.9%8.854x10 1%x1015 712

1= |
p 1.6x10-19x1016x(1016+1015)

=3.627x 103 x |—2° % /0.656

1016x1.1x1016
= 0.0886 x 10™*cm

Similarly

1015x1.1x1016
= 0.886 x 10~* cm

xq = (0.886 + 0.0886) % 10~* cm
=0.975 x 10™* cm

X, = 3.627 x 103 X \/L x V0.656

(b) Forward Bias: The barrier height is now V},; — Vi equal to 0.656 — 0.4= 0.256 V

1016x1.1x1016
= 0.553 X 10™* cm

%, = 3.627 X 10% x \/L x V0.256

Similarly

X, = 3.627 x 103 X \]L“ x V0.256

1015x1.1x1016

= 0.553 X 10™* cm
xg = (0.553 + 0.553)x10™* cm
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Referring to Figure (3.6 B), the electrons that are distributed above the dotted line have
adequate energy to clear the barrier, and diffuse to the other side. This will result in diffusion current.
This diffusion current is larger than in thermal equilibrium since there are more electrons with kinetic
energy adequate to go over the smaller barrier height. On the other hand, the drift current of electrons
will be the same since it does not depend on the barrier height. Similarly more holes will be able to
diffuse than in the thermal equilibrium case causing a larger hole diffusion current while the hole drift
current will be the same as in thermal equilibrium.

Due to the diffusion of electrons from the n-side to the p-side, the (electron) minority carrier
density in the p-side increases from its thermal equilibrium value; hence, this process is called minority
carrier injection. Similarly, holes are also injected into the neutral n region from the p region under this
process.

We saw earlier that under conditions of no current flow, the electron densities at two different
locations x, and xp are related by the following expression:

aYAB
n(x,) = n(xg) e kr (3.58)
and
_q¥aB
p(xa) =plxg)e *r (3.59)

Where Y 5 is the electrostatic potential difference between x, and xg. This is called the Boltzmann
relation.

In the case of a p - n junction under thermal equilibrium, the condition of zero net current is
realized, due to two large, equal and opposite currents. One of these currents is due to diffusion, and
the other to drift. However, when a forward bias is applied, a current flows across the junction due to
the minority carrier injection process. We will assume that the current through the device under
forward bias is very small in comparison with the drift and drift components of current flowing under
thermal equilibrium. This is tantamount to assuming that the drift and diffusion components are nearly
equal under forward bias. We can therefore assume that the carrier densities are still given by the
Boltzmann relation (Equation (3.58)) even under forward bias.

As before, we will choose the origin x = 0 at the metallurgical junction. With the boundary of
the depletion region on the p - side at x = —Xx,,, and that of the n - side at x = x,,, as shown in Figure
(3.8). The width of the neutral n region is the distance W,, between the boundary of the depletion region
(x = x,) and the ohmic contact to the neutral n region. The ohmic contact is what is used to apply a
voltage to the device and send a current. In our example we have taken the location of the ohmic
contact to the neutral n region as x = x,, + W,,. Similarly, the ohmic contact to the neutral p region is

located at x = —x;,, — W),, where W, is the width of the neutral p region.
The electron densities at x = x,, and x = —x,, are related by the Boltzmann distribution, and
therefore,
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= a(Vpi=VF)
np(x = —xp) = n,(x =x,)e KT

Similarly, the hole density at x = x,, is given by

—q(Vpi—VF)
Pn(x = x,) = pp(x = _xp) e kT

The minority carrier density under thermal equilibrium is n,, on the p side, and p,, on the n side.

The extra (also called excess) minority carrier densities at x = x,, and at x = —x,, under forward
bias are given by

Ap(x = xn) = pn(x = xn) — Pno
and
An(x = —xp) = np(x = —xp) — Npo

Due to the fact that we have excess minority carriers in the neutral regions, equal amounts of excess
majority carriers flow into the neutral regions from their respective ohmic contacts to maintain charge
neutrality. Therefore, the majority carrier densities are also increased from their thermal equilibrium
values, i.e.,

Pp (x = —xp) = Ppo T Ap(x = —xp) = Ppo + An(x = —xp) (3.60)

and
Nyo(x = x,) =y + An(x = x,) = nyy + Ap(x = x,,) (3.61)
We distinguish two cases: one called high injection, and the other called low injection.
When
An(x = —xp) is > Dpo
or when

Ap(x = x,,) is > ny,,,
we call it a high injection condition. When
An(x = —xp) < Ppo,i-€., Pp(Xx = —X,) = Ppo (seekq.(3.60))
and when
Ap(x = x,) <Ny, ie, n,(x =x,) = n,, (seekq.(3.61))

we have a low and moderate injection condition. We will restrict our discussion to low and moderate
injection cases only. Therefore,
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n,(x =x,) = Ny, and  pp(Xx = —Xp) = Ppo (3.62)

The expression for n, (x = —x,,) can be simplified as
~4Vpi 4VF
np(x = —xp) =n,(x =x,) e kT ekT
~4Vpi 4VF

=nnoe kT e kT

avVFr
= Nyo € kT (3.63)
In the above equation, we made use of the Boltzmann relation for the thermal equilibrium carrier
densities, i.e.,
—aVpi
npo =Nyo€ kT

Similarly, the expression for p,(x = x;,) can be obtained as

VE
Pn(X = Xp) = Dpo€ *T (3.64)
The excess minority carrier densities at x = x,, and x = —x,, are obtained as
VE VFE
Ap(x = Xp) = Pno€ T — Pno = Pno (e KT — 1) (3.65)
and
VF aVF
An(x = —xp) = Npo€ kKT — Nyy = Ny, (e KT — 1) (3.66)

These excess minority carrier charges will now diffuse into the two respective neutral regions.
Before we study the diffusion process, we will discuss another concept called the Quasi-Fermi Level.
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Figure (3.8): The depletion and neutral regions in a forward biased p-n junction

Example

Let us calculate the excess carrier density in the neutral p and regions of a p-n junction, at the boundary
of the depletion region. Assume N,= 101°cm™3 on the p-side, and N, = 5x10® cm™30n the n-side.
Assume a forward bias voltage of 0.4 V.

~ 10°cm™3 and n,, = e X 10°% _ 10%cm™3
pPO po Ppo 1016
n? 1020

Mo =5 X 105cm™3 and p,y = —L = =2x10*cm™3

Ppo 5x1015
avF
Ap(x = xp) =1y, (e KT — 1)

kT
7 = 0.0259V

0.4

Ap(x = x,)) = 10* (e—0-0259 - 1) 10* x [5.1 X 106 — 1] ~ 5.1 x 10 %cm =3

0.4
An(x = —xp) = 2x10* x (60-0259 — 1) x 10%x5.1 X 10° = 1.02 x 10'1¢m=3

Quasi-Fermi Level

In thermal equilibrium, we expressed the minority carrier density in terms of Fermi energy.
However, under forward bias it will not be possible to do so. We therefore define a parameter called the
quasi-Fermi energy, to enable us to write the expression for the minority carrier density in the same
form as in the thermal equilibrium case.

We define a quasi-Fermi energy level, Er, , for electrons such that the electron density can be
written as

(Er,—Ei)

n, = n;e kT

p

Similarly, the hole density can be written as
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(Erp—Ei)
Pn = n;e kT

where EFp is the quasi-Fermi energy level for holes. The quasi-Fermi levels for electrons and holes are

plotted in Figure (3.9). Since we are considering low and moderate injection conditions, the majority
carrier densities are nearly the same as the thermal equilibrium values, and the majority carrier quasi-
Fermi levels are nearly the same as Fermi energy under thermal equilibrium conditions. We make a
further assumption that the quasi-Fermi levels in the depletion region of the forward biased p-n junction
is at the same level as the majority carrier quasi-Fermi level. This is illustrated in Figure (3.9). At
distances far from the junction the excess carrier densities would become zero, as discussed in the next
section. Hence, the quasi-Fermi level for the minority carriers would be at the same level at the thermal
equilibrium Fermi energy. For example, at x = -x;, Eg is at a higher level than the Fermi energy under
thermal equilibrium, and gets lower and lower and approaches the thermal, and gets lower and lower
and approaches the thermal equilibrium value as one proceeds further into the neutral p region.

Fig. (3.9): Quasi-Fermi Levels in a forward biased p-n junction

Minority Carrier Diffusion

The diffusion of the excess minority carriers in the neutral regions can be analyzed by setting up
the continuity equation. Let us first consider the neutral n region. The continuity equation is given by

0Ap _  Ap 1djp
ot Tp q dx

(3.67)

We assume that there is no electric field in the neutral n region, and hence, the hole current is only due
to diffusion.

_ op _ dAp
]p_ quE)x_ qpc’)x

Substituting this into the continuity equation, we get
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2
o) _ _Mp  p 0*(ap)

ot Tp P ox? (3.68)

Under D.C. conditions (i.e. when Ap does not vary with time, this equation is simplified by setting the
left hand side as equal to zero, and rewriting it as:

p. %2Gp) _ Ap

P 9x2 Tp
or
9%(A A
(4p) _ _Ap (3.69)
d0x?2 DpTy

By considering the dimensions of D,, and 7, it can be seen that the term D,,7,, has units of square
length. We define a parameter L,, as given by

2 _
Lp = Dprp (3.70)
The equation of continuity is now written as
0%(Ap) _ Ap
ax2 Lp®

Let us define a new variable x’ = x - x,,, (i.e. we choose the origin of the horizontal axis at
X = xp.) The continuity equation, written in terms of x’, is given by

0*(Ap) _ Ap
—_— = — 3.71
dx2 Lp2 ( )
The general solution to this equation is
—x! —x!
Ap(x') = Ae'» + Belr (3.72)
A and B are integration constants that will be determined by the boundary conditionsat x’ = 0 and

x’ = W,. The boundary condition at x’ = 0 is given by

, avp
Ap(x =0)= Pno(e k1 — 1)
according to Equation (3.65).

The excess carrier density at an ohmic contact is by definition zero. Hence, the boundary
conditionat x’ = W, is

Ap(x" =W,) =0

Applying these boundary conditions to determine A and B, we can arrive at the solution to the
continuity equation, as done in the next chapter, and obtain
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Wn—x,
Lp
W
sinh(=2)
Lp

sinh(

)

Ap(x") = Ap(o) (3.73)

Where Ap(0) is defined as Ap(x’ = 0) However, for the present we limit our discussion to two limiting
approximations

Wn>> L, and Wp<<L,

Wide Base Case (W;,>> L)

When W,>> L,,, we call it a wide base case. Let us consider Equation (3.72), which gives the
solution to the continuity equation. If we evaluate Ap at (x’ = W},), we get

—Wn Wn

Ap(W,)) = Ae '» + Belv

Where Ap(W;,) is Ap evaluated at x" = W,. Since W}, >> L,,, the first term on the right hand side is
negligible and hence

Wn
Ap(W,) = Be'»

Wn
But our boundary condition at the ohmic contact requires Ap(W,,) to be zero and e 7 is a large
quantity. In order to satisfy the boundary condition, we set B = 0. The solution to the continuity
equation then becomes

Ap(x") = Aelr
If we apply the boundary condition at x’ = 0, we can evaluate A and obtain

—x!

Ap(x") = Ap(o)e'r (3.74)

qVv
where Ap(0) is Ap(x' = 0) = pno(ek_TF — 1), as stated earlier.

The plot of Ap as a function of distance as given by Equation (3.74), is given in Figure (3.10 A).
We find that the excess minority carrier density decays exponentially with distance. What is the physical
interpretation? A hole that is injected from the left at x’ = 0 diffuses to the right, and as it travels in the
neutral n region, it recombines with an electron. Hence, the excess minority carrier density decreases
with x’. We can now explain why it decays exponentially.

Let P(x")dx' be the probability that an excess hole injected at x" = 0, will recombine in an
elementary distance dx’ between x’ and x’ + dx’. Then P(x’) is the probability per unit distance that an
excess minority carrier (hole) will recombine and be lost. The number of excess holes that recombine
(and therefore be lost) in the interval dx’ is equal to the product Ap(x), i.e., the number of excess hole
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density at x’, multiplied by P(x") dx’. The difference in excess hole density at x” and at x’ + dx’ is what is
lost due to the recombination in the interval dx’. Hence

d(Ap(x’)) = Ap(x' +dx") — Ap(x") = —Ap(x")P(x")dx'
Assuming P(x") does not vary with distance and is equal to P,, this equation can be rewritten as

d(Ap(x’
)
and directly integrated to obtain
Ap(x") = A'e FoX’
The constant A’ is obtained as AP (0) by applying the boundary condition at x’ = 0:
Ap(x") = Ap(o) e~Po*

By comparing the above to Equation (3.74), we see that

P, =+

Ly

1 dxr’
This means that = is the probability per unit distance that a hole will recombine. That is, L—x is the
p P

probability that an excess hole will recombine in an interval dx’

Using this argument, it can be shown that L,, is the average distance an excess hole (minority
carrier) will travel before it recombines. (This is left as a homework problem.) For this reason, Ly, is
called the minority carrier diffusion length.

Figure (3.10 A) gives the profile of the excess minority carrier density. As mentioned before in
order to maintain charge neutrality, excess majority carrier density equal to the excess minority carrier
density will be present in the neutral n region, with a profile exactly equal to that of the minority carrier
density. This is illustrated in Figure (3.10 B).

Due to the concentration variation of the excess minority carrier density, a diffusion current will
flow. The resulting electric current density is given by

AN d(Ap)
]p(x ) - _qu dx’

/

Dp Ap(o) elp (3.75)

Ly
The diffusion current also decays exponentially with distance.

While there is a diffusion current due to the exponential decay of the minority carrier density,
there will be no similar majority carrier diffusion current arising from the exponential variation of the
excess majority carrier density. The reason for this is that the excess majority carrier density is
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maintained by the presence of a small electric field, whose value is proportional to the ratio of An(x")
and (x) . n(x’) is equal to Np + An(x") where Np, is the donor density in the n region. The drift current
of electrons due to this electric field, given by Jg,i¢r = qn(x")un €(x"), is exactly balanced by the

e . dAn - . .
excess electron diffusion current, given by Jg;rr = qDy, T In the case of minority carriers, there is a

drift current due to this electric field, but it is negligibly small compared to the diffusion current. This is
the reason why we take into account the minority carrier diffusion current, and not the majority carrier
diffusion current.

Y

Figure (3.10): Plot of the excess carrier density in the neutral n region for a wide base case: (A) Plot of
the excess minority carrier (hole) density, and (B) Plot of the excess majority carrier (electrons) density

In Figure (3.11), the minority carrier diffusion current is plotted as a function of distance in the
neutral n region. For each hole lost due to recombination, there must also be the loss of an electron.
Therefore, electrons must flow into the n region in the opposite direction from the ohmic contact to
replace the electrons lost due to recombination. Since W;,>> L,,, all the injected holes are lost, due to
recombination, and the hole diffusion current becomes zero at large distances. The (recombinating)
electron current density flowing from the ohmic contact into the n region should be equal to the
injected hole current density at x’ = 0. The recombinating electron current density falls off as
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_x’
(1-— eg) with a decrease in x’. The total electric current density (due to the injection of minority
carriers in the n region) is the sum of injected hole diffusion current density and the recombining
electron current density and is constant in the n region as shown in Figure (3.11). The total electric
density is equal to the injected hole current density at x’ = 0, where the recombining electron current
density is zero, and is therefore obtained by putting x’ = 0 in Equation (3.75), as

Ap(0 qDpPno aF
Jp = aDyp IZ( ) = : (e kt —1) (3.76)
p p

The above equation gives us the current density flowing in the p-n junction due to the injection of
minority carriers (holes) in the n region.
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Figure (3.11): Injected hole diffusion current density and the recombining electron current density in the
neutral n region

We can similarly treat the injection of minority carriers (electrons) in the p region. We will find
that the injected minority carrier (electron) density decays exponentially with distance in the neutral p

region, and the minority carrier diffusion length, L,,, will be given by L,, = /D, T, in the neutral p
region. The current density through the junction, due to injection of electrons (minority carriers) in the p
region, will be given by

qVv
I = APnmpo (ek_: —1)
Ly

The total electric current density through the junction will be the sum of J; in the equation above and
Jp in Equation (3.76) and is given by
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qV
J = Ju ]y = [0 4 2P (o — 1)
n 1
(3.77)

This is usually written as

qVg
J= ]s (e kT — 1)
where

qDpn qDpp
Jo = — 2 4 B2 (3.78)
Ly, Ly

Js is called the saturation current density.

Figure (3.12) shows the various components of current that flow in the forward biased p-n
junction. ], is the injected hole diffusion current density. /.3 is the hole current density that is flowing
in the neutral p region, in order to inject holes in the n region. J,,; is the electron current density in the
neutral n region to replace the electrons lost due to recombination with holes in the neutral n region.
Similarly, J,,» is the injected electron diffusion current density in the neutral p region. J,,3 is the electron
current density flowing in the neutral n region to inject electrons in the p region. J,,; is the recombining
hole current density in the neutral p region. The total electric current density, J;, is the sum of all these
various components.

The current flowing through a forward biased junction is obtained by multiplying the current
density by the area A of the junction

avE
[ =I(ekr —1) (3.79)
where
I, = AJ, = A[qDZn”o + qu’p""] (3.80)
n p

I is called the saturation current. The current in the forward biased junction is plotted in Figure (3.13).
At values of V larger than a few kT, it can be seen from Equation (3.79) that the term —1 is negligible in
comparison with the exponential term, and hence, / is given by

aVE
I = I (ekr) (3.81)

The current increases exponentially with the forward bias voltage V5.
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Figure (3.12): Various components of electric current density in the forward biased p-n junction. The
arrows indicate the direction in which the electrons or hole flow.
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Figure (3.13): Forward Bias current through the junction
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Narrow Base Case
When W, << L,, we call it a narrow base junction.

Starting from Equation (3.72), we can expand the exponential terms and retain only the first two
terms:

" = _x x
Ap(x")=A [1 Lp] +B [1 + Ln] (3.82)

By applying the boundary conditions at x’ = 0 and atx’ = W, we obtain

PECICMES

and

g~ O (1 _L_p)

2 Wy,

Substituting these values in Equation (3.82), we obtain

Mp(x) = Ap(0) (1~ ny—n) (3.83)

The excess minority carrier (hole) density in the neutral n region is plotted in Figure (3.14 A). As
stated before, a neutralizing excess majority carrier density An(x") (= Ap(x")) also exists and is plotted
in Figure (3.14 B). The injected hole diffusion current density is obtained from Equation (3.83) as

"N _ d(Ap)
Jp(x') = —qDp——=
qDpAp(0)

Wn

__ qDppno avF _
= _Wn (e kT 1)

Figure (3.14): Excess carrier density in the neutral n region of a forward biased p-n junction for a narrow
base approximation. (A) excess minority carrier (hole) density, and (B) excess majority carrier (electron)
density
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First, we notice that the injected hole diffusion current density is constant and independent of
x’. This means that any hole current injected at x’ = 0 from the p region reaches the ohmic contact.
There is no recombination of minority carriers in the n region. Since W, is very small in comparison with
the diffusion length L,, the probability of an injected hole recombining in the n region is negligible.
Hence the injected hole current density reaches the ohmic contact without any attenuation.

Secondly, we notice that the expression for the injected hole diffusion current density is similar
to that for the wide base case, except that L, is replaced by W;,.

If we now assume that the neutral p region can also be approximated to be narrow base, i.e.,
W, < Ly, we get, for the injected electron diffusion current density,

ekT —1

qDpnyo [ 4VE
Jn = np( )

p

The total current through the junction is given by

I=A

D D %
q nnpO_l_q pPno (e‘gc_;_1>
W, W,

qVr
== Is<ekT _1>

where g is the saturation current. Thus, we see that the form of the expression for the current under
forward bias of a narrow base p-n junction is similar to that for a wide base junction.

It should be noted that it is possible that in a p-n junction, one side can be approximated as
narrow base, and the other as wide base. In such a case, the current through the junction will be
expressed as an appropriate combination of narrow base and wide base expressions.

P-N Junction under Reverse Bias

When an external voltage is connected such that the positive terminal is connected to the n-side
and the negative terminal to the p-side of the junction, then the junction is said to be reverse-biased.
The potential energy of the electrons on the p-side is increased relative to that of the electrons on the
n- side by an amount equal to qVi where Vj is the externally applied reverse bias voltage. The band
diagram in a p-n junction under reverse bias is illustrated in Figure (3.6 C). The height of the potential
energy barrier as before is the difference between E. on the neutral p-side and E, on the n side and
therefore equal to q(V; + Vz). The band-bending, i.e., the barrier height is thus increased from the
thermal equilibrium value of qVy; to q(Vy; + V).

In the neutral regions far away from the junction, the carrier densities are at their thermal
equilibrium values and the Fermi energy is located in the band gap at a level determined by the net
impurity (acceptor and donor) concentrations. Therefore, the Fermi energy in the neutral region (far
away from the junction) is shifted downward by gV from the Fermi energy in the neutral p region (far
away from the junction).
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The expression for the depletion region width under reverse bias can be derived exactly the
same way as we did earlier either by solving the Poisson equation or by using Gauss theorem. The
expression for the depletion region width will have essentially the same form except the potential
barrier height V,,; will be replaced by (V,,; + Vg). Using the same notation for the depletion region width
as earlier, we have

— 2esNp _ 2
[qNA(NA+ND) (Vo + VR)] (3.84)

= [25M v, + v
n = gNp(Na+Np) * bt R (3.85)

and

Xq = Xp + Xy

. [ZES(NA+ND)

1
2
avon,  (Vbit VR)] (3.86)

Thus we see that the depletion region width under reverse bias increases with the reverse
voltage. The increase is physically understandable because a larger space charge (and hence a wider
space charge region) is needed for a larger potential energy barrier.

Example

Calculate the depletion region width in an abrupt p-n junction with a net impurity density of Ny =
10'®cm™3 on the p-side and Ny, = 10'°cm™3 on the n-side. Assume room temperature and a reverse
bias voltage of 6 V. We determined the depletion region width for this diode under thermal equilibrium
case and under a forward bias of 0.4 V in the example worked earlier in the section on forward bias. We
can therefore use the value, 0.656 V for V,; from the previous example.

Vyi + Vg = 0.656 + 6 = 6.656 V

1015
_ 3
Xp = 3.627 X 10° X 1076 x 11 X 1056 X V6.656

=0.282 x 1074

Similarly
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1016

1015 x 1.1 x 1016 < V6:650

X, = 3.627 X 103 X

=2.81%x10"*cm

xg = (2.821 4+ 0.282) x 10~* cm
=3.103 X 10™*cm

Due to the increase in the barrier height, the hole (minority carrier) density in the neutral
n region at the boundary of the depletion region, i.e., x = x,,, is reduced from its thermal equilibrium
value since every hole that enters the depletion region will be pulled towards the p side by the electric
field in the depletion region. Another way of stating this is that while there was a balance between the
drift and the diffusion currents in thermal equilibrium, under reverse bias condition the diffusion current
is reduced due to the increase in the barrier height. Thus only the drift current remains. Yet another way
of looking at this is by considering the carrier density at the edges of the depletion region using the
Boltzmann relation in the following manner:

~4(Vpi+VR) ~4WVpi-VF) —qVR
p(x=x,) = p(x = —xp)e KT = ppo€ KT = Dno€ kT (3.87)

We see that when qVy is much larger than kT, p at x = x,, is nearly zero. Using the above relation we
see that the excess hole density at x = x,, is negative and is given by

—-qVR —-qVR
Ap(x = x,) = Ppo€ ¥T — Ppo = Pno (e kT — 1) (3.88)

We can now set up the continuity equation which will be the same as Equation (3.68). Again
setting up a new variable x’, as we did in the forward bias case we obtain the same equation as Equation
(3.71) which is given below

d%(Ap) _ Ap
dxrz - g

Solving this equation under the boundary condition that the excess carrier density is equal to 0
—aVR
atx’ = W, and is equal to pyo (e KT — 1) at x' = 0, we get for the wide base diode,

-qVR _x
Ap(x") = pno (e KT — 1) e l» (3.89)
and for the narrow base diode,
L4 -X xi
N _ L —_
Ap(x") = pyo (e KT 1) e L» (1 Wn) (3.90)
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When we consider the electron density in the neutral p region, we get similar results. The excess
minority carrier densities in the neutral n and p regions are negative and are plotted in Figure (3.15).

We will find that the diffusion current is of the same form as we got for the forward-biased

junction except that Vi will be replaced by - V. The current through the diode will be similar in form as
the forward bias current but opposite in direction. The current is called the reverse current, I,..,,.

—qVR
Loy, = I (e KT — 1) (3.91)
In the case of wide base diode,
CID n qDpp
[ =A],=A|—2 + 2 "0] (3.92)
Lp
I, is the same as what we obtained under forward bias for a wide base diode. In the case of the narrow
base diode,
qDpn qDpp
I, =AJ, = A[ - P2 L ”O] (3.93)
Wy Wy,

I is again the same as what we obtained under forward bias for a narrow base diode.

The current in the reverse biased junction is plotted in Figure (3.16). At values of V}, larger than a few
kT, it can be seen from Equation (3.91) that the exponential term is negligible in comparison with the
term -1 and hence, I approaches or saturates to a value

[ =—I (3.94)

and is independent of the reverse voltage. This is the reason why I; is called the saturation current.

Figure (3.15): The Plot of the excess (depleted) carrier density in the reverse biased junction.
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Figure (3.16): Reverse current in the p-n junction.

Example

Let us now calculate the current through a wide-base diode at a forward bias of 0.5 I/ and at a reverse
bias of 0.5 V: The diode is assumed to be an abrupt p-n junction with N, = 1016cm™3 on the p-side and
with N, = 10%°¢m ™3 on the n side. Let us assume room temperature. The minority carrier diffusion
constant is assumed to be 10 and 25 cm? s in the neutral n and p regions respectively and let the

minority carrier diffusion length be 5 X 1073 and 10 cm respectively in the neutral n and p regions.
Let the area of the junction 4, be 10 cm”.

i =A] :A[annpo_l_qupno
S S

Ln L,
D, = 25cm?s7!
L,=10"2cm

102 4, -3
npO = m = 10 cm
D, = 10 cm?s™*
L, =5x107% cm
102 5 . =3
Dno = o5 = 10°cm

Substituting these values in the equation for I; we get

I, =3.60 x1071* 4

0.5
I =3.60 x1071* x (eO-02589 — 1) =941 x 1074
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5
I = 3.60 x1071* x (e‘0.02589 — 1) = —3.60 x 10714

Interpretation of Reverse Current

We saw in the last section that the current through the diode is given by

qVv
[ = C[A [Dppno Dnnpo] (e kqfr _ 1) (3.95)

Ln

for a wide base diode where V. is the externally applied voltage. We can give a physical interpretation
for this reverse current. When a reverse voltage V}, is applied, the term Vr in the above equation should
be replaced by —Vz. When V; is large than a few kT, the exponential term becomes negligible. The
resulting current, I, denoted by I, is the leakage or saturation current -I5 and is given by

Dnnpo
Ly

Dyp
— pEno —
In =—Is = —qA [ ] = =l — Iy (3.96)
where I, and I, are the saturation current components due to the flow holes and electrons
respectively. Recall from our discussion in Chapter 2 that the minority carrier thermal generation rate in
the neutral n region of the semiconductor is given by

Gen =222 (3.97)
Tp
Also
Lp = Dprp (3.98)

We can therefore write

DpDPno Dy LypDno LypDno

= = = X i
L 2 o Lp X gen (3.99)
The reverse current can therefore be expressed as
Ip=—Ig ==l — Iy = —q A (gpLy — gnln) (3.100)

Where g, and g, are the thermal generation rates of electrons and holes in the neutral p and n regions
respectively.

What is the physical interpretation of this equation? A minority carrier that enters the depletion
region will be swept away to the other side due to the electric field in the depletion region. This gives
rise to the reverse current. For example, an electron that enters the depletion region from the p side
where it is a minority carrier will be pushed to the n side by the electric field in the depletion region.
Similarly a hole will be pushed from the n side to the p side. Since a minority carrier will travel on an
average a distance equal to the diffusion length before it recombines, carriers generated in the neutral
region farther than a diffusion length away from the edge of the depletion region will not reach the
depletion region. It is only those minority carriers that are generated within a diffusion length that will
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produce the reverse current. The first term in the above equation represents the current flowing
through the junction due to minority carriers (holes) generated in the neutral n region within a diffusion
length Lp from the depletion region and similarly the second term represents the current due to the
minority carriers (electrons) generated in the neutral p region within a diffusion length L,, from the
depletion region. Such a physical interpretation is not readily possible for the reverse current in the
narrow base diode.

Non-ldeal Current Characteristics

The current characteristics that we discussed so far are called the ideal current characteristics.
We will now discuss additional components of current that flow in a p - n junction and these additional
components of current are called non-ideal currents. In our treatment we neglected the component of
current due to generation of electron-hole pairs in the depletion region in the reverse current and the
component of current due to recombination of electron-hole pairs in the depletion region in the forward
current.

Reverse Bias

In the depletion region of the reverse-bias junction, the n p product is less than nl2 Recall from our
discussion in Chapter 2, that under this condition, there is a net generation in the depletion region equal
to

_
en =5, (3.101)

Each electron-hole pair that is generated in the depletion region will be acted upon by the electric field
in the depletion region such that the electron will be propelled to the neutral n region and the hole will
be propelled to the neutral p region. This results in an electric current through the junction equal to the
flow of the charge of an electron for each electron-hole pair that is generated. Since each electron is
carrying a charge of g coulombs, and the electron-hole pairs are generated throughout the depletion
region of volume equal to A x; where A is the area of the junction and x is the width of the depletion
region, the reverse current is given by

—qV . -qV

IR= q A (Dle;no + D"Lr:’o) (e kTR — 1) — qA xdznT; = Is (e kTR — 1) —
ng

qA x4 2, (3.102)

Since x4, the depletion region width, is dependent on the applied reverse voltage, the term due
to generation in the depletion region has a voltage dependence as shown in Figure (3.17).

-118 -



Figure (3.17): Non-ideal current characteristics under a reverse bias

When the junction is forward biased the n p product in the depletion region is larger than nl2
Hence there is a net recombination in the depletion region. This gives rise to an additional component in
the forward current. The term due to recombination in the depletion region is of the form

avFr
Leoe = I yoc €2KT (3.103)

This expression for the current can be derived as shown below:

The rate of recombination is given by the Schockley Read Hall Model discussed in chapter 2 and
is repeated below:

R=rnp (3.104)

Where n and p are the electron and hole densities respectively and r is given by

1
T D Tt P Tno (3.103)
Where
B 1
fro = Nyo,vy,
B 1
fno = Nio, vy,



N, = density of traps or g-r centers.

0n, 0, = capture cross-sections for electrons and holes respectively,

. . . 3 kT .
v, U, =thermal; velocity of electrons and holes respectively and is equal to |——, and m”* is the
n P m*

effective mass of the carrier,

= n;exp (Et_Ei) (3.106)

(3.107)

where E; =the trap energy level

The value of n at the edge of the depletion region near the neutral n-side is equal to the majority carrier
VE
density n,g and p has a value equal to p,,ge kT . Hence the product of n and p at the edge of the

depeletion region near the neutral n region is given by

avFE avF
np = NyoPno€ kT = Nje kT (3.108)

Similarly by considering the hole and electron densities at the edge of the depletion region near
the neutral p region it can be shown that the n p product is the same as at the edge of the depletion
region near the neutral n-side. We now assume that the n p product has the same value throughout the
interior of the depletion region and is given by Equation (3.108). This is pictorially shown in Figure (3.18).
Hence the expression for the net recombination rate can be written as

,( 9VF
2 nile kT -1
np-n;

U:R_Gth: =

(n+n1)Tpo+(@+P1)Tno  (M+N1)Tpo+(P+P1)Tno

(3.109)

The net recombination rate is a maximum when the denominator is a minimum. Near the edge of the
depletion region close to the neutral n region, n is large and in the region close to the neutral p region,
pis larger. n and p are both small only in the middle of the depletion region when n and p are nearly
equal as shown in Figure (3.18). Therefore only a small region in the middle of the depletion region is
effective in producing recombination. Using Equation (3.108) and using the fact that n and p are nearly
equal in this region, we can write

Vp

n=p=,np=n;ezxr (3.110)
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,( WE
ni|e kT -1
avE avE
nje2kT +nq |Tpo+| nje2kT+p; |Tno
Substituting the expression for n,; and p; in terms of (E; — E;) , we obtain

,( WVE
ni| e kT -1

Vg (Et—Ep) _(Et—Ep
ne2KT (Tpo+Tno)+nie” KT Tpo+nie KI  1pg

avE
nil e kT -1

T qVF (Et—Ey) (Et-Ey) (3.112)
e2KT (Tpo+Tno)+ Tpo€ KT  +Tpoe~ KT

U =

(3.111)

U=

When | E; — E;| > kT, the denominator is large and hence U is nearly zero. Only when the trap is in
the middle of the gap i.e., E; = E;, U becomes not negligible.

avg
nil e kT -1

aVp
(Tpo+Tno) (em+ 1)

U = (3.113)

Figure (3.18). Electron and hole density variation in the depletion region of a forward biased p-n
junction. The solid lines represent the carrier density variation under forward bias. The dotted lines
represent the carrier density variation in the depletion region of a p-n junction under thermal

equilibrium. In thermal equilibrium the np product is equal to nl2 Under forward bias the np product is
VE
assumed to be equal to nl-ze kT throughout the depletion region since the np product has this value at

the boundary of the depletion region on either side.

The term 1 in both the numerator and the denominator is negligible in comparison with the
exponential terms and can therefore be omitted.
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vF qVF
nije kT __ n;e2kT

qVFE -
e 2KT (7,0+Tno) (Tpo+Tno)

U (3.114)

When an electron and a hole recombine, an electron flows from the neutral n region into the
depletion region and similarly a hole flows into the depletion region from the neutral p region. This
constitutes a current flow through the junction in the same direction as the ideal forward current that
we considered in the previous section. Hence the additional component of current due to
recombination in the depletion region is given by

Vg
Ax q nije2kT avVF
Lrec = AXgerrq U = dorf? =I5 oc €2KT (3.115)
(Tpo'l'Tno)

where X4efr is the small region in the middle of the depletion region where the electron and hole
densities are both minimum and equal.

The total forward current including recombination in the depletion region is given by

Dyp Dpn Va avF aVF
_ _ pPno nilpo .
IF_I_qA[ L + L ]ekT+ ISrec €2kT = ISidealekT+
Y4 n
avE
[ yoo €2KT (3.116)

If one were to calculate Ig ;0q; and Ig .. for modern devices as illustrated in the worked out
example below, the former will be much smaller than the latter. Hence, when the forward bias is not
that large, the forward current is dominated by the recombination current and depends on the voltage

VE
as ezkT . At much larger forward bias voltages, the forward current is due mainly to the ideal junction
VE
current and depends on the bias voltage as e kT . At intermediate voltages, the forward current is due to

VE
both the mechanisms and the bias voltage dependence is approximated by e%T. The parameter 7 is

called the ideality factor and is usually used as a parameter to define how good a junction is.

Example

Consider a p-n junction with the following characteristics where N, and N are the net impurity
concentration on the n and p sides respectively. A is the area of the junction.

A =10"*cm?*, N, = 10**cm™3, N, = 10°cm™3, D, = 30 cm?*s™ !, D, =
4cem?s™, 1, = 107*s, 7, = 107>s

The ideal current prefactor Is ;404; and the recombination current prefactor Is -, can now be calculated
using the values for the universal constants q and k and assuming room temperaturei.e., T = 300 K.
Taking the intrinsic carrier density n; as equal to 101° cm™3, the thermal equilibrium minority densities
can be calculated as
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2 20
ni 10 4 -3
=L = =10 cm 3.117
Pno Np 1016 ( )
and
n? _ 102°

=10°cm™3 (3.118)

npO N_A - 1015
The minority carrier diffusion lengths are calculated as
— — -5 — -3
L, = \tpDp, =V107™x4 = 6.32x 10 cm (3.119)

L, = \/tnDy = V10~*x30 =5.48x107% cm (3.120)

Substituting these values in the equation for I ;4001 We get

4x10% 30x 10° )
6.32x 1073 5.48 X102

I igoqs = 1.6x1071° x 107* x (
= 1.6x1072% x (5.7 x 106 + 5.47 x 107)
= 9.66 X 1071 Amperes

For calculating s . we use the following typical parameters. Let the density of the traps, N; be
105 cm™2 and 0, = 0,, = 10~ °cm . Assume v,, = Up = Vg, where

3kT 3x1.38x10723%x300
Ve = \/ — =J =1,17 x 10° (3.121)

9.11x10731

And we have assumed the effective mass of the carriers to be the same as for electrons in vacuum. Since
we will be using mostly cm as the unit of length we take v,, as 1.17x107 cm s~ 1. Let us assume tht the
width of the region wwhere the recombination is effective, xgigf, is 3 x107> cm. T,,o is equal to Tpo due

to our assumption of equality of g, and ¢, as well as v, and v,,. Therefore

1.6x107°x 107%x 3 x 10~>x 1010
1,71 x10°°

= 2.81 x 10712 Amperes

Tno + TpO =

Thus we see that I5 ... is larger than Is ;4041 and therefore dominates at low bias voltages. At higher
bias voltages, the ideal current dominates because of the absence of the factor 2 in the denominator of
the exponent of the voltage dependent term.

In the discussion so far we considered recombination generation in the bulk of the
semiconductor. Normally the depletion region intersects a surface and the g-r centers (called surface-
states or interface states) on the surface of the depletion region can also provide a recombination
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current under forward bias and a generation current under reverse bias in addition to the previously
discussed components of current. The net recombination rate per unit area of the surface, U is given by

2
np—n;
Us = =y 5751 (3.122)

Nsto'p'l;p ' NStO'n'Un

Where Ng; is the number of g-r centers per unit area of the surface (surface density), and all other
parameters have the same meaning as before for the bulk recombination. Under forward bias the n p
product in the surface region is much larger than nl2 and hence a surface recombination current flows in

addition to the bulk recombination current. The surface recombination current also has the same
avF
voltage dependence as the bulk recombination currenti.e., the current is proportional to e 2kT.

When the junction is under reverse bias, the n p product is negligible in comparison with nl-2 and hence
the net generation rate under the assumption that only the surface states whose energy is in the middle

of the gap contribute to the generation, is given by

_ nl? _ n; _ n;s

U —_ 1 : D1 - - 1 ) 1 - - T (3123)
Ngtopvp Nstonvn Ngtopvp Nstonvn

where s equal to

2
= 1 1

NstO'pUp ' NstO'nUn

is called the surface recombination velocity. Recall that we defined a minority carrier lifetime in the bulk
to describe the generation rate. We now define a surface recombination velocity for the surface to
describe the generation at the surface. The electron-hole pairs created at the surface depletion region
will give rise to another component of reverse current which we will call the surface generation current.
This component of surface generation current will add to the bulk generation current under reverse
bias.

A typical current voltage plot is given in Figure (3.19) in which the current is plotted on a
logarithmic scale while the voltage is plotted on a linear scale. The slope at small values of forward bias
voltage is half that at larger values of bias voltage. The recombination component I ... is larger than

the ideal I5 j404; and hence at small voltages the recombination current dominates and the slope is % .

At higher voltage the ideal component dominates and the slope is %. It is customary to express the

current as

avF
Ip = I enkT (124)

Where 7 is called the ideality factor. The more ideal a diode is, closer is 17 to unity.
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Figure (3.19): Plot of the forward current in a typical p-n junction as a function of the bias voltage. The
current is on a logarithmic scale. Notice how the slope increases by a factor 2 between the lower and
higher voltages.

Capacitive Effects

The p-n junction behaves like a capacitor for small signal (applied) voltages. There are two
mechanisms that give rise to capacitive effects. One arises due to the dependence of the space charge in
the depletion region (and hence the depletion region width) on the applied voltage. The capacitance is
called Junction Capacitance or Depletion Capacitance. The other is due to the minority carrier charge
stored in the neutral regions. This capacitance is called Storage Capacitance or Diffusion Capacitance.
We will examine both these now:

dQ+ = qNpdx,
and
dQ™ = —qNydx,

and they flow from the external voltage source into the diode. The two elementary charges are equal in
magnitude but opposite in sign. When the step voltage is removed, the elementary charges flow back to
the external voltage source. Hence the diode behaves like a capacitor of capacitance per unit area equal
to

dQ*
av,

C =
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We will now derive an expression for the depletion capacitance. At any point x in the depletion region,
the increase in the electric field, d€ due to the small step voltage, is obtained from Gauss theorem as

dQ+

€s

d€ =

It is independent of x. The incremental change in the applied voltage across the diode dV, can be
obtained from the line integral of d& across the depletion region. Since d€ is constant with x, the line
integral is

dV, = x4 X d€
Substituting the expression for d€ in terms of dQ* we get
dQ+
dVa = Xg X
s

Dividing both sides of the equation by dQ™, we obtain for the depletion capacitance per unit area of the
junction,

_dot _ &
C, = = o (3.125)

We find that this is exactly the same expression that we would have had if we have a parallel plate
capacitor with the semiconductor as the dielectric between the parallel plates of unit area and a spacing
of W between the plates. Thus we see that the junction behaves like a parallel plate capacitor. What we
calculated was the expression for the capacitance for unit area of the junction. The capacitance of a
junction of area A is

€s
C=AC;=A o (3.126)

What we derived for the junction capacitance is valid for a junction even if it did not have
uniform impurity concentrations i.e., if the diode was not an abrupt junction. We can arrive at the
expression for the capacitance of an abrupt junction by an alternate method also. The total positive
charge in the depletion region, QT per unit area of the junction is given by

NpN,
+ _— N —
Q" = Xq = X
q NpXq = ¢ N, + N, d
Where we have used the relation
Npx, = Nyxp
Differentiating this expression for Q* with respect to V, we can get
€s
Cd =
Xd

which is the same as what we obtained earlier. It is left as an exercise for the student to show this.
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Figure (3.20): a) Flow of elementary charges dQ* and dQ~ into the junction diode due to the
application of a step voltage: b) The widening of the space charge region due to the step voltage: dx,
and dxp are the elementary increase in the space charge on the n and p sides respectively.

Example

Consider a junction with Ny = 10%°cm™2 on the p side and Np = 3x10'°cm™3 on the n side. Let us
calculate the junction capacitance for a reverse voltage of 5V. Assume the area of the junction to
be 1073cm?. We saw that the expression for x, in terms of Vyis given as

1

_ [26s(Na+ND) -1, 2
Xq = [—qNDNA (Vp; + VR)]

1015 x 3 x 101>
V,; = 0.0259 X In 1070 = 0.625V

Substituting the values for V,; and other parameters, we get
1

211.9x8.84x1071%(3+1)x101° z i
[ 1.6x10~19%3x1015x1015 G+ 0-625)] =3.13x10"*cm
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11.9%8.84x10~ 14
Cd = —
3.13x1074

=3.36x107° Fcm™?

and

C; = 1073 x3.36 x107° =3.36 x 107**F = 3.36 pF

Diffusion or Storage Capacitance

We saw earlier that under a forward bias minority carriers are injected into the neutral region
on either side of the depletion region. The excess minority carrier density decayed with distance in the
neutral regions either exponentially as in the case of the wide base diode or linearly as in the case of the
narrow base diode. Although the excess carriers were diffusing and therefore constantly moving until
they recombined (wide base) or until they reached the ohmic contact (narrow base), at any given time
they had a density distribution given by Figure (3.10) and (3.14). We can think as though the minority
carriers equal to the area under the curve in these two figures are stored in the neutral regions. The
minority carrier charge stored in the neural regions can be obtained by integrating the excess minority
carrier density in the neutral region and by multiplying this by the electron charge q and the area, 4, of
the junction. The charge due to excess holes stored in the neutral n region is therefore given by

Wn

Qps =q A f Ap(x') dx'

0

where we have used the subscript s to denote that we are considering stored charge.

Wide Base Diode

Let us consider the wide base diode. Substituting the expression for the excess hole density in
the wide base case which is
—-x!

p(x’) = Ap(o)e ™

into the expression for @, and integrating we get,

Qps = q A Ap(o) fOW" elr dx' = AqAp(o)L, (3.127)
We can relate this to the current through the diode. The current due to hole injection is
dAp(x' A D,Ap(o
I =—qAD, p(x’) _ 94 DyAp(o)
dx’ . L,
x =0

Dividing the expression for st, by Ip and rearranging, we get
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L 2
— P _
Qps = I D, = I, T, (3.128)
Thus we see that the stored charge in the neutral region is the injected minority carrier current
times the life time. The stored charge is dependent on the applied forward bias, Vg, since

qVE
Ap(0) = pno (e kT — 1)

Let us assume that a step voltage dVy is applied in series with Vi as shown in Figure (3.21 A). Due to
this step voltage the stored charge will increase by an amount d@,,s; as shown in Figure (3.21 B). This
extra charge dQ,s, flowed into the neutral n region from the external source dV,, through the neutral p
region. In order to maintain charge neutrality the electron density in the neutral n region also has to
increase and the increase in the negative charge dQ,s will be exactly equal and oppoissite to d@,, and
has to flow from the external source through the neutral n region as shown in Figure (3.21 C).
Therefore the diode appears to the external source as a capacitor of capacitance equal to

Caitrp = i?}f (3.129)
Hence we can obtain the diffusion capacitance as
Caittp = d(;p—v:p) = T, Z—Z (3.130)
But
Ve
I, = I, (e RT — 1)
which becomes equal to
avr
I, = Igye kT
Under the approximation dVy > kT. Differentiating this with respect to Vr we get
3_12 — Z_‘Z _ % (3.131)
Therefore the diffusion capacitance becomes equal to
Caitfp = Tp % (3.132)

The DC current through the diode also increases by a small increment dI,, due to the small step
voltage and therefore the diode appears to the step voltage as a resistor of resistance equal to

v,
T'f = -
» =,
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or a conductor of conductance equal to

Jrp = Up 3.133
fp av, (3. )
Using Equation (3.132), we can write the diffusion capacitance as

Cdiffp = TpIfp (3.134)

So far we considered only the small signal circuit elements due to the hole injection in the
neutral n region. We have similar diffusion capacitance due to electron injection in the neutral p region
so that we can write for the total diffusion capacitance as

qlp qln

Caittp = Tp 1 T Tnyp = Tpdfp T Tndsn (3.135)

where I, is the component of forward bias current due to electron injection in the neutral p region and
Jrp and gsy are the forward conductance due to hole and electron injection respectively. Similarly the
forward conductance will be equal to

] |

o

Figure (3.21): The effect of the application of a step voltage on a forward biased junction diode a) The
step voltage, dV, is applied in series with the forward bias. B) The increase in the injected minority
carrier distribution in the neutral n-region is shown by the shaded area. C) The increase in the majority
carrier distribution in the neutral n-region to maintain the charge neutrality is shown by the shaded
area.
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Narrow Base Diode

Similar to the wide base diode case, the minority carrier distribution increases with the
application of a step voltage in the case of the narrow base diode. Hence we get stored charge effects
and the diode gives rise to diffusion capacitance. It is left as an exercise for the student to show that the
stored charge due to the injection of minority carriers in the neutral n region is given by

Q __qAAp(o)wW,
s — 2

Similarly the diffusion capacitance can be shown to be

W, ql,
Caitrp = Eﬁ

2

In the next chapter, it will be shown that j is the transit time for the holes in the neutral n-region i.e.,
D

the time taken for the hole to traverse the n-region. A diffusion capacitance arises also due to the
injection of electrons in the neutral p-region. The total diffusion capacitance is the sum of both the
diffusion capacitances and is given by

alp Wy? | qln Wp?

Caite = —-

(3.136)
KT 2D, = KT 2Dy

If one side, say the p-side, is approximated as a wide base and the other side (n-side) is approximated as
a narrow base, the diffusion capacitance is given by

alp Wn® | Tndln

—£ (3.137)
kT 2D, = kT

Caitf =
The expression for the small signal conductance and resistance is the same as what we obtained earlier
for the wide base case.

Small Signal Equivalent Circuit

The diode behaves like a capacitor due to the junction capacitance under reverse and forward
bias voltages and due to the diffusion capacitance under forward bias.

Reverse-biased Diode

Under reverse bias, the current in an ideal diode depends on the reverse voltage for small values
of voltage but is independent of the voltage for larger values of reverse voltage. Hence we can conclude
that the conductance under reverse bias is zero or the resistance is infinite. However when the non-
ideal components are considered, the reverse current depends on the reverse voltage. Hence there is a
non-zero conductance. However, the conductance is very small. Hence the diode behaves like a large
resistor. The junction also behaves as a capacitor due to the junction capacitance whose value depends
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on the reverse voltage. Hence the equivalent circuit for the reverse biased diode is a large resistor in
parallel with the junction capacitance as shown in Figure (3.22 A). In circuit representation, the diode is
denoted by the symbol of an arrow and a vertical line as depicted in this figure. The direction of the
arrow is the direction of the forward current flow. Hence the side containing the arrow is the p-side and
the side containing the vertical line is the n-side.

Figure (3.22). Equivalent circuit of a diode under A) reverse bias, and B) forward bias

Forward-biased Diode

We saw earlier that under forward bias the current through the diode current increases with the
forward voltage and diode behaves like a small signal resistor of resistance equal to

kT
e = —
4 qlr

kT
Since 7 is approximately equal to 0.0258 V at room temperature, a current of 27 mA under forward bias

0.0258

= 25.8 ohm. Thus we see that a forward biased diode offers
very low resistance to a small signal voltage. In addition, the diode gives rise to capacitive effects
through the junction capacitance and the diffusion capacitance. Therefore the response of the diode to

a small signal voltage can be represented by the equivalent circuit shown in Figure (3.22 B). The

will give rise to a small resistance of
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capacitors and the resistor are all in parallel because the incremental charge or the incremental current
all flow independent of each other and only depend on the small signal voltage. The resistance has a
small value.

Junction Breakdown

The reverse current in an ideal diode remains constant with increasing reverse voltage until at a
certain reverse voltage called the breakdown voltage the current suddenly increases to an extremely
large value as shown in Figure (3.23). If current limiting resistors were not included in the circuit the
current will become so large as to destroy the junction. Under this condition, the junction is said to have
suffered a breakdown and the reverse voltage at which the breakdown occurs is called the junction
breakdown voltage. There are three mechanisms that cause the junction to break down and they are: a)
Thermal mechanism, b) Avalanche breakdown and c) Tunneling breakdown.

Although the reverse current, which is called the diode leakage current, is extremely small at
room temperature, it is very sensitive to temperature and increases very rapidly with temperature. The
power dissipated in the junction, is the product of the leakage current and the reverse voltage. At large
enough reverse voltage, the power dissipation can become excessive and hence can cause a heating of
the junction. This increases the junction temperature and hence the leakage current increases further
and this in turn increases the junction power dissipation. This cycle of increased power dissipation and
increase in temperature keeps on recurring until the current becomes very large and the diode is
destroyed. This is called the thermal breakdown. The thermal breakdown used to be a big problem in
the days when germanium instead of silicon was used as the semiconducting material for fabricating
junction devices. However with modern silicon devices, in which adequate heat sinks are used as part of
the device design, thermal breakdown is not usually a problem.

In modern devices the breakdown due to the other two mechanisms limits the maximum
reverse voltage that can be applied across the junction. The avalanche mechanism can be explained by
reference to Figure (3.24). In this figure, the band diagram of a junction across which a larger reverse
voltage has been applied is shown. The depletion region is wide and also has a large electric field. An
electron entering the depletion region is accelerated by the large electric field, and within a short
distance its kinetic energy increases to a sufficiently large value such that it is able to create an electron-
hole pair by impact ionization. The electron loses most of its kinetic energy in the impact ionization
process. It starts to accelerate again and within a short distance again causes the generation of another
electron-hole pair. Thus by the time the electron reaches the other end of the depletion region, it has
generated many more electrons. This process is called avalanche multiplication. The ratio of the number
of electrons coming out of the depletion region to the electrons entering the depletion region is called
the multiplication factor. The holes can also cause avalanche multiplication. At sufficiently large reverse
voltage the multiplication factor becomes infinite and the current increases infinitely to cause a junction
breakdown.

The tunneling mechanism can be explained with reference to Figure (3.25 A). In this figure a
junction in which the impurity concentrations on the two sides are very high is shown. The depletion
region width is very narrow because of this. In order to go to the conduction band the electrons in the
valence band need not thermally get excited but can tunnel through a triangle barrier to the conduction
band as shown in Figure (3.25 B).
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Figure (3.23): Breakdown in a junction diode. The voltage V},- at which the current rapidly increases is
defined as the breakdown voltage
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Figure (3.24): The avalanche breakdown mechanism
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Figure (3.25): The tunneling breakdown mechanism: A) the band diagram under tunneling conditions
and B) the triangular barrier through which the electron tunnels through

A detailed theoretical model is available to treat the avalanche process and derive an expression
for the avalanche breakdown voltage. Similarly a detailed theoretical model is can be used to derive an
expression for the tunneling breakdown voltage. However for our purpose we will assume that there is a
certain critical electric field which when exceeded causes the junction to breakdown independent of the
mechanism. We can derive an expression for the breakdown voltage in terms of the critical electric field.
For an abrupt junction the maximum electric field is equal to

< _qNp X = qN, X
max — n — D
€s €s
But the total voltage across the junction is equal to
X, +Xx
— p
VR + Vbi - gmax 2

Substituting for x,, and x,, from the previous equation we get
Xn + Xp
2

Smax (Emaxes + gmaxes)
2 qNp qN 4

Ve + Vii = Emax

2
gmax ES

= EE = (i + i) (3.138)
2q Np Ny

The breakdown voltage V), is the value of Vj at which &,,,, becomes equal to £,;;, the critical
electric field. Thus we obtain the expression for the breakdown voltage as
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Ecrit’€s (1 1
Vyp = =22 (— + —) — Vi (3.139)
2q Np  Ng
There are two points that must be mentioned with respect to the junction breakdown. One is
that the avalanche mechanism is the dominant mechanism in diodes in which the breakdown voltage is
6E,
larger than Tg and the tunneling mechanism is the dominant one in diodes in which the breakdown

4E,
voltage is less than Tg' For silicon diodes avalanche process is dominant in diodes in which the

breakdown voltage is above 6.6 V and tunneling is the dominate process for diodes with a breakdown
voltage less than 4.4 V. Secondly the avalanche breakdown process has a positive temperature
coefficient i.e., the breakdown voltage increases with temperature whereas the tunneling breakdown
process has a negative temperature coefficient with the breakdown voltage decreasing with increasing
temperature. Silicon diodes which have a breakdown voltage between 4.4 and 6.6 volts have both
mechanisms present and hence have very little temperature dependence of the breakdown voltage.
Usually diodes which are in the breakdown mode are used a voltage reference at a voltage of V, and
these are called Zener diodes.

The expression we derived for the breakdown voltage is for planar diodes i.e., ones in which the
junction is planar. However in practical diodes the sides and corners of the junction are curved and
hence the actual breakdown voltage is lower than what we derived due to the fact that the electric field
is higher in curved junctions than in planar junctions for a given applied voltage.

Example

Given that the critical electric field is 3x10°Vcm™! for a diode with N, equal to 10'°cm™3 on the p
side and N, equal to 101°cm™2 on the n side, calculate the breakdown voltage.

KT (NuNp 1031
Voi = | =5~ ) = 00258 In{ 7575 | = 0654V

L

Hence

_ (3x10%)* x 11.9 x 8.84x10 1

bt 2% 1.6x1071°
=325 —0.654 ~ 324V

X (10715 + 10716) — 0.654
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Summary

e Inthermal equilibrium, a potential barrier exists across the p-n junction such that the diffusion
current is balanced by a drift current in the opposite direction. The height of the potential
barrier is denoted by Vp;.

e Adepletion region is formed on either side of the metallurgical junction, and the charge density
in the depletion region is due to ionized acceptor atoms on the p-side, and to donor atoms on
the n-side.

Xqg = XptXp
Where x;, = width of the depletion region on the n-side, and x, = width of the depletion region
on the p-side and x is the total width of the depletion region.

e The positive charge in the depletion region on the n-side is equal in magnitude to the negative
charge in the depletion charge on the n-side (Nyx, = Npxy)

e The depletion region occurs more on the lightly doped side. The electric field exists only in the
depletion region. The neutral n and p regions do not have any electrical field.

Forward Bias

e Under forward bias, the height of the potential barrier across the junction is reduced to
Vi — Vg where Vi = bias voltage.

e The expression for the depletion region widths is the same as the one for thermal equilibrium,
with V},; replaced by Vy; — Vi. The depletion region width decreases under forward bias.

e Under forward bias, excess minority carriers are injected into the two neutral regions. The value
of the excess minority density at the boundary of the deletion region and the neutral region is

aVF

Ap(0) =ppo(ekT — 1) .. n-side
aVF

An(o) =npo(e k7 — 1) e, P side

e A net current flows across the junction due to the diffusion of the injected excess minority
carrier’s density.
e Underideal conditions.

avg
IF == Is(e kT — 1),

Where

_ DpDno Dpnpo
IS—qA[ L + L ]

When W, > L, and W, > Ly
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and

_ DpPno Dnnpo
IS—qA[ " + W, ]

When W, K L, and W, K Ly,

The first term in the expression for Ir represents the diffusion current, and the second one
represents the drift current.

Reverse Bias

e Under reverse bias, the height of the potential barrier increases to Vy,; + Vi, where Vy=reverse
voltage.

o The expression for the depletion region under reverse bias is the same as the one for thermal
equilibrium, with V,; replaced by Vj; + Vi. The depletion region width increase under forward
bias.

e The net current under reverse bias has the same form as the forward current, with V replaced
by =Vg,

—qVR
IR =Is<e kT _1)

Again, as in the forward bias case, the first term represents the diffusion current, and the
second term the drift current. When qVy >> kT, the reverse current is only due to the drift
current.

Is is called the saturation current.
Iy is called the leakage (or reverse) current.

e |t can be shown that I is due to the generation of minority carriers within a diffusion length
from the boundary of the depletion region, in the two neutral regions.

Non-ideal Current

e Current due to recombination of electron-hole pairs also contributes to the current in the p-

n junction under forward bias. This component of current has a voltage dependence given

VF
by e kT, and is dependent on the number of traps (g-r centers) per unit volume.

e Similarly, an additional component due to the generation of electron-hole pairs in the depletion
region flows in the junction under reverse bias.

Capacitance

e The depletion region behaves like a parallel plate capacitor with spacing equal to the depletion
region width, with respect to applied small signal voltage. The capacitance is called the junction
capacitance.
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Injected minority carriers give rise to a stored charge in the two neutral regions. In the one-
sided abrupt p* — n junction,

Q; =1 Tp
Where
Q = stored charge
T, = minority carrier lifetime
I = current through the diode
A capacitance effect arises due to the stored charge, and this is called the diffusion capacitance.

When the diode is switched from ‘on’ to ‘off’, there is a delay in the reverse current attaining
the steady-state value. This delay time is related to the minority carrier lifetime.

Breakdown Voltage

As the reverse voltage is increased at sufficiently large voltages, when the maximum electric
field in the depletion region becomes equal to the critical electrical field, the reverse current
increases enormously. This voltage is called the Breakdown Voltage.
There are three mechanisms:

1) Thermal instability

2) Tunneling process

3) Avalanche process
The breakdown voltage due to tunneling has a negative temperature coefficient.
The cylindrical and spherical junctions have lower breakdown voltage than planar junctions.
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Glossary
A = area of the junction
A = an integration constant
A and B = two points in a semiconductor

A and B = integration constants that will be determined by the boundary conditions at x = 0 and

x'=W,
C = capacitance
Cy = an integration constant
C; = an integration constant
C; = an integration constant
C, = an integration constant
C; = an integration constant
Cs = an integration constant
Cq = depletion capacitance per unit area
Caifr = diffusion or storage capacitance
Caiffp = diffusion capacitance due to stored holes
G = junction capacitance
av, = step voltage
D, = electron diffusion constant
D, = hole diffusion constant
Ec = energy at the bottom of the conduction band, al;so the potential energy of electrons
Er = Fermi energy
Ern = quasi-Fermi energy level for electrons
Epp = quasi-Fermi energy level for holes
E, = energy gap or bandgap energy
E; = intrinsic Fermi energy level
E, =trap energy level
Ey = energy at the top of the valence band
E = electric field
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Ecrit = critical electric field

Emax = maximum electric field in the space charge region

E(x) =the electric field at x

f(x)  =Fermifunction

g = small signal forward conductance

9fn =forward conductance due to electron injection

9rp = forward conductance due to hole injection

In =thermal generation rates of electrons in the p region
Ip = thermal generation rates of holes in the n region
Jth =thermal generation rate

1 = current flowing through the junction

Ir = current through a forward biased junction

I, = forward current due to electron flow

I = forward current due to hole flow

Ip = current through a reverse biased junction

Lreoc = component of forward bias current due to recombination in the space-charge region
Loy = reverse current in the p-n junction

Is = saturation current

I iqeq: =ideal current prefactor

Iy, = saturation current component due to the flow of electrons

Ig,, = saturation current component due to the flow of holes

Isoc = prefactor in the expression for current due to recombination in the space-charge region
] = total electric current density through the junction

In = electric current density due to electron flow

Jn1 = electron current density in the neutral n region to replace the electrons lost due to

recombination with holes in the neutral n region

Jn2 = (injected) electron diffusion current density in the neutral p region
Jn3 = electron current density flowing in the neutral n region to inject electrons in the p region
Jnaife = excess electron diffusion current
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Jndrift = drift current density due to electron flow

In = electric current density due to hole flow

I = recombining hole current density in the neutral p region

Jp2 = (injected) hole diffusion current density

In3 = hole current density that is flowing in the neutral p region to inject holes in the n region
Is = saturation current density

Ji = the total electric current density

k = Boltzmann constant

Ly, = minority carrier diffusion length (of holes) in the n region

L, = minority carrier diffusion length (of electrons) in the p region
m* = effective mass of the carrier

n = electron density

ny = electron density in the semiconductor if the Fermi energy at trap level
ng = thermal equilibrium density of electrons

Mo = thermal equilibrium majority carrier (electron) density

n, = electron density in the n region

n; = electron density in an intrinsic semiconductor

n, = electron density in the neutral p region

Ny = thermal equilibrium minority carrier (electron) density

Ny = acceptor density

Ny = ionized acceptor density

Np = donor density

N =ionized donor density

Np — N4 = net impurity concentration

N, = density of traps or g-r centers

p = hole density

22 = hole density in the semiconductor if the Fermi energy is at trap level
Do = thermal equilibrium density of holes
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Pn = hole density in the neutral n region

Pno = thermal equilibrium minority carrier (hole) density
Pp = hole density in the p region
Ppo = thermal equilibrium majority carrier (hole) density

P(x")dx' = probability that an excess hole, injected at x’ = 0, will recombine in an elementary distance
dx' between x'and x’ + dx’

P(x') = probability per unit distance that an excess minority carrier (hole) will recombine and be lost
Py = probability that an excess minority carrier will recombine and that does not vary with x
q = total electric charge, expressed in coulombs

Q = charge

Qns = stored charge due to excess electrons

Qps = stored charge due to excess holes

Qs = stored charge

r = proportionality constant in the recombination rate

Tf = small signal forward resistance

R = recombination rate

s = surface recombination velocity

t =time

T = Temperature

Us = net recombination rate per unit area of the surface

. . . 3kT
vy, U = thermal velocity of electrons and holes respectively and is equal to
ns Up m*

Vin = thermal velocity

v, = applied voltage

Vi = built-in voltage, potential difference between the neutral n-side and the neutral p-side
Vor = breakdown voltage

Ve = externally applied forward bias voltage

Vg = externally applied reverse bias voltage

W, = width of the neutral n region
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= width of the neutral p region

X = distance measured with the origin at the metallurgical junction
x' = distance measured with the origin at x = x,,
X4 = total depletion region width = x,, + x,,
X4 eff = part of the depletion region where the electron and hole are both minimum and equal
Xp = boundary of the depletion region on the n-side, or the width of the depletion region on the
n-side
Xp = width of the depletion region on the p-side
—Xp = boundary of the depletion region on the p-side
An = excess electron density
An(x = —xp) = excess minority carrier densities at x = —x,, under forward bias
Ap = excess hole density
Ap(0)  =excess carrier (hole) density at x’ = 0, i.e., atx = x,
Ap(W,,) =Ap evaluated atx’ =W,
Ap(x = x,,) = excess minority carrier density at x = x,, under forward bias, same as Ap(0)
€ = permittivity of a semiconductor
n = ideality factor
Un = electron mobility
7 = hole mobility
o = charge density
0n,0p = Capture cross-sections for electrons and holes respectively
Ty = generation lifetime
Tn = minority carrier (or excess carrier) lifetime in the p-region

_ 1
Tno - Nionvn
Ty = minority carrier (or excess carrier) lifetime in the n-region

_ 1

Tpo - Niopvp
) = electrostatic potential
@us_p = potential difference between two points A and B
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Dn
Qp

L4
L4€9)
Vag

10.

= electrostatic potential in an n-type material

= electrostatic potential in a p-type material

= electrostatic potential difference

= electrostatic potential difference at some point x

= electrostatic potential difference between x, and xg

Problems

Calculate the electrostatic potential @, or @,, as the case may be, at room temperature for each
of the following impurity concentrations: a) 10°>cm ™3 boron atoms; b) 10%¢cm ™2 gallium
atoms and 1017 cm™3 phosphorous atoms.

Redo problem above at T=100 °K. (Assume that all the impurity atoms are ionized at this
temperature.)

Consider a n-type silicon sample with N, = 10'®cm 3. Calculate @,, at a) 300 °K and b) 200 °K
An abrupt p-n junction has an impurity concentration of1015cm =3 boron atoms on the p-side
and 107cm™3 antimony atoms on the n-side. Calculate the built-in potential of the junction at
room temperature.

Calculate the depletion region width on the n-side and that on the p side as well as the total
depletion region width for the case described in the previous problem. Do you expect your
answer to depend on the temperature? (The impurity atoms are completely ionized in the
depletion region even though in the neutral region the impurity atoms will only be partially
ionized at low temperatures.) If so, why?

3 on the

Consider an abrupt p-n junction with the net impurity concentration of 4 X 10%®cm™
n-side and 6 X 101°cm™3 on the p-side. Determine the built-in potential.
For the sample in the previous problem, calculate the depletion region width under thermal
equilibrium at T=300 °K
For the sample in the previous problem,

(@) What is the maximum electric field &€,,,4,, in the depletion region?

(b) At what values of x in the depletion region will the electric field be % of Epax ?

Consider a one sided abrupt p™- n junction in which the acceptor density on the p-side is
10'8cm~3 and the donor density on the n-side is 1015cm™3. Calculate the depletion region
width in thermal equilibrium.

3

An abrupt p-n junction has 101°cm ™3 donor atoms on the n-side and 10*°cm ™2 acceptor

atoms on the p-side. Determine Vy; x,, x,, and x4

- 145 -



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

3 3

Consider an abrupt junction with Ny = 102°cm ™2 on the n-side and Ny = 10*°cm™3 on the
p-side. Assume that the edge of the depletion region occurs at —x,;, and x;,. Assume n; to be
10%m=3 at room temperature.

X
(a) What is the electron density at x = — 71” in thermal equilibrium?

(b) What is the hole density at the same point under the same condition?
The equations in the text give the potential variation in the p-side and in the n-side respectively
for an abrupt junction, taking the zero reference for the potential as that at the neutral p region.
Write down similar equations for the potential taking the zero reference for the potential as
that at the neutral n region.
Consider a linear junction where the impurity concentration variesas N = —ax and a is a
constant. Derive an expression for the electric field and the potential variation in the depletion

w w
region assuming the boundary of the depletion regionto beat x = — - and x = Py

A diffused p-n junction has a uniform doping of 2 X 10*cm ™3 on the n-side. The impurity
concentration varies linearly from the n-side to the p-side with a = 10°cm™*. At zero bias the
depletion region on the p-side is 0.8 um. Find the depletion region width, built-in potential and
maximum electric field in the depletion region.

Show that, for a narrow base diode, the excess carrier density variation in the neutral n region is
given by

ap(x') = ap(0) (1 - )

Write down the expression for the ideal diode current when the n region is approximated as a
narrow base and the p region is approximated as a wide base.

3 and

Consider an abrupt p-n junction in which the acceptor density on the p-side is 10*6cm™
the donor density on the n-side is 6x10*>cm ™2 . Calculate the depletion region widths on the p
and on the n side for a forward bias voltage of 0.6 V.

Assume that the area of the junction for the device in the last problem is 10~%cm?. Calculate
the current through the device under a forward bias voltage of 0.5 V assuming that the diode is
a wide base diode. Take the minority carrier lifetime in the p and in the n regions to be 10~°
and 10~° seconds respectively. Use the mobility curve in chapter 2 in your text.

Consider as abrupt junction with N, = 10%6cm™3 on the n side and Ny = 2x10'°cm™3 on the p
side. Let the area of the junction be 10~3cm?. Given the diffusion constant to be 20 and 10
cm?s™! and the lifetime to be 80 and 10 us in the n and p regions respectively, determine the
ideal reverse current for a reverse voltage of a) 0.06 and b) 6V.

Given that N, = 10°cm™3, 0, = 0, = 107*%cm? and vy, = 107 cm s™! for both the
electrons and the holes in the diode in the previous problem, calculate the forward current due
to recombination in the depletion region for a forward bias of 0.4 V. Assume that the effective

depletion region width in which the recombination is effective is Xgeff = x?d where x4 is the

depletion region width.
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21.

22.

23.

24,

25.

26.

27.

Given that non-ideal reverse current is only due to generation in the depletion region occurring
in the bulk of the device (i.e., neglecting surface generation) calculate the reverse current at a
reverse bias of 6V.
Consider an abrupt p-n junction with the metallurgical junction located at x = 0 and the
boundaries of the depletion region located at x = —x,, on the n-side and at x = x,, on the p-
side.

(a) What is the ratio of the electric field at x = —ryx;, and that at x = r,x,, where

and r, are constants of value less than 1.

(b) What is the built-in voltage at room temperature if Ny = 1016cm™3

and N, = 10*°cm™3 on the n-side? Assume n; = 1x10%cm™=3,

in the p-side

An abrupt p-n junction is fabricated with N, = 2x10cm™3 on the n-side and N, =
5x 10'°cm™3 on the p-side. Let A the area of the junction be 10™*cm?.

(a) What fraction of the forward current is due to the minority carrier injection in the

Land

1

neutral p-side? Assume that D,, and L,, on the p-side to be 40 cm?s~
0.02 cm respectively and that D, and L,, on the n-side to be 10 cm?s~1 and
0.005 cm respectively.

An abrupt p-n junction has 10*>cm™2 donor atoms on the n-side and 10*6cm™3

acceptor
atoms on the p-side. If the area of the junction is 10™*cm? and the minority carrier lifetime is
0.4 and 1 us on the n and p side respectively, find the diode current at a) 0.6 and b) -1 volt bias
applied across the device,

An abrupt p-n junction has 10'>cm ™2 donor atoms on the n-side and 10'9¢cm ™3

acceptor atoms
on the p-side. Find the current through the diode for a forward bias of 0.5 volt given that the
diffusion lengths in the n and p regions are 1072 and 3 X 10™* c¢m respectively. Assume the
area of the junction to be 2 X 10~*cm?. Take the diffusion constants from the curve in chapter
2 of the text.

An abrupt p-n junction has 101°cm ™3 donor atoms on the n-side and 10*°cm ™3 acceptor
atoms on the p-side. Calculate the junction capacitance a) at a forward bias of 0.4 volt and b) at
a reverse bias of 10 volt.

3

In an abrupt p-n junction N, = 5x10%cm™3, N, = 107cm™3, and the area of the junction is

10~3cm?. Given that the minority carrier diffusion constant and lifetime are 20 cm?s~! and
2x107° s onthe p side and 8 cm?s~! and 2x107° s on the n-side, calculate the current
through the diode at room temperature under

(a) Aforward bias voltage of 0.5 V.
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Chapter 4

Bipolar Transistor

In this chapter, we will be discussing a device called bipolar junction transistor or a bipolar
transistor. The principle of the bipolar transistor action is based on the minority carrier injection into a
neutral region using a forward-biased p-n junction, and the collection of the injected minority carriers
by placing a second p-n junction (which is reverse-biased) very close to the forward-biased p-n junction.
In order to illustrate this principle, let us first consider an ideal p-n junction. Under forward bias, the
current through the junction comprises two components: one due to electron injection into the p side,
the other due to hole injection into the n side. The forward biased p-n junction represents a low-
impedance junction: for a small voltage applied across the junction, a large amount of current flows
through that junction. On the other hand, if a p-n junction is under reverse bias, the current through the
junction is due to minority carriers that enter the depletion region, and does not depend on the reverse
voltage (barrier height). The same current will essentially flow independent of the reverse voltage. In
this sense, it is a constant current source or a high impedance current source: even for a large change in
the reverse bias, the increase in the current is negligibly small.

Two types of transistor structure are possible in the bipolar transistors, and are shown in Figure
(4.1). They are called n- p-n and p-n -p transistors. Let us consider the n-p-n transistor. Assume that
the first n-p junction is forward-biased, and the second junction is reverse-biased as shown in Figure
(4.1A). The first n region is called the emitter, the p region the base, and the second n region the
collector. The emitter-base junction is forward biased, and therefore minority carriers (electrons) are
injected into the base region. These injected minority carriers diffuse in the base region towards the
collector-base junction. If the collector-base junction is close to the emitter-base, then a substantial
fraction of the injected minority carriers will reach the collector-base depletion region without being lost
in recombination. The carriers reaching the collector-base depletion region are driven by the electric
field in the collector-base depletion region into the neutral collector region. Thus, the injected minority
carriers in the base region give rise to a current through the collector lead, and this current is called the
collector current. The collector current is like a current from a constant current source since it is due to
minority carriers that enter a reverse-biased junction. If a large load resistance is connected between the
collector and the base, then a large amount of output power will be delivered to the load resistance. Let
us look at the band diagram of the device as given in Figure (4.2). The energy barrier for minority carrier
flow in the emitter-base junction is reduced because it is forward-biased, giving rise to electron injection
from the emitter into the base. The energy barrier in the collector-base junction is increased because it
is reverse-biased. Most of the electrons injected into the base will reach the collector-base junction if
the base region is narrow. Let us consider the circuit shown in Figure (4.3). A small signal voltage, 7; is
connected between the emitter and the base in series with the forward-bias voltage source V. A load
resistor (R) is connected between the collector and the base, in series with the collector voltage supply
(Vee). Let an alternating current (i) flow in the emitter lead due to the small signal voltatge. Let i, and
ip be the corresponding collector and base currents. The collector current (i) flows through the load
resistance. The power that the small-signal source, has to deliver to the transistor is given by

Power Input = i% g (4.1)
where rg is the input resistance of the forward-biased p-n junction, and is given by
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kT

r = (4.2)
E™ qig
with I as the DC emitter current. The power output is given by
— 72
Power Input = i; R, (4.3)
We can now calculate the power gain, which is the ratio of the power output to the power input.
. i2 Ry,
Power Gain = = (4.4)
le TE

If we design the transistor so that the collector current (i..) is very nearly equal to i,, then the power
gain is equal to

Power Gain =~ —

However, we already noticed that 7y is the resistance of a forward-biased p-n junction and hence is a

very small quantity. By choosing the load resistance R, to be large, we can obtain a large power gain.
This is the principle of a bipolar transistor.

-

Figure (4.1): Two alternate structures for a bipolar transistor: A) n-p-n transistor B) p-n-p transistor.
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Figure (4.2): The energy band diagram for the two n-p junctions connected back-to-back.

Figure (4.3): Application of a small signal voltage source between the emitter and the base of a n-p-n
transistor.

Figure (4.4): The various components of current, flowing in an n-p-n transistor

Let us now consider the various components of current flowing through the device. The DC
current flowing through the emitter (which is denoted Ig) comprises two components: one due to

electron injection from the emitter into the base (Ig,), and the other due to hole injection from the
base into the emitter (Ig,). The electrons injected into the base diffuse toward the collector region and

result in a collector current. However, not all the electrons injected into the base are able to reach the
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collector-base depletion region, since some of the injected electrons recombine in the neutral-base
region. Hence the electron current (I,,) that reaches the collector-depletion region and flows through
the collector lead is smaller than Ig,, the electron current injected from the emitter into the base.

In the collector, in addition to I, we also have a leakage current that normally arises in a
reverse-biased p-n junction. Let us denote the leakage current I-p,. The collector current (denoted I)
is therefore equal to the sum of g, (the leakage current), and I, (the current due to the injection of
electrons from the emitter into the base).

Holes have to flow into the base region to participate in the recombination process. This hole
current flows through the base lead. Similarly, the holes injected into the emitter form the base also
flow through the base lead. Additionally, the collector leakage current, I-go, also has to flow through
the base lead, The flow of the various components of current in an n-p-n transistor is shown in Figure
(4.4). In this figure, the arrows indicate the direction of the conventional electric current, and not the
direction of the particle flow. The electron (particle) flow is opposite to the conventional electric current
flow for I, and I-,. We can now write the emitter, base and collector currents as equal to

Ig = Igy + IEp (4.6)
Ic = Icn + Icpo (4.7)
IB =IE_IC= IEn_ICn+IEp_ICB0 (4.8)

We define the current gain of the device as equal to the collector current due to electron injection from
the emitter into the base, divided by total emitter current. The current gain is usually denoted &g, and is
given by

Ig
The subscript 0 in &y implies that the gain is evaluated for very low (zero) frequency input signals. It
must be noted that we are considering an n-p-n transistor, and hence the collector current due to
minority carrier (electron) injection in the base from the emitter is denoted with a subscript n. On the
other hand, if we were to consider a p-n-p transistor, the collector current arising from minority carrier
injection from the emitter into the base will be due to holes and will be denoted with a subscript p in
place of n.

The current gain, a , can be related to two other parameters, which are y (the emitter
injection efficiency), and ay (the base transport factor). The emitter injection efficiency y is defined as
the ratio of the emitter current due to minority injection from the emitter into the base and the total
emitter current. Hence it is equal to

—IEn _ _Ien

= (4.10)
Ig IEn+tIEp

The base transport factor, ar , is defined as the ratio of the collector current and the minority carrier
current injected from the emitter into the base, i.e., the fraction of the injected minority carrier current
that reaches the collector. This relationship is expressed by
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1
ap === (4.12)
Ign

It is readily seen that « is given by the product of y and ar, thatis

1 Ign I
ayp=L=LL2 =y, (4.12)
Ig Ig Ign

We can now write the collector current as equal to
Ice = Icn +Icpo = arlpn + Icpo
= arylg+ 1o = apglg + Icpo (4.13)
and similarly, the base current can be expressed in terms of the emitter current as
Ig=Ig—1 =1 - ag)lz — Icpo (4.14)

In principle, the emitter injection efficiency is made very close to unity by making the emitter
impurity concentration very large in comparison to the base impurity concentration. Similarly, the base
transport factor can be made very close to unity by making the width of the neutral base region (i.e., the
distance which the minority carriers that are injected from the emitter into the base have to travel to
reach the collector-base depletion region) very small compared with the diffusion length of the minority
carriers in the base. Under these conditions, the current gain will be very close to unity.

Example

Let us now calculate the power gain of an n-p-n transistor, based on our discussions so far. Let us
assume that the transistor is carrying a DC emitter current I, equal to 1 mA. Let the load resistance R;,
be equal to 259 K (2. Let the current gain @ be taken as 0.99. Assume a small signal voltage 7 is applied
between the emitter and the base giving rise to an emitter current and i, and a collector current i..

Power Output = i2 Ry,
= (0.99i,)? R,
= (0.99i,)? x 259 x103 W
Power Input = i2r,

But

0.0259
1073

= 25910
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Power Input = i2 x 25.9

(0.99i,)%x 259 x103
i2x259

= 0.99% x 10*
= 0.98 x 10* = 9800

Power Gain =

From the above example, we see that a large power gain is obtained by choosing a large value of
R; . From this rudimentary discussion it appears that infinite power gain can be obtained by choosing R;,
to be infinitely large. This is not so. Later on, we will see that our initial assumption that the collector-
base junction acts as a current source with infinite impedance is in error, and that the output impedance
of the collector-base junction (the ratio of the incremental change in the collector voltage to the
incremental change in the collector current) is large but not infinite. Hence the maximum power that
can be drawn from the device is what is obtained with R; equal to the output impedance of the
collector-base junction.

The bipolar device is denoted by the symbol shown in Figure (4.5A) for n-p-n transistors, and
that in Figure (4.5B) for p-n-p transistors. The lead with an arrow is the emitter and the direction of the
arrow indicates (as in a p-n junction) the direction of the forward-bias current.

D.C. Characteristics

Let us now investigate the characteristics of the bipolar transistor in a quantitative manner. We
make the following assumptions: 1) The impurity concentration in the emitter, base and collector,
regions are uniform. This means that there is no spatial variation of the impurity concentration within
any one of the three regions. 2) The injection of minority carriers in the base corresponds to a low-level
injection. 3) There is no recombination or generation in the depletion region of the emitter-base
junction, or in the collector-base junction. In other words, we treat the two junctions as ideal junctions.
4) There is no series resistance in the bulk regions of the device.

Ideal Transistor Characteristics

The characteristics of a device under the assumption of ideal junctions are called ideal transistor
characteristics. Let us examine the base region. Referring to Figure (4.6), the metallurgical junctions on
the emitter-base side and on the collector-base side are located at x = 0 and x = Wjy,, respectively.
However, the active neutral region of the base is obtained by subtracting xpg (the width of the
depletion-region occurring in the base region due to the emitter-base junction), and xp. (the width of
the depletion-region occurring in the base region due to collector-base junction) from the width Wg;.
We choose a new coordinate system, x’, where the origin is chosen at the edge of the neutral base
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region on the emitter side. The edge of the depletion region on the collector side occursat x’ = W'. W'
is then equal to

W, == WB] — Xpg — Xpc (4.15)

From now on, we will use W' to denote the width of the neutral base region. The minority
carriers injected from the emitter at x’ = 0 diffuse in the neutral base region and travel toward the
collector-based junction. This gives rise to a diffusion current. In order to derive an expression for the
diffusion current due to injection of minority carriers in the base, we first set up the continuity equation
in the base region. Since we are considering an n-p-n transistor, electrons are the minority carriers in
the base. The continuity equation for electrons in the base region is given by

dan _ly T — an (4.16)

at q Ty
Here, 4An stands for the excess minority carrier in the base region due to minority carrier
injection from the emitter, J,, is the minority carrier current density, and t,, is the minority carrier
lifetime. If we assume a one-dimensional case, this continuity equation reduces to

doAn 1 0 An
ot g U T a7
where
a4
Jn = nqun€ + qDn > (4.18)

Let us assume that there is no electric field in the neutral base region. Then the expression for
the current density has only the diffusion term, and the gradient of J,, becomes equal to

OJn _ 0%4An
o~ 1on g (4.19)
Substituting this expression for the gradient of J, in the continuity equation, we get
94an 0%An  An (4.20)
ot Moax'z g, '

We can solve the continuity equation first under DC conditions. We assume that sufficient time
has been allowed to elapse after the application of the DC bias so that steady-state conditions can be
assumed.
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Figure (4.5): The circuit symbol for the bipolar transistor. A) n-p-n transistor and B) p-n-p
transistor.

Figure (4.6): The definition of the neutral base region. The region between the metallurgical
junction on the emitter side and that on the collector side represents the total base region. However,

the neutral base region width is obtained by subtracting appropriate segments of the depletion region
widths on the two sides.

Steady State (DC Conditions)

Under steady-state conditions, partial of An with respect to time is equal to zero. Hence, the
continuity equation can be rearranged to obtain

- 155 -



9%An _ An _ An

0x'2  Dpt, I3

(4.21)

where L,, = /D, 7, is the diffusion length, which we came across in our study of the p-n junction. The
solution to the continuity equation is seen to be

—X, X,

An =Aeln + Beln (4.22)
The boundary conditions for the excess carrier density in the base region are:

Atx' =0

4VBE
An(x" = 0) = Any = nyy [e KT — 1] (4.23)

And at x' = W', the boundary condition® can be approximated as

An=20 (4.24)
By applying the boundary condition at x’ = 0 in Equation (4.22), we get
4VBE
Ano = A + B = anO [e kT — 1] (4.25)
Similarly, by applying the boundary condition at x’ = W', we get
-w'! w'
O0=Aeln + Beln (4.26)
Solving for the constants A and B, (left as a homework problem) we obtain
—w'
e ln
B = Angy——7 (4.27)
eln — eln
WI
eln
eln — ¢ Ln
Substituting these expressions for A and B, we obtain
w'-x" w'-x" _ 1
, e In e In smh((WL—nx)
An(x ) = An, T + 4An, — W - An, 7 (4.29)
eln — ¢ In e In— e+ﬁ Slnh(m)

* A more exact boundary condition than the one we have used is
, , —qVc¢B
MIn(x'=W'")=nyple kT —1

However, the resulting expression for An(x") will look more cumbersome. Very little error results due to our
simpler assumption that An(x' = W') =0
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This expression for An is the most general expression for excess carrier density in the base region. It may
be recalled from our discussion of the p-n junction that the excess carrier density in the neutral region
decreased linearly with distance when the width of the neutral region was small compared to the
minority carrier diffusion length (narrow base diode) and decayed exponentially with distance when the
width of the neutral region was large compared to the diffusion length (wide base diode). It is easy to
show that Equation (4.29) reduces to an exponential or linear relation under appropriate assumptions.

As we will see later on, in order to make ar (the base transport factor) as close to unity as
possible, W' (the neutral base width) has to be kept very small in comparison with L,, (the minority
carrier diffusion length). When W' « L,, , the expression for An(x) can be simplified as

w'—x")
N AN x!
An(x ) =~ T = Ano(l - W) (4.30)
Ln

n(x") given by Equation (4.29) is plotted in Figure (4.7) as a function of x’ for various values of ]2/— It can

n

be noticed that when W' « L,,, a linear plot is obtained; when W' > L,,, an exponential plot is
obtained. We can now calculate the diffusion current in the base due to the injected minority carriers by
substituting the expression for An(x") given by Equation (4.29) in the expression for electron diffusion
current. The electron diffusion current density is given

w'-x"
dan Dpan, €0ShC—/—)
Jn(x') = qDpo5 = —q = — i (431)
x Ln sinh(7-)
n

Base Transport Factor:

The electron current density at x’ = 0, is obtained by putting x’ = 0 in the above equation.

cosh (M) An coth(ﬁ)
Ju(x' =0) = —q Dy =2 —— = —q D, — (4.32)
Ly sinh(—) Ly

The emitter current due to electrons injected from the emitter into the base (Ig;) is equal to

!/
Angcoth (‘2/—)
Ign =AJ(x"=0)= —qAD, ————* (4.33)
n
The electron current density at x’ = W' is obtained by putting x’ = W' in Equation (4.31)
I __ A
]n(x - W) = —q

Ano 1

- (4.34)
Ln sinh(—°Lb )
n

This is the collector current density arising due to minority carrier injection in the base. The collector
current (I,) is equal to
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Ano 1

!
Ln sinh(H)
n

Ien=A],(x'=W")= —qAD, (4.35)

The difference between Iy, and I, represents the decrease in current due to recombination in the
neutral base region. The base transport factor is the ratio of I, to Ig,, and is given by

Iecn _ Jn(x’=w") _ 1

= 4.36
IEn ]n(x,=0) COSh(‘lA,/_,) ( )
n

aT=

When W' becomes negligibly small in comparison with L,,, cosh(‘zv—) ~ 1 and ar becomes equal to 1.
This can be seen from a comparison of the electron current density at x’ = 0 and thatat x’ = W',
When W' < L,,
q DpAng
Jn(x'=0) = ——"— (4.37)

DpA
Jo(x" = W")is also equal to — w . Therefore, ay = 1. This reflects the fact that there is no

recombination in the base region.

!

Figure (4.7): A plot of the excess minority carrier density in the base region for various values of T

n

Emitter Injection Efficiency:

In order to determine y, the emitter injection efficiency, we must get an expression for I, the
current injected into the base by the emitter as well as I, the current injected into the emitter by the

base, I, is already determined in Equation (4.33) where 4ny is given by
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4VBE n? 4VBE
Any = nypo [e KT — 1] = N—‘ e kT — 1] (4.38)
AB

Therefore

WI
Anycoth (—)
Ly

Dy,

Ign = —qA
En q Ln

2 ! qVv
=—qA S—:ﬁ coth (‘f—n) [e K — 1] (4.39)

The component I, of the emitter current due to hole injection from the base into the emitter
can similarly be obtained by solving the continuity equation for holes in the neutral emitter region. Let
us assume that the width of the neutral emitter region, Wg, is large compared with the minority carrier
(hole) diffusion length (Lpg) in the emitter. Then we can use the wide base approximation in the
emitter region. We will get an expression for the injected hole current density which decays
exponentially (because of our assumption that W, is much large than L,g). We determine the
expression for the hole current in the emitter just at the boundary of the emitter-base depletion region,
and take that as the current injected into the emitter by the base. Hence Ig, is given by

DpE qVBE
Igp =—qA 7 Pnro [e kT — 1]
pE
DPE nz qVBE
= —qA2ETL [e KT — 1] (4.40)
Lye NpE

The emitter injection efficiency, y, can be obtained as

L e o
Ig gy +1g
Dp 1

w'
—=——coth (—
Ln Nap (Ln)

Dpg 1 Dp 1
Lpe NpE = Ln Ngp

/
coth (1)
n

1
= D 7 (4.41)
“PE Ln Nap w-
1+ Dn Lps Npg tanh(Ln)
It is seen that when N is very large in comparison with N4, ¥ approach 1. When W' < L,,,
coth (K) = L—”, Therefore
Ln w
1
(4.42)

R (C TR
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Example

Let us calculate the base transport factor given:
W =1um=10"*cm
L, =10 um =10"3cm
By substituting these values in the expression for a, we obtain

Qp = ——+= —— =0.995

!
cosh(lzl—) 1.005
n

(4.43)

Example
Let us now calculate the emitter injection efficiency, given
Npg ~ 10¥%cm™3
Ny = 10Ycm™3
W'=1.0um
Lpg =10 um
Dy =1 cm?/sec
D,, = 10 cm?/sec
By substituting these values in the expression for y, we obtain

1
y: =

4 (o) (o) (o)l 1+ 10

DC Current-Voltage Characteristics

The DC current-voltage characteristics of the bipolar transistor can be measured in either of two

modes: the common base mode and the common emitter mode.

Common Base Mode

In the common base mode, the collector current is measured as a function of the collector-base
voltage for a specified value of the emitter current using the experimental configuration shown in Figure
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(4.8). The emitter-base voltage (Vgg) is adjusted to a suitable value, such that a specified emitter current
is obtained. The collector current is measured for different values of the collector-base voltage, Vg,
while adjusting Vg to keep I constant at the specified value. Thus a family of curves can be obtained,
each curve corresponding to a specific value of emitter current, as shown in Figure (4.9). The x-axis in
this figure is the collector-base voltage, V-5, and the y —axis is the collector current, I.. When V5 is
positive’, the collector-base junction is reversed-biased. Since aq is very close to unity, the collector
current is very nearly equal to the emitter current. When V5 is negative, the collector-base junction is
forward-biased, and the collector also injects minority carriers into the base just as the emitter does.
Hence as the forward bias on the collector is increased, the collector current decreases and ultimately
becomes zero. When the collector-base junction is forward-biased, the transistor is said to be saturated,
or said to be operating in the region of saturation. When the collector-base junction is reverse-biased,
the excess carrier density at x’ = W' (the edge of the depletion region of the collector-base junction) is
negligibly small. The excess carrier density profile in the neutral base region under this condition is
shown in Figure (4.10A). On the other hand, when the collector-base junction is forward-biased, the
excess carrier density at x’ = W' is increased due to injection of minority carriers from the collector into
the base. The excess carrier density profile in the neutral base region under this condition is shown in
Figure (4.10B). The slope of the excess carrier density profile is less now and hence the collector current
is reduced.

Figure (4.8): Experimental measurement of I — Vg characteristics.

5 . . .
Remember we are dealing with an n-p-n transistor
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Figure (4.9): The collector current-voltage characteristics of an n-p-n transistor in the common
base mode.

Figure (4.10): The excess carrier density in the base region A) when the collector-base junction is
reverse-biased, the device is said to operate in the active mode. B) When the collector-base junction is
forward-biased, the device is said to operate in the saturation mode.
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The vertical dotted line drawn through V5= 0 in Figure (4.9) separates the active region (when
the collector-base is reverse-biased) from the saturation region. It will be noticed that the collector
current (for a given emitter current) increases slightly with the collector voltage in the active region. This

. dl
causes the output impedance (( dvc
CB

)_1) of the device to be finite, and hence our earlier assumption

that the collector-base junction behaves like a constant current source is not strictly valid. This will be
further discussed in the section on output impedance.

IC == aOIE + ICBO (4.44)
If we increment I by Alg, I increases by 4l.. Hence

_Al¢

= 2 (4.45)

ao
Therefore, ay can be obtained from the characteristics illustrated in Figure (4.9).

The characteristic curve corresponding to I = 0, represents the collector-base junction leakage
current, I-go. The letters CB in the subscript refer to the fact that it is the collector-base junction
current, and the letter o refers to the fact that the emitter is open, i.e. there is no emitter current. At
some large value of Vg, the current is seen to increase suddenly with collector voltage in all the curves.
This is due to the breakdown of the collector-base junction. The breakdown phenomenon will be
discussed in the section on voltage limitations. The collector leakage current, I-g0, is given by the
expression for the leakage current for a reverse-biased p-n junction and is equal® to

L]
ICBO = _qA Drznpo + Dpzp;lco] [e kT - 1] (4.46)
n 14

Common Emitter Mode

In the common emitter mode, the collector current-voltage characteristics are measured as a
function of the collector-emitter voltage, keeping the base current constant. The experimental set-up to
obtain these characteristics is illustrated in Figure (4.11). As in the previous method, the collector
current is measured at different values of the collector-emitter voltage while adjusting the base-emitter
voltage to keep the base current constant at a specified value. As before, a family of I — Vg curves is
obtained, each curve corresponding to a particular value of the base current (I5) as shown in Figure
(4.12). The voltage V¢ represents the sum of the voltage drop across the collector-base junction and
that across the base-emitter junction.

Vee = Vep + Vg

Hence, when V. becomes less than Vg, V-5 becomes negative, and the collector-base junction
becomes forward-biased. The device becomes saturated under this condition. In Figure (4.12), the

e Although the base width is small in comparison with the minority carrier diffusion length, we use the wide base
expression for leakage current since minority carriers generated in the base within a diffusion length from the
collector base junction will contribute to the leakage current.
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portion of the curve lying to the left of the dotted line marked V5 = 0 corresponds to the saturation
region of operation, while the portion to the right corresponds to the active region of operation. As
expressed before, the collector current I is equal to

Ic = aplg + Igpo
But

I = (1 —ag) g —Icpo

Referring terms in this equation to obtain I, we get

Ip Icgo
I, = (4.47)
ET (-a) * (1-ap)
Substituting this expression for I in the equation for I , we get
Ip IcBo
Ie = o ( )+
C o\ 1oay + 1—ag) T lcBO
o X9
= I ( )I I 4.48
(1_%) BT T—ay) €BO + Icpo (4.48)

If we give an increment 4l in the base current, the collector current increases by 41.. We now define a
current gain, 5, in the common emitter mode as equal to

Al
Bo= —< (4.49)
Alg
From the last equation for I,
a
Ale = (2) a1 4.50
¢ 1—050 B ( )
since I-go does not change due to a change in Iz. Hence
Qo
= 4.51
Po= 1o (4.51)

Hence, I can be written in terms of I as

Ic = Bolp + Bolcpo +Icgo = Bolp + (Bo+1) Icpo (4.52)

The collector current with the base open, i.e., with Iz = 0, is denoted Ig, and from this equation we
can see that

Icpo = (Bo+1) Icpo (4.53)

Again, the letters CE refer to the fact that the current is flowing between the collector and the emitter,
and the letter o signifies the fact that the base is open, i.e., no base current is flowing. The leakage
current in the common emitter mode, I¢gq is larger than the leakage current in the common base
mode, I-go, by a factor (5, + 1).
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Vee

Figure (4.11): Experimental measurement of I — Vg characteristics.
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Figure (4.12): The collector current-voltage characteristics of a n-p-n transistor in the common emitter
mode.
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Different Modes of Operation

The bipolar transistor can be used in active, cut-off or saturation modes by biasing the emitter-base and
collector-base junctions suitably as shown in Table 1.

Mode E-B Junction Bias C-B Junction Bias
active forward reverse
cut-off reverse reverse
saturation forward forward
inverse reverse forward

Table 1: Modes of Operation

Low Frequency Small Signal Response and the Equivalent Circuit

Till now we discussed the DC characteristics of the transistor. Let us now consider the response
of the device to a small signal voltage input. The response of the bipolar transistor to a small signal input
can be represented in terms of an equivalent circuit. The equivalent circuit will be different for common
base and common emitter modes of operation.

Common Base Mode

Consider the circuit shown in Figure (4.13). V. is the DC collector supply voltage. A small signal
voltage source (¥s) is connected between the emitter and the base in series with the DC bias voltage
(Vgg). We assume that the frequency of the small signal voltage source is very low and that the injected
minority carrier density everywhere in the base is varying in step with voltage variation. Since ¥ is
varying sinusoidally with time, the injected carrier density in the base varies sinusoidally as shown in
Figure (4.14). The top line in this figure shows the minority carrier density in the base when the
sinusoidal function () is at the most positive excursion. Assuming U; = v sin wt, the base emitter
voltage at its most positive excursion is Vg + v . The middle line in this figure represents the carrier
distribution when the same function is zero. The bottom line represents the carrier density when ¥ is at
its most negative excursion, with the instantaneous base-emitter voltage equal to Vg — Vs . The
excess carrier density An at x’ = 0 is given by

, q(VBE +7s)
Ang = An(x' =0) = nygple  —1 (4.54)
Denoting the total emitter current as I, we obtain
aVBE +7s) q(VBE +7s) aVBE 4qVs
IEt == IES e kT —-1| = IESe kT == IESe kT e kT (4.55)
qvs
Expanding e kT as an exponential series and retaining only the leading terms, we obtain
4VBE qvs
IEt =~ IES e kT (1 + ﬁ (456)
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I therefore comprises a DC term and a sinusoidally varying term, and can expressed as
Ige = Ip + 1, (4.57)

where I is the DC current and I, is the sinusoidally varying component of current. By comparing
Equations (4.56) and (4.57), we obtain

4VBE
IE = IESe kT (4.58)

which is the DC emitter current when no sinusoidally varying voltage is applied.

i, = Igekr (4.59)

Figure (4.13): Common base mode amplifier connection. ¥; is the small signal sinusoidal input voltage.
R; is the load resistor in the collector circuit.
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Figure (4.14): Modulation of the injected minority carrier density in the base in step with a small
sinusoidal signal voltage.
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Figure (4.15): Equivalent circuit of the input circuit in the common base mode.
The ratio of the sinusoidal input voltage, ¥, to the sinusoidal emitter current (input current) Te defines
an equivalent resistor which has a conductance equal to (kq—T) I . The input circuit is equivalent to a
resistance (or conductance) and is shown in Figure (4.15). The ratio ﬁ—e is the small signal input

N

1 . . . . . .
conductance, g5, and . = Tj, = Ty is called the input resistance. Due to An(x) varying sinusoidally
in
in step with ¥ , a small signal collector current flows in step with U , the total collector current I; is
given by

ICt = aolEt + ICBO = aolE + aoie + ICBO (460)
The DC current in the collector is
Ie = aplg + Icpo

and the small signal sinusoidal collector current is

. = ayl, (4.61)
The small signal current gain is equal to
. .
U= £ =q, (4.62)
lin le
The output voltage is
~ o . _ q ~ _ ~
Uout = LRy = apl.R; = EIE Us R, = gmVUs R}, (4.63)
where
q J)
= qy—Ip = — 4.64
9m 0%r 'E - (4.64)

is called the transconductance. In our treatment, U5 = Uj, where ¥, is the sinusoidally varying small
signal emitter-base voltage. Transconductance relates the output (collector) current to the input
(emitter-base) voltage. Since T, flows through a reverse-biased p-n junction, I, is (nearly) independent
of the value of R;, the load resistor. This is equivalent to a constant current source, I . The output
circuit behaves as though a current source g,, Us (gmUpe) exists between the collector and the emitter.
The equivalent circuit for the output circuit is shown in Figure (4.16). Combining the equivalent circuits
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for the input and the output sides, the equivalent circuit for the transistor is shown in Figure (4.17). The
rectangular box enclosed by the dotted line outlines the transistor. The voltage gain equals

D t g D RL
out — Ims b= g R, (4.65)
Vin Vs
The power gain equals
LoutVout __ _ 2 _ 2 R
T =ay gm R, = ap” gin R = ap” = (4.66)
linVin TE

Figure (4.16): Equivalent circuit of the output circuit in the common base mode

Figure (4.17): Equivalent circuit for the bipolar transistor in the common base mode.

Figure (4.18): Circuit connection for common emitter mode amplifier. ¥ is the small signal sinusoidal
input voltage, and R; is the load resistor.

Common Emitter Mode

Consider the circuit shown in Figure (4.18). In the common emitter mode, the small signal
sinusoidal input voltage is connected in series with the DC bias base-emitter voltage across the base and
the emitter. V¢ is the collector supply voltage. The load resistor R}, is connected between the collector
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and the emitter in series with the collector supply voltage. Thus the emitter is common to both the input
and the output circuit. The input current is the base current. The total base current (Ig; ) is given by

It = (1 —ag) Ipt —Icpo = L —ag) g+ (L —ap) Te —Icpo =g +1p  (467)
The base current thus contains a DC current (Ig) equal to (1 — @) Iy — Iz, and a small signal current

(1p) equal to (1 — ag) .. The input current is equal to

lin=0,=0—ay)1, (4.68)
But
. s
lp = —
e Ty
Hence
~ qIE ~ ~ 1-(10
I, = (1—ay)—7, = 4.69
b ( 0) kT S S e ( )
The ratio :;—" is called the input conductance, g;,. Therefore
S
lin 1 qlg 1-ag
n=—=0-ay)—= 4.70
Gin g ( 0) kT TE ( )
. . kT . . .
Recalling that we defined 15 as equal to Py we can write the input resistance as
E
1 kT T
= £ (4.71)

r. —  — =
mn Jin qlg (1-aop) (1-aop)

The input circuit therefore behaves as though there were a resistance, 1;,,, between the base and
emitter terminals. The output current is equal to

~ o~ _ ~ _ qIE ~ _s _ ~
lout - lC - aole - aO kT vS - aO TE - gmvs

QN

(4.72)

As before, the output circuit behaves as though a current source, g,,7s , exists between the collector
and the emitter. The equivalent circuit is shown in Figure (4.19). In this instance, the current gain is

equal to
B . N qlg .
lout __ lc _ GmVUs _ Xopr Vs ag
o e o Inh o DD = M= g (473)
lin lp lin (1—()!0)?1}5 o

Thus the current gain in the common emitter mode . The subscript 0 in the &y and f, refers to the

fact we are considering a very low frequency input signal, i.e., at nearly zero frequency. We are
neglecting capacitive effects. The voltage gain equals

Vout _ ImUsRL _ R
175 gm L

(4.74)

Vin
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and the power gain equals

e Pt — By GRy = OR, (4.75)

lin Vin T

|

Figure (4.19): Equivalent circuit of the transistor in the common emitter mode.

Voltage Limitation

The maximum collector voltage that can be applied is limited by one of the following physical
mechanisms: thermal, punch-through, the breakdown of the collector-base junction in the common
base mode, or the collector breakdown in the common emitter mode. In a practical device, the limit on
the magnitude of the collector voltage that can be applied is due to that mechanism which yields the
lowest breakdown voltage. In some devices the punch-through voltage may be the limiting mechanism
while in some other devices the collector breakdown maybe the limiting mechanism. We will now
examine the three voltage limiting mechanisms.

Punch-Through Voltage, V),

When the reverse collector-base junction voltage (V) is increased, the depletion region
widens, and hence the width of the neutral base region decreases. This is illustrated in Figure (4.20).
Wg, is the width of the base region between the metallurgical junctions on the emitter side, and that on
the collector side. The width of the segment of the emitter-base depletion region occurring on the base
side is denoted x,,. Similarly, the width of the segment of the collector-base depletion region occurring
on the base side is denoted x,,¢. The width of the neutral base region is denoted W', and is equal to

W, = WB] - xpE - xpc (4.76)

However, we know from our study of the p-n junctions that
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2€.(Vpig—V, N 2€.(Vpig—V,
X = s(Vbi—VBe)NpE [2€s(Vbie—VBE) (4.77)
q Nap(Npe+Nap) 4 Nap
Since Npg > N, and
2€(VpictV N
Xpo = s(VbictVBc)NDC (4.78)
q Nap(Npc+NypB)
Hence
2 e.(Vpip—V, 2 es(Vpic+Vpc)N
W' = WB] _ s(Vbie—VBE) s(VpictVBc)NDC (4.79)
q Ngp qNAB(NDC+NAB)

where Vy,;z and Vj; are the built-in voltages of the emitter-base and collector-base junctions. Npg, Nyp
and Npc are the impurity concentrations in the emitter, base and collector regions, respectively.

As the collector-base applied voltage V¢p is increased, X, which is the third term on the right-
hand side of Equation (4.79), representing the portion of the collector-base depletion region lying on the
base side increases. Thus, W' decreases as Vg is increased. At some value of voltage V¢ = V,,; (called
the punch-through voltage) W' becomes zero. V,,; can be determined by putting W’ = 0 in the above
equation and solving for V,,;. Hence,

2 €sNpc q Nap

2
Naog(Nag+N 2 es(Vpie—V
th _4a AB(Nap+Npc) (WB] _ \/M) — Vyic (4.80)

Under the punch through conditions, the depletion region extends all the way from the collector to the
emitter, and the base current (or voltage) has no control on the collector current. The collector current
that flows under this condition is a space-charge limited current, and is called the punch-through
current. The punch-through phenomenon is important only in transistors in which the metallurgical base
region which is small.

Figure (4.20): The neutral base region.
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Example

Given that the impurity concentration in the emitter, base and collector regions are Np; = 10cm™3
Nag = 10'¢cm™3 and Npe = 10'5cm™3, and the width of the base region is Wp; = 2 um, determine
the punch-through voltage, given the emitter-base junction forward voltage ot be 0.5 V. The built-in
voltage, V,;g, of the emitter base junction is

kT (NpgNyg 103°
Vyie = —In[—==—| = 0.0258 =0.893V

)

2¢(Vois —0.5) _ |2 x11.9 x 884 x 101 x0393 _
XpE ¥ aNg 1.6x10-1° x 1016 - Tesspm

The built-in voltage of the collector-base junction is

KT . (NysNpc 1031
Vpic = =)= 0.0258 | 755 | = 0.655V ~ 0.66 V

1

Substituting these values into Equation 80, we obtain

_ 1.6x10719 x 10 x (1.1x 10'°)
PL™ 2 x11.9 x 8.84 x 10~14 x 1015

= 2.63.33 - 0.66 =~ 262.7V

(2 x 107% — 0.227 x 10742 — 0.66

Collector- Base Breakdown Voltage, BV g0

In the common-base mode, the maximum voltage that can be applied on the collector is limited
by the breakdown characteristics of the collector-base junction. Recall our discussion on avalanche
breakdown. The breakdown voltage of the collector-base junction is calculated the same way as the p-n
junction breakdown voltage. That is, the collector-base junction voltage is determined by the applied
voltage needed to attain critical electrical field in the depletion region, and is therefore a function of the
dopant impurity concentrations in the base and collector regions.

BV g0 represents the maximum collector voltage that can be applied in the common-base
configuration unless punch-through occurs earlier, i.e., at a lower collector voltage. BV, can be
calculated by using the expression for the breakdown voltage for the p-n junction in terms of the critical
electric field, £, discusse in Chapter 3.

Eerit 2 € 1 1
BV .p, = =< S ( ) -V, 4.81
CBO 2 Noo + Non bic (4.81)

In the avalanche process, the carriers entering the depletion region get multiplied due to impact
ionization in the depletion region. The multiplication factor M is given by
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M= —1 _ (4.82)

n
1- (L)
Vbr
where V is the voltage applied across the junction, Vy, is the breakdown voltage of the junction, and n
is an empirical parameter. By putting V = V., we can see that the multiplication factor M increases to
infinity at breakdown. The symbol that is used to denote the common-base collector breakdown voltage

is BV;po- The 0 is in the subscript implies that the emitter is open. Equation (4.82) can be rewritten in
terms of BVgo as

1
1_( Ve )n
BVcpo

where Vg is the voltage across the collector-base junction.

M = (4.83)

Example

For the transistor discussed in the previous example, let us calculate BV g, given that E.,.; =
200,000 V/cm. Substituting the values for the various quantities, we have

5)2 -14
BVpo = (2x 10%)"x 11.9 X 8.84 X 10 ( 1 n 1 )_ 0.66

2% 1.6x1019 1015 ~ 1016

= 144.6 — 0.66 ~ 1439V

Collector-Emitter Breakdown Voltage, BV ko
In the common-emitter mode of operation, recall that the base current is given by
IB == (1 - ao) IE - ICBO (4.84)
When the base is open, I is 0, and hence

_ Icpo
Ip = ——

= 4.85
(1-ap) ( )

This is the leakage current that flows between the collector and the emitter when the base lead is open.
However, at larger collector voltages, the collector multiplication factor arises, and hence the current
through the collector-base junction increases by a factor M, i.e., it gets multiplied by M.

IC = M(afolE + ICBO) (486)
When the base is open, I = I. Hence
M IcBo
Ip = ——— 4.87
E™ 1-ayMm (4.87)

As the collector-emitter voltage is increased, M becomes larger than 1 (as seen from Equation (4.82)),
and hence I increases. Ultimately when agM = 1, I becomes infinite, and breakdown occurs. The
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collector voltage at which I becomes infinite is denoted BV . The notation in the subscript is similar
to what we had for BVp; 0 indicates that the base is open. The condition for this breakdown to occur
is given by

agM =1 = - = o (4.88)

1— ( Vebr )77 1- (BVCEO>U
BVcBo BVcpo

In writing the above equation we have assumed that at breakdown, the collector to emitter voltage

BV, is the same as the collector to base voltage V. Rearranging terms, we obtain

1
BVego = BVepo(1 — agp)” (4.89)

. 1 .
Since f; ® ——, we obtain
0 1-ag

. BVcpo _ BVcpo
BoT Fo

For silicon, it is reported that  has a value between 2 and 6.

(4.90)

Example

Let us calculate BV g by assuming thatn = 3 and S, = 125 for the transistor used in the previous
example.

_ BVeno

VBo

From our last example, BV g is calculated to be 143.8 V

VBo= V125 =5

BVCEO

Hence

_ BVego _ 1439

=288V
5 5

BVCEO

Thus we see that BV 5o is much smaller than BV g,. In the common-emitter mode BV, imposes the
limit on the collector voltage unless punch-through occurs earlier.

Base Stored Charge
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The minority carriers injected in the base are diffusing towards the collector base junction. At
any instant of time, the minority carrier density distribution in the base region looks like what is shown
in Figure (4.21A). This distribution is stationary and does not change with time, although individual
electrons (minority carriers) are constantly moving. It is as though so many minority carriers are stored
in the base region. The area under the plot in Figure (4.21A) multiplied by gA, where A is the area of
cross-section of the base region is called the stored minority carrier charge. The minority carrier charge
stores in the base is given by

Q= —qA fOW An(x")dx' (4.91)

To maintain charge neutrality, an excess majority carrier density (Ap(x")) equal to An(x") also arises.
The distribution of excess majority carriers is identical to that of excess minority carrier distribution, and
is shown in Figure (4.21B). The stored majority carrier charge is equal in magnitude but opposite in sign
to Q. (Recall our discussion in chapter 3.)

In a well-designed transistor, most of the minority carriers emitted from the emitter reach the
collector. Very few minority carriers are lost due to recombination in the base. Hence the distribution is
almost linear. We can therefore define a term 7p, called the Base-Transit time. The base-transit time
denotes the average time taken by the injected minority carrier to traverse the neutral base region, and
reach the collector. The current in the base region due to the injected electrons is given by

Ien(x") = —qAv(x")An(x") (4.92)

Where v(x") is the velocity of electrons as a function of x’. The velocity of the minority carrier at some
point x' in the neutral base region is

" _ _ICn(x’)
v(x") = TA anGh) (4.93)

The time taken to traverse a distance dx’' between x' and x’' + dx'is

_odx! q AAn(x") ,
dt = o e dx (4.94)
The transit time is obtained by integrating dt, and is equal to
_ (W -qAME) ,_,
= [dt= [ P dx (4.95)

Since we assume that there is negligible recombination in the base region, the current is constant in the
base, and equal to I-,,. Hence, we can take I, (x") outside the integral, and obtain

Tg = N qAAn(x")dx' = R (4.96)
Icn V0 Icn
Qp = Tglen = T o Ig (4.97)

Since we assumed that there was negligible recombination in the base, the excess carrier density can be
approximated to vary linearly with x', and is given by
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An(x") = An, (1 — va—’,) (4.98)
Qp = — fOW, qgAM(x)dx' = —q A Angwl (4.99)
But
Ien=qAD, 5= —qAD, " (4.100)
Tg = IQci = Z';: (4.101)
Example

Consider the base region in which the minority carrier diffusion constant is equal to 20 cm? /sec.

Assume W' = 2. Then the base transit time, 75 is equal to

(210742

5= 50 = 1077 sec

Figure (4.21): Excess carrier distribution in the base region: A) minority carriers B) majority carriers.

Although we assumed no recombination in the base region for the purpose of determining the
base transit time, in reality there is some recombination and the base transport factor ar, is less than

unity. Recall that
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If we now expand the denominator under the assumption W' « L,, , we obtain

1 1 WIZ 1 WIZ
T w'2 20,2 2Dy Ty ( )
2Lp 2

where t,, is the minority carrier lifetime in the base.

w'z T
~1— -2 (4.104)

~~
2Dptn Tn

ar =~ 1—

The above equation can be used to give a physical interpretation to the base transport factor. We know
dt

that — is the probability that the minority carrier in the base will recombine in the base in a time
Tn

interval dt. Hence if the base transit time T is small compared with 7,,, then z—B is the probability that
n

a minority carrier will recombine in the base region in its transit to the collector. Hence 1 — T—B is the
n

probability that an injected minority carrier will reach the collector without being lost by recombining.
By decreasing the base-transit time T, in comparison with the lifetime 7,,, ot can be made closer to

unity. When T is very much smaller than t,,, ar =~ 1.

Stored Charge Capacitance

The minority carriers stored in the base region give rise to capacitive effects. The Capacitor
associated with minority carrier storage is called the diffusion capacitance, or storage capacitance.
Consider the carrier density distributions in the base region shown in Figure (4.23A) for excess minority
carriers and Figure (4.23B) for excess majority carriers when the emitter base junction is forward biased
at some DC bias voltage, V5. Let us now apply a small incremental step voltage, dV in series with Vg so
that the net forward bias voltage is Vg + dV as shown in Figure (4.22). Due to dV, the excess minority
carrier density is increased in the base to correspond to the new emitter-base voltage. The stored
negative charge’ in the base is increased by an amount, dQz = —dQ, where

dQgz = —dQ = —qA fOW, d(An) dx' (4.105)

where d(An) is the incremental change in the excess minority carrier density. The shaded region in
Figure (4.23A) represents the increment in the negative charge, —d@Q. This incremental negative charge
entered the base region through the emitter from the step voltage source as shown in Figure (4.22). In
order to preserve charge neutrality, the excess majority carrier in the base also increases by the same
amount as the excess minority carriers. The incremental change in the positive charge due to majority
carriers is equal to d@, and is shown in Figure (4.22B) by shaded lines. The incremental positive
(majority carrier) charge (dQ) flows into the base region through the base ohmic contact from the step
voltage source as shown in Figure (4.22). Thus we see that due to the application of the step voltage

(dV), a charge + dQ flows into the base through the base contact, and a charge - dQ flows into the

Since electrons are minority carriers, the increase in minority carriers corresponds to an increase in the negative
charge.
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base through the emitter, both from the step voltage source. When the step voltage is reduced to zero,
the incremental charges flow back to the step voltage source from the base, the same way they entered
the base region. Thus the transistor behaves as though there were a capacitor between the emitter and
the base lead. This capacitor which is called the diffusion capacitor (or storage capacitor) has a
capacitance, Cd,-ff, equal to

dQ _ d|Qgl

Cairr = 3, = Wog (4.106)

We can evaluate this capacitance by writing Qy explicitly. Recall that in a previous section, we expressed

Qp as

Qp = Igntg = g Ip 1p

d|Qg| d|Ig| qllgl Qo 7B
C,i =  —=0ygTg —— = 0pyTp —]/—= — 4.107
aif f dVgg 0 "B dVgg 0 "B kT TE ( )
Example

Let us calculate the diffusion capacitance of a bipolar transistor carrying an emitter current of 1 mA with
a transit time equal to 1078 sec, and a, equal to 0.99. Let T = 300 K.

_ kT _ 00259V
ET YL T Tima Y
a0ty 099 x 1078 )
Cdiff = T'E = 259 = 382 X 10 10F
N
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Figure (4.22): Application of a step voltage dV, in series with Vg so as to increase the injected minority
carriers in the base.

Figure (4.23): Incremental change in excess carrier densities A) minority carriers. The increase in stored

minority carrier charge comes about due to + dQg flowing from the emitter into the base. B) majority

carries. The increase in stored majority carrier charge comes about due to — dQp flowing into the base
region from the base ohmic contact.

Frequency Response

We consider earlier the response of a bipolar transistor to a sinusoidally varying small signal
input voltage. We had assumed that the small signal voltage varied sinusoidally at a very low frequency,
so that the injected carrier density varied in step with the small signal input emitter base voltage. This is
illustrated in Figure (4.14). When the sinusoidal input voltage is at its maximum value, the excess carrier
density is increased everywhere in the base, as indicated by the top line in Figure (4.14). When ¥ is at
its most negative value, the excess carrier density is decreased everywhere, as indicated by the bottom
line in Figure (4.14). The middle line represents the excess carrier density due to the DC emitter-base
voltage. On the other hand, when the input signal varies at a very high frequency such that the period of

the sinusoidal signal is small compared to the base-transit time, 7 (i.e. = < Tp ) the excess carrier

density in the base has a spatial variation. The excess carrier density varies in phase in different regions,
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as illustrated in Figure (4.24). This variation arises because the excess carrier density injected at x’ = 0
at some instant of time has not had enough time to travel to the collector before the excess carrier
density at x’ = 0 changes to a new value. Thus there is a phase difference and attenuation between the
(sinusoidal) current injected by the emitter and the (sinusoidal) current reaching the collector. Hence
the current gain decreases with frequency and also has a phase dependence.

We can now represent the high frequency response of the transistor in terms of an equivalent
circuit. Let us initially consider the frequency response of the device, neglecting all parasitic capacitances
and resistances. We consider the junction (depletion) capacitance as a parasitic element, and similarly
the bulk resistances of the collector, base, and contact resistances® are considered parasitic elements.
On the other hand, the diffusion capacitance, Cdl-ff, is not neglected and is included as part of the
transistor. The diffusion capacitance arises due to the injection of minority carriers in the base, which is
vital to the transistor action. A transistor in which the parasitic elements are neglected, is called an
intrinsic transistor. In the equivalent circuit for an intrinsic transistor, we included only those elements
that are necessary for the transistor action.

Common Base Mode

Let us now consider the common-base mode. The equivalent circuit for the intrinsic transistor in
the common-base mode is shown in Figure (4.25). In this circuit, the diffusion capacitance is shown to be
connected parallel to rg (the emitter resistance). The reason for placing the diffusion capacitance in
parallel with the input emitter resistance 1 is that the input voltage supplies both the incremental
stored charge and the injected current. The collector current is given as before by the current source
(gmVgEe) and is in phase with ¥5; the collector current is in phase with the current that flows through
7g. The emitter current flows partially through Cg;¢ and partially through 7. There is therefore a phase
difference between the emitter current and the current through 1. Hence the emitter current and the
collector current are not in phase. As the frequency of the input signal is increased, comparatively more
and more of the emitter current flows through Cy;¢¢, and hence the collector current decreases. Thus
the current gain decreases.

Let us assume that a sinusoidal input current of I, = i, sinwt is applied at the input
terminals. Then the base-emitter voltage Vg is given by

1
TgX <— - > .
Vpp = i JoCaify) te Tk (4.108)
BE e rE+-; 1+ joCqiffTE :
]wcdiff
The collector current us given by
. ~ 9ImTE .
ip = gmUpg = ——/ i, (4.109)

1+ jw Caiff TE

® The emitter bulk resistance is negligible because of the heavy doping
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Hence the current gain a, which is a function of frequency, is given by

a(w) = o= _—ImE__ (4.110)
ie 1+ jw CdiffrE '

At very low frequency (w = 0), a(w) approaches o, the low frequency gain. By putting w = 0 in the
equation for a(w) , we obtain

alw=0)= oy = gm's (4.111)

Hence
o

—_— (4.112)
1+ jw Cdiff TE

a(w) =

Figure (4.24): Spatial variation in the base of the excess minority carrier charge density due to a high
frequency input signal.

Figure (4.25): High Frequency equivalent circuit of the intrinsic transistor in the common base mode

Let us now define a parameter, w¢q, as

Weg = — (4.113)
Then
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o

. w
1+ ]—wza

a(w) = (4.114)

We have used a superscript * to indicate that this and other parameters that follow with a superscript *
refer to an intrinsic transistor. The same parameters without the superscript * will refer to a real
transistor in which the effect of the parasitic elements are also included. As w increases, a(w)
decreases, and a phase difference arises between the output and input currents. The frequency at which

|a(w)| falls to \/% of its low frequency value is called the alpha-cutoff frequency. This happens when

W = wq. Therefore, the alpha-cutoff frequency is given by

w; 1
fon = — = (4.115)
21 2n Caiff TE
Recalling
QoTp
Chirf =
diff Ty
We can write
foa = — (4.116)
ca 2T 0yTR

Thus we see that the maximum frequency is limited by the base-transit time, 7. The phase of a(w) at
f = f.q is 45° The variation of the magnitude of a(w) with w is shown in Figure (4.26). In this figure,
|a(w)| is plotted as a function of log w. It is seen that |a(w)| is equal to a, at low frequencies and falls
off as w approaches w;,. At high frequencies,

*
O _ OQoWcqg
w — ;

(4.117)
jw

a(w) ~ -
jwéa
The gain falls off by a factor of 2 when the frequency (or w) is doubled. In this region the gain is said to
fall off at the rate of 6 db/octave.

Figure (4.26): Plot of the magnitude of the current gain, a(w) , as a function of w. w,, is the value of w
at which |a(w)] is equal to 0.707 of ay.
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Example
Let us now determine the alpha cut-off frequency of an intrinsic n-p-n bipolar transistor, given:
W'=2um

D,, = 15 cm?/sec

ap, = 0.995
2 —4\2
Tp = W _0x107) 43351079 sec
2D, 2x15
. 1
Jea = 21 0y Tp
Therefore,
1 1

=1.2 X 108 Hz

Jea = 350995 x 133 x 10 834 x 109

Common Emitter Mode

Let us now treat the frequency response of the device in the common emitter mode. The
equivalent circuit of the intrinsic transistor is the same as what we derived earlier for the low frequency
case, except that the input resistance, ;,, which is in parallel with the diffusion capacitor (Cy;ff), is

TE
1- ag
in Figure (4.27). The input current (which is now the base current 7)) divides itself between two paths:
one through 1, , and the other through Cy;fr. The collector current (i) is determined by the current
that flows through 1y, and therefore there is a phase difference between 7, and i;,. The base-emitter

voltage (Ugg) is given by

equal to . The equivalent circuit for the intrinsic transistor in the common emitter mode is shown

(T_E) 1 TE

- o 1- ag ijd' 1— -
Upp = 1p—5 ==t g, (4.118)
- 1+ jw Cqiff
1- ag ]wcdiff 1- ag
The collector current is obtained as
TE
Im 14
~ ~ 0 ~
l. = v = l 4,119
c ImVUBE 1+ jo Cayyr 1_@:10 b ( )

The current gain is now a function of frequency, and is given by
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_ ke _ ao
B(w) = AT — (4.120)

1- g

At very low frequency, (i.e. w = 0), f(w) is obtained by putting w = 0, and is equal to S,.

B(®) lw=o = Bo = Gm —=% (4.121)

1- (043}

Therefore B(w) can be expressed in terms of 8, as

Bo
fw) = — (4.122)
1+ jwCqiff 1_”2(0
Let us define a parameter wzﬁ given by
* — 1
wCﬁ = C—rE (4.123)
diff 1= o
Since
CdlffrE = a()TB (4124)
Ay : ! (4.125)
CB — %o7B :
- o BoTr
Then
Bo
w)=——z 4.126
plw)=1""a (4.126)
cp

The magnitude of the current gain (|8 (w)|) is plotted in Figure (4.28) as a function of log w. We define
the beta cutoff frequency as that at which the magnitude of the gain, falls off to % of its low frequency

value. This happens when w = wzﬁ. Hence beta cut-off frequency (fc*ﬁ) is given by

fég = “Ocg _ ! = ! (4.127)
CB 21 2 Cyiff 1_”2() 21 BoTB .

The phase of the collector current differs from that of the base current by 45° when f = fc*ﬁ. At very
high frequencies,

B . Bowg
Blw)~—o= =] —F

*

(4.128)
w

In the range of frequencies over which the above equation is valid, the magnitude of |8 (w)| multiplied
by w is a constant, given by

w|B(w)| = Bowgp = - L (4.129)

BoTr B
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As the frequency is increased, the gain falls by an amount such that the product of gain and frequency is
a constant. This constant is called the gain-bandwidth product. The decrease in the gain with frequency
at high frequencies, again demonstrates a 6db/octave characteristic, i.e. || decreases by a factor of 2
when the frequency is doubled. The value of w at which |8 (w)| becomes unity is denoted w7, and is

found in Equation (4.129) to be

1
Wy =—
B

According to Equation (4.129), the frequency at which |B(w)| becomes unity is equal to

f*_w%_ 1
T " 2gn 2T TR

Using Equation (4.130) we can express a);‘}ﬁ as

*

w* _ 1 _ (J)T
CB BotB Bo

To summarize, the alpha cut-off frequency is

frolt 1
@™ on oy T
The beta cut-off frequency is
froaLl Ll L
CB ™ 2n Bo T
The gain bandwidth product is
fi = 11
T 2T 7Tp

(4.130)

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)

If any two of these three frequencies are known, the third is readily obtained. Or alternately, if Tz and
either ay or B, are known, the three frequencies are readily obtained. Thus, of the five quantities,

fc*;x,fg‘ﬁ,ff, T and either o or By, we can determine the other three if any two are known.

Example

Let us now determine the limiting frequencies fc*ﬁ and fr for the transistor discussed in the early

example. We saw that Tz = 1.33 X 1072 sec. We were given «, as equal to 0.995. Hence

1 1

-~ _ 1194 x 10°H
It = 37133 x 109 d
«  0.995

ﬁo s s
1—o, 0005

1

11 1 5
fip =57 % X o= 5.998 x 10° Hz

=199
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Figure (4.27): The equivalent circuit of the intrinsic transistor in the common emitter mode.

Figure (4.28): Plot of the magnitude of the current gain in the common emitter mode as a function of log
w

Inclusion of Junction Capacitances

Let us next consider the equivalent circuit for the bipolar transistor by including the emitter-
base and collector-base junction capacitances. Previously, the a-cutoff frequency and the (- cutoff
frequency of an intrinsic transistor were discussed. The actual a - and - cutoff frequencies of the
transistors will be different from what we obtained for the intrinsic transistor, due to the presence of
the emitter-base junction capacitances. The equivalent circuits that we previously drew for the
common-base mode and the common-emitter mode need to be modified to include the junction
capacitances.

Common Base Mode

The equivalent circuits for the common-base mode will have the emitter-base junction
capacitance in parallel with the diffusion capacitance between the emitter and the base, and the
collector-base capacitance will be in parallel with the current source in the output circuit between the
collector and the base, as shown in Figure (4.29). If we go through the analysis exactly the same way as
we did for the intrinsic transistor, we will find that the current gain is frequency dependent, with a time
constant that is determined not only by the diffusion capacitance but also by the emitter-base junction
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capacitance. Without duplicating every step of the analysis, we can readily write the expression for a as
a function of frequency:

%%

a(w) = (4.136)

1+jw( agTgp+ rEC]EB)

Figure (4.29): The equivalent circuit of the bipolar transistor in the common-base mode, including the
emitter-base and the collector-base capacitances.

The expression differs from that for the intrinsic transistor due to the fact that the time constant
of the input circuit is increased from a7p to agTp + 15Cgp. In terms of Cyirr, a(w) can be written as

Qo

a(w) = 1+jwrg(Caiff+CyEB) (4.137)
The expression for the alpha-cutoff frequency can similarly be written as
1
fea = 21t(Caify + Crgp)TE
— L (4.138)

2T ( aOTB'I'C]EBrE)
where Cjgp is the emitter-base junction capacitance. We already know from previous discussion that the
. . KT . . .
emitter resistance, rz equals — and therefore decreases with the emitter current, I. At very high

qlg
emitter-currents, ry becomes small, making Cjgp X 1 negligible in comparison with ag « 7p.

At low currents, f¢, is less than f7, , where f;, is the intrinsic a-cutoff frequency, and at high
currents, f¢q approaches f,. If we measure the a- cutoff frequency at different values of the emitter

. 1 . . . . .
current, I, and then plot the reciprocal of f., versus owe will obtain a straight-line plot as show in
E

1
Figure (4.30). If we now extrapolate the linear plot, the intercept on the vertical axis at — = 0 will be

Ig
1
equal to ——. Thus we can obtain the intrinsic a - cutoff frequency by measuring the a - cutoff
Ca

frequency of a real transistor at different emitter-current.
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Common Emitter Mode

The equivalent circuit for the bipolar transistor in the common emitter mode including the
junction capacitances is shown in Figure (4.31). The input capacitance is increased by having Cjgg, the
emitter-base junction capacitance in parallel with the diffusion capacitance, Cg;fs. In the common-
emitter mode, the collector-base junction capacitance appears as a feedback capacitance between the

output and the input terminals. The feedback capacitance is usually referred to as a Miller Feedback
Capacitance.

As we discussed in the common-base mode, the time constant of the input circuit now is
increased from its intrinsic value to a larger value given by

. _ TE
Input time constant = e (Cdiff + C]EB)

The expression for B (w) can be derived as before. We can write

B(w) = bo

. T
1+jw [ BOTB'l' ﬁ C]EB]

_ Bo

_Jo
Hazay [aotB+ 1EC/EB]
_ Bo

jw
Hazay [reCaifr+ reCreB]

_ Bo
- , TE
1+ja)rao) [Cdiff+ C]EB]

(4.139)

Thus we see that the effect of including the emitter-base junction capacitance is as though the input

. e .. TE

circuit time constant is increased by ————
(1-ap)

frequencies without any further analysis as

Cjgp- We can readily write the expression for the - cutoff

1 1 - 0{0
2 1g(Cairr + Cigp)
1—050

27'[( G.O‘L'B+TEC]EB)

fCﬁ' =

1

- . (4.140)
2nBo(TB +a,_0rEC]EB)

The (- cutoff frequency is thus seen to be less than the intrinsic - cutoff frequency. Again noticing that
the emitter resistance, 7%, is inversely proportional to the emitter-current. We can now determine the
intrinsic B - cutoff frequency by measuring the actual f - cutoff frequency at several different emitter-
current values. This procedure is to measure the f - cutoff frequency at different values of the emitter-
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1
current and plot the reciprocal of the measured - cutoff frequency, v as a reciprocal function of the
cB

1
emitter current, T as illustrated in Figure (4.32). A linear plot will be obtained which when extrapolated
E

1 1
to intercept the vertical axis at = 0 yields the reciprocal of the intrinsic 8 - cutoff frequency, oo
E CB

Example

Let us calculate the a - cutoff frequency and the S - cutoff frequency of a transistor including junction
capacitances. Let us consider the transistor which we used to calculate f;, and fgﬁ in the previous

examples. Assume Iy = 1 mA, Cjgp = 340 pF.

1 is calculated to be

kT 25.9mV
g = —= =259
qlg 1mA

Using the value for Sy, f¢, and fc*ﬁ in the previous examples, we calculate the following.

_ Bo _
Q= 7o = 0.995

75 = 1.33x 1077 sec

1 1
* — —
fC“ T 2mx (aoTg+ TECiER) 27 X (0.995 X 1.33 X10~9+ 25.9 X 340 X 10~12)

= 1.57 x 107 Hz

1

TE
21 X ( BO‘L'B+ mC]EB)

fc*ﬁ =

1
= 559 = 78.56 KHz
27 X (199 x1.33 X107 9+ 5005 X 340 % 10712)

Thus we see that both « - cutoff and S- cutoff frequencies are reduced. The junction capacitances
decrease the frequency response of the transistor.
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Figure (4.30): Plot of the reciprocal a - cutoff frequency, fi , as a function of the reciprocal emitter-
Ca

1
current, —.
Ig

f N N

1

i

Figure (4.31): Equivalent circuit in the common emitter mode, including junction capacitance.

. 1 . 1 . . . 1
Figure (4.32): Plot off— as a function of - The intercept on the vertical axis at o= 0 corresponds to
cp E E

1

fég”

Switching Transistors

A bipolar transistor can also be used as an inverter or as a switch. In digital applications, a
bipolar transistor is used in either of these two functions. A bipolar transistor is typically usually used as
what is called a saturated inverter, or a switch. The transistor is either off or on: when it is on, the
transistor is in the saturation mode. When it is off, it is in the cutoff mode. Let us consider the circuit
shown in Figure (4.33A). The transistor has a load resistance (R} ) in series with the collector-supply
voltage (V.c) connected between the collector and the emitter. The base current is applied to the base
terminal as shown in this figure. Denoting the collector-emitter voltage as the output voltage 1/,

Vo = Vee — R
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As I increases, V, decreases. Finally when

Vee

l- =
Cc R,

V, is zero. When the device is off, I is nearly zero and V, = V.. Thus when the input current goes up
from 0 to I, the output voltage (which is the collector-emitter voltage) goes down from V. to 0. Hence
the output voltage swing is opposite in phase to the input, and this circuit is called an inverter circuit.
We assume that the transistor is initially off (i.e., the emitter-base voltage is reverse-biased). At time

t = 0, a base current (Ig) is applied. The base current is chosen to be large enough so that the device
under steady-state condition will be driven into saturation.

Due to the base current, minority carriers are injected into the base from the emitter and the
stored charge (Qg) in the base increases. The collector current which is equal to g—B , increases. Asthe
B

current increases in the collector circuit, the collector to the base voltage which was initially at a voltage
nearly equal to the collector supply voltage starts to decrease. Ultimately, when sufficiently large
collector current flows, the collector voltage falls below the base emitter voltage. The collector base
junction becomes forward-biased, driving the transistor into saturation. When the collector to emitter

voltage becomes 0, no further increase in collector current can arise. Thus the collector current reaches

Vee

a maximum value equal to T However, the base current is still flowing, and the stored charge in the
L

base continues to increase. The stored charge in the base increases even though the collector current
has reached its maximum value and stopped increasing.

Since we are discussing an n-p-n transistor, the injected (and stored) minority carriers are
electrons. The base current provides the majority carriers (holes) needed to neutralize the stored
minority carrier charge, and to provide the hole current for: a) injecting holes into the emitter, b)
providing majority carriers to recombine with the minority carriers in the base, and c) the flow of the
collector-base junction leakage current, Icgg. We will first assume that the hole injection current into
the emitter (Ig,) is negligible. This assumption is tantamount to letting the emitter injection efficiency
(y) to be very nearly unity. Let us further assume that I-gg is negligibly small in comparison with the
base current bias Iz. The base current under these assumptions is given by

d|Qg| + QB
dt Tn

Iz = (4.141)

This equation is called the charge-control equation. The first term on the right hand side denotes the
base current needed for the buildup of majority carrier charge to neutralize the growing Q and the
second term on the right hand side denotes the hole current needed for the recombination.

The boundary condition for solving the charge-control equation, when I is turned on at time
t=20,is

Q=0 fort <t (4.142)

The solution is then easily seen to be
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t
|Qg| = IpTy, (1 — e_§> (4.143)

A plot of the growth of Q5 as a function of time is shown in Figure (4.34). The stored charge is seen to
grow exponentially with time. When t > 1,,.

| Qgl = Iz T, (4.144)

As long as the transistor is in the active mode (i.e., the collector-base junction is reverse biased), the
collector current (I-) and Qg are related to each other as

Qg =Ic 1p (4.145)

Initially as Qg grows, I grows at the same rate, and the collector-base voltage, V-gpdecreases. When Vg
becomes zero, the transistor is at the edge of saturation. When Vg becomes negative, the device is in
saturation and the collector voltage is nearly equal to the emitter voltage. I is at its maximum value
. . |14 .
since I cannot increase beyond (%) Let us assume that at t = t;, the device gets saturated and that
L
14 . . . -
I becomes equal to %. The plot of the growth of I with time is shown in Figure (4.35). I grows
L

. N . 14
exponentially with time aslongast < t;. Att = t4, I reaches the maximum value (%), and stays
L

constant at this value. We can think of it as though I and Q5 becomes decoupled when t > t;. While

. . _— . Vee
Qp continues to grow exponentially with time even fort > t4, I remains constant at . fort > t4.
L

Let us define Qgatt = t; as (. Therefore when Qp > (g, the device is saturated.

_t
Qs = Qp(ty) = Iz 1y (1 — e T“) (4.146)
Ic(ty) = % (4.147)
L
But
|4
Qs = Ic(t;) 15 = RLLC Tp (4.148)
Therefore
Vee -4
R_L Tg = IB Tn (1 — e Tn) (4.149)

From this equation, we can obtain t; as

1
1— Vect
Ry I Tn

ty = t,1n (4.150)

t, represents the time taken by the device to reach steady state collector current, and is called the turn-
on time. To keep t; small so as to obtain a high clock frequency in digital applications, 7,, should be kept
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small and ‘;CLLITBB should be kept small compared to 7,,. The latter can be achieved by keeping 75 small
and increasing Iz. Beyond t = t;, Qp continues to grow while I remains constant. I is determined by
the gradient of An(x") in the base. In Figure (4.36), An(x") is plotted in the base region at several
instants of time. When t < t;, the slope of An(x") plot increases with time indicates an increase of I-
with time. Whent > tq, I stays constant which means the slope has to remain constant. However, the
growth of Qg occurs now in a manner such that An(x") increase while the slope remains constant.
An(x" = W') increases from zero when t > t;, since the collector is also injecting minority carriers
into the base. Ultimately An(x" = W') reaches a steady state value at t = oo, determined by the

requirement that

QB(OO) = Ig 1y

The area under the plot of An(x") is described by a right-angled triangle for t < t, and by a trapezoid
fort > ty, Qs is equal to q times the area of the triangle at t = t;. If An(W") is the excess carrier
density at x’ = W' fort > ty, then the area of the trapezoid A4y, is equal to

W) — Apay = bn(WHW' + &
qA qA

What we have discussed so far is called the turn-on behavior. Let us now discuss the device
behavior, when the transistor which has been on in the saturation mode for a long time with a large
base current drive, is switched off by turning off I to zero at time t = 0. The transistor current will
decrease to zero only after some time delay, and this behavior is called the turn-off transient.

Let us make the assumption that a base current Iy has been flowing for a long time and that Iy
is sufficiently large to drive the transistor into saturation. The base current as a function of time is shown
in Figure (4.37). The charge control equation under this assumption becomes t = 0.

d
lesl _ _ 19sl (4.151)
dt Tn
The boundary condition isthatatt = 0,
|0t =0)| = Iz Ty (4.152)
The solution can be readily seen to be
-t
| Qg| = Izt ™ (4.153)

The stored charge decays exponentially with time, as illustrated in Figure (4.38). The collector current

continues to remain constant at the value it had before the base current was turned off. This situation
continues until the device gets out of saturation. The device gets out of saturation when Qg becomes
equal to or less than Qs. We define the time that it takes for the device to get out of saturation as the
storage time and denote it by the symbol tg Therefore by our definition, at t = tg the stored charge is
equalto Qs. Att =tg

ts

Qs(ts) = Qs = IgTpe ™ (4.154)
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Therefore, t, is obtained as

I I
te= T, ln( ern) =1,In <VCBCTfB> (4.155)

R],

Whent > t, the device is in the active mode and I is proportional to Qg. Hence I decays with time
in step with Qp. This is illustrated in Figure (4.39). The decay of I is given by

_t—ts

]C = & e ™ (4.156)
B

1 . .
To decay to - of the initial value of the collector current, t — t; should be equal to 7,,. The total time

taken for the collector current to decay to - of its initial value from the instant of time when I is

reduced to zero is
t=t;+ 1, (4.157)

To speed up this process, tg should be decreased. This is equivalent to saying that the device should not
be operated in deep saturation.

Example

Let us calculate the switching characteristics of an n-p-n transistor used as a saturated inverter, given
R, =2K0,V,c =10V, Iz = 150 uA, S, = 100, and 5 = 1072 sec. Let us further assume that the

emitter injection efficiency is nearly unity, so that we can assume 8, = I—”
B
Turn-on
Vee 10
I =— = ——>==5mA
cmax- R, 2 x 103

Os = LynaxTs =5 X 1073 x 107° = 5 x 10712¢C
T, = Lot =100 X 107 = 107 7sec
0p(0) = Iz, = 150 x 10~ x 10~7 = 1.5 x 10~11C

Veets
= -1, [1— ]
! 0 R IgTy
= —-10"7 xIn|1 5 x 1077 = 10~7 x 0.405
= n 15 x 10-11| '
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=4.05 X 1078 sec

Turn-off
VecTs 5x 10712
o Y] g [ S
s= TR T, "M15x 1011
=1.1 X 1077 sec

1
Total time taken for I to fall off to - of its initial value is equal to

te+ T, = 10774+ 1.1x1077 =2.1 x 1077 sec

Figure (4.33): A) A circuit configuration for using a bipolar transistor as a saturated inverter. B) The base
current as a function of time.

Figure (4.34): The growth of the stored charge as a function of time, due to a constant base current
drive, Ip.
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Figure (4.35): The increase in collector current as a function of time due to the base current drive I. I
is assumed to be large enough to drive the device into saturation. The device gets saturated at t = ¢;,

Fort<t, I =29
, 5
L]
L]
— ;
.H‘“‘x-\x <
T
\N_ .

Figure (4.36): The growth of excess minority carrier density in the base in a saturated inverter.
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Figure (4.37): The base current during the turn-off phase.

Figure (4.38): The decay of stored charge in the base in a saturated inverter, when the base current
drive, I, is turned off at t = 0.
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Figure (4.39): The decay of collector current in a saturated inverter. The current starts to decay only
after a time delay equal to the storage time.

Ebers-Moll Model

The model is a basic model for the bipolar transistor which relates dc currents to the junction
voltages and is useful for analyzing the behavior of the devices under large signal input.

We saw earlier that in the active region of operation of the bipolar transistor, the current in the

4VBE
IES(B kT _1>,

and the current in the collector is given as
VBE VBc
IC = aolES e kT — 1 + ICS e kT — 1

The current in the collector comprises a collector base junction diode current and a current due
to minority carrier injection in the base from the emitter. If we want to describe the behavior of the
device under saturation as well as in the inverse mode of operation, we must take into account the
emitter current due to injection of minority carriers in the base from the collector also. This is what is
done in the Ebers-Moll Model and is illustrated in Figure (1).

emitter, I is given as

The emitter current, the base current and the collector current are all shown as going into the
device. The emitter current comprises two components, one due to the junction diode current and the
other due to minority carrier injection from the collector into the base.

qVBE aVpc
IE=—IES<8 kT _1)+ arl(:s<e kT _1> (1)

where «a, is the alpha of the device in the inverse or reverse mode i.e., when the collector is used as the
emitter and the emitter is used as the collector. The collector current is now written as
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aVBE aVBc
IczafIES<e kT —1>—ICS(e kT —1) (2)

where a; is the alpha of the device in the normal mode. The base current is equal to

9VBE 4VBc
Ip= —(Ug+ Ic) = —(1—af)IES(e kT —1)—(1—ar)ICS<e kT —1) (3)

The transistor is shown as two diodes connected back to back with a current source connected
in parallel to each diode. The current is shown in the emitter and also in the collector as consisting of
two components, one due to the diode current and the other from a current source due to minority
carrier injection from the opposite region. The currents are controlled by the internal junction voltages.
It is customary to write the equations as

aVBE aVpc
IE= a11<ekT—1)+a12<ekT _1) (4)
and
aVBE aVpc
IC:a21(€kT _1)+a22<e kT _1) (5)
where
a1 = — Igg
A1z = Qrlcs
Az = — Igs
and

ay1 = flgg
Using the reciprocity relationship of the two-port device, we can write a;, = a54. Hence,
Arles = afIEs

Therefore only three out of the four parameters viz., a¢, @, Igs and I¢g are needed to model the
device.
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Figure 1: Equivalent circuit diagram for the bipolar transistor according to Ebers-Moll Model

Output Impedance

When we examined the DC characteristics of the transistor, we observed that the collector
current increased slightly with collector voltage in the common-base mode, whereas in the common-
emitter mode the collector current increased much more with collector voltage. The rate of increase of
collector current with collector voltage is called the collector output impedance. The output impedance
(r,) is defined as

T, = — (4.158)

Theoretically, we would have expected the collector output impedance to be infinite, since the reverse-
biased collector-base junction acts as a constant current source. But the collector current depends on
the width of the neutral region of the base. The width of the neutral region decreases with the collector
voltage, due to the widening of the collector-base junction depletion region. The effect is called Early
effect, and is illustrated in Figure (4.40). If we increase the collector-base voltage, the base width
decreases and the slope of An(x") increases as shown in Figure (4.40). The collector current which is
proportional to the slope of An(x") at x’ = W' increases, thus causing the output impedance to be
finite.

If the emitter-base voltage is kept constant, the excess carrier density at x’ = 0 is constant since
it depends only on the impurity density in the base and the emitter-base voltage, i.e.

4VBE
An(x' =0) = nppgp (e KT — 1)

The output impedance under this condition is given by
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dVcp

= avﬁ — _ow’ | (4.159)
O™ BIcp VBE=constant dIcn,  |VBE=constant :
ow’

!

Sy can be obtained by differentiating Equation (4.79) with respect to Vg
CB

Common-Base Mode Output Impedance

Let us now look at the output impedance when the transistor is used in the common-base
mode. In Figure (4.9), the DC collector current-voltage characteristics were plotted in the common-base
mode with the emitter current as a parameter with specific values. The output impedance is obtained
from this plot under conditions of constant emitter current as

BVCB

o= dlc |IE=constant (4.160)

The emitter current is determined both by the emitter-base voltage and the gradient of the excess
minority carrier density in the base. As the base width decreases, the slope increases and the emitter
current will also increase. In order to keep the emitter current constant, the emitter-base forward
voltage will have to decrease as illustrated in Figure (4.41). Thus the increase in the collector current
with collector voltage is not as large as what would result if it were due to the decrease in the base
width, with the emitter base voltage remaining constant.

Figure (4.40): Base width modulation due to Early Effect
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Figure (4.41): The excess carrier density distribution in the base for two different collector voltages in
the common-base mode. The base-emitter voltage has to decrease to keep the emitter current constant
when the collector voltage is increased.

Common-Emitter Mode Output Impedance

Let us now consider the output impedance in the common-emitter mode. The DC characteristics
were plotted in Figure (4.12) for the common emitter mode, and a family of curve was plotted for
different values of base current. The output impedance under conditions of constant base output
current is obtained from this plot and is equal to

_ E)VCE I
o dlc Ip=constant

(4.161)

When the collector to emitter voltage is increased by a small amount, this increment is partially applied
across the collector-base junction and partially across the base-emitter junction. This division between
the two junctions occurs in a manner such that the base current remains constant.

The base current supplies a) the current for injection of minority carriers from the base into the
emitter, and b) the majority carriers needed for recombination with minority carriers in the base. If the
injection efficiency is assumed to be nearly unity, then the former is negligible, and the latter is the
dominant component of the base current. The base current is then equal to

Iz = 1981 (4.162)
Tn
where Qp is the stored minority carrier charge, and is proportional to the area under the plot of the
excess minority carrier density in the base, as shown in Figure (4.42). I is therefore constant when Qgis
constant. When Vg is increased, the base width decreases due to the increase in the collector-base
voltage. In order to keep the stored charge Qg constant, the excess carrier density at x’ = 0 (height of
the triangle) has to increase so that the area of the triangle is constant, as illustrated in Figure (4.42).
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The collector current increase is therefore not only due to the increase in slope arising from a decrease
in base width, but also due to an increase in the injected minority carriers at x’ = 0. Thus the output
impedance is much smaller than what is obtained in the common base mode.

Figure (4.42): The excess carrier density in the base for two different values of the collector to emitter
voltage in the common emitter mode under conditions of constant base current. The area under the
plot has to remain constant if the base current is kept constant.

Non-ideal base current

In our discussion of the bipolar transistor so far, we considered the emitter-base junction to be
an ideal p-n junction. However, the emitter-base junction has non-ideal components, due to
recombination in the depletion region. This is similar to our discussion of the forward-biased non-ideal
p-n junction. We saw in our treatment of p-n junctions, that an additional component of current flows
through the junction due to recombination in the depletion region. This current depends on the forward
voltage as

avFr
Leoe = I yoc €2KT (4.163)

The non-ideal component gives rise to an extra component of base current as shown in Figure (4.43). In
this figure, I ;.o represents the component corresponding to recombination in the emitter-base
junction. It flows through the base lead, in addition to the other two components of base current that
we discussed before. We saw earlier that the other two components ( I, and (1 — ar)lg,) have an
exponential dependence on the emitter-base forward voltage. In other words, these two components
depend on the emitter-base voltage given by

9VBE 4VBE
IEp + (1 - aT)IEn = IESp e kT + (1 - CIT)IESne kT (4164)

where I g, is the saturation current of the emitter-base junction due to hole injection into the emitter,
and Ig g, is the saturation current of the emitter-base junction due to electron injection into the base.
The non-ideal component is added to these two to obtain to total base current. The plot of the

logarithm of Iz (Vgg) is given in Figure (4.44). In this figure, at low values of emitter-base voltage, the
base current is dominated by Iy ..., and therefore the slope is equal to %. However, as the emitter-
base voltage is increased, the other two components (the ideal components) increase faster with the
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emitter-base voltage, and start to dominate. Hence the base-current has a slope given by %. Thus we
see that the base current can be approximated as comprising two linear regions: one for small emitter-
base voltage with a slope % , and another with a slope equal to % for larger emitter-base voltage. The
collector-current on the other hand is determined only by the ideal components of base current, and
hence the plot of the logarithm of I- is linear, with a slope equal to % , and the ratio of I to

I ideqr remains constant until we come to really low values of Vg where the leakage current (Icgo)
dominates. This plot of the logarithm of I versus Vg and the logarithm of I versus Vg in the same
figure is called the gummel plot. At low values of Vg, the recombination in the depletion region of the
aVBE
2

kT
. H V
higher values of Vg, IEp and (1 — ar)lg, dominate, and hence the base-current has a qus

emitter-base junction dominates, and hence the base current has the exponential dependence. At

dependence. The collector-current depends exponentially on Vg, since it is equal to a (Ig,). Bo is
defined as the ratio of I to I, and therefore varies with V. In Figure (4.45), B, is plotted as a
function of Vg, the emitter-base voltage ( or the emitter current Ig). At low values of Vg, B, decreases
with a decrease in Vg because in this region recombination in the emitter-base junction depletion
region dominates. For moderate values of Vg, B is constant, since in this region both I and Iz have an

exponential voltage dependence with a slope to %. At very high values of Vg, the current appears to

decrease, and this is due to high-injection effects. We will discuss the high-injection effects in a later
section.
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Figure (4.43): Various components of current in the bipolar transistor including the non-ideal current in
the emitter-base junction.
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Figure (4.44): Plot of the base and collector currents as a function of the emitter-base voltage.

Figure (4.45): Plot of B, as a function of Vg or I

Non-uniform doping in the base

We also have assumed earlier in our discussion of the transistor characteristics that the base
had a uniform doping i.e., N4y was constant. We further assumed that the minority-carrier flow in the
base region was only due to diffusion, by assuming that the electric field was zero. We are going to see
now that in a real device, both of these assumptions are invalid. Due to the method of fabrication of the
bipolar transistor using an impurity diffusion process, the impurity profile in the base region typically has
an exponential slope as shown in Figure (4.46). In this figure, the metallurgical junction is between
where the logarithm of net Nyg goes to -  (i.e., net Ny is zero) on the emitter side and where it goes
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to oo on the collector side. However, the actual neutral-base width is less than this, and equal to W' as
indicated in the figure. In this neutral-base region therefore, it is possible to approximate the impurity
profile as

Nap (x') = Npppew’” (4.165)

where Nypg is the impurity concentration at x’ = 0, and 7 is a parameter which depends on the
variation of the impurity concentration with distance. Therefore, we find the hole density to be higher at
x' = 0thanatx’ = W'. In order to prevent the diffusion of holes (majority carriers) in the direction of
the collector, an electric field arises in the base region in a negative direction. A drift current due to the
electric filed is exactly balanced by the diffusion current. Thus there is no net hole current in spite of the
concentration gradient of the acceptor impurity in the base. We can write the expression for the hole
current density as

_ dpo _ ' dN »p (x")

Jo = 4 Ppotip€ = a Dpo—5 = q Nap (xDip€ — qDpy————  (4.166)
where py, is the majority-carrier density in thermal equilibrium, and therefore equal to Ny, the
acceptor density in the base-region. In order for the two currents to balance, J,, has to equal 0. By
setting the equation for J,, to O, the electric field is expressed as
D dN g (x' 1 kT _ dNgp (x' 1
2P x A (x7) % _ kT 4B (x7)

= X X 4.167
Hp dx’ Nap(x') q dx’ Nap (x") ( )

€ =

We had assumed earlier that N, varies exponentially with x’, and substituting this exponential function
for N4 we obtain the electric field as

E= — kT l, (4.168)

q W

The electric field arises internally in the base region to prevent the diffusion of holes from the highly
doped side to the lightly doped side. For this reason the electric field is called the built-in electric field.
The electric field influences the minority-carrier flow through the base region from the emitter to the
collector. The direction of the built-in electric field is such as to aid the minority-carrier flow towards the
collector. Hence the transit time (tg) is reduced. Since the transit time is reduced, the frequency
response improves. There are some additional advantages due to the inhomogeneous doping of the
base. These are 1) increase in punch-through voltage, 2) increase in output impedance, and 3) decrease
in base resistance. Increase in punch-through voltage arises because as the depletion-region widens in
the collector-base junction, a larger increase in the collector-voltage is needed to produce a given
incremental charge in the depletion region, Hence it takes a larger amount of collector-voltage to punch
through the base-region than what it would have taken if the entire base-region had a uniform doping
concentration equal in value to what is obtained at x’ = W'. Because of this, the Early effect also gets
reduced, and therefore the output impedance increases. Due to the increase in the impurity
concentration in the base, the base resistance decreases. However, there are also some disadvantages
due to the non-uniform doping of the base region. First, the injection efficiency (y) decreases, since the
doping concentration on the base side of the emitter-base junction is larger than in a uniformly doped
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base. Secondly, the emitter-base junction depletion-region width is smaller now, and hence the junction
capacitance (Cjgg) increases.

Figure (4.46): Impurity Profile in the base region in a typical device.
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Summary

The bipolar transistor works on the principle of minority carrier injection into the lightly doped
side of a one-sided abrupt p-n junction and the flow (or collection) of these minority carriers
into a reverse-biased p-n junction which is placed nearby.

The typical structure of a bipolar transistor comprises a heavily doped n* region and a lightly
doped n-region separated by a narrow p-region. The n* region is the emitter, the p-region the
base and the n-region the collector. Such a transistor is called an n-p-n transistor. Ap-n -p
transistor is one in which the emitter is a p* region, and the collector a p-region with the
intervening base layer an n-region. In normal operation, the emitter-base junction is forward-
biased and the collector-base junction reverse biased.

The total emitter current is the sum of minority carrier current injected from the emitter into
the base and the minority carrier current injected from the base into the emitter. The emitter
injection efficiency, y, is defined as the ratio of minority carrier current injected into the base
from the emitter to the total emitter current. In a well designed transistor, y is made as close to
1 as possible.

The minority carriers injected from the emitter diffuse through the base region to the collector-
base junction. Before they reach the collector-base junction, some of the minority carrier
current reaching the collector-base junction is less than the emitter injected minority carrier
current. The ratio of the two is called the base transport factor, a; . In a well designed
transistor, ar (which is less than 1) is made as close to unity as possible.

The minority carriers reaching the collector-base junction from the base are swiftly swept into
the collector region by the electric field in the collector-base depletion region. This results in a
collector current. In addition, a reverse leakage current due to the collector-base junction also
flows and adds to the collector current.

The current through the base is the difference between the current due to majority carriers
recombining with minority carriers in the base and the reverse leakage current in the collector-
base junction.

The transistor can be normally operated in either of two modes viz., common-base or common-
emitter. In the common-base mode the input signal is applied between the emitter and the base
and the output signal is obtained between the collector and the base. In the common-emitter
mode the input signal is applied between the base and the emitter and the output signal is
obtained between the collector and the emitter.

The short circuit current gain of the transistor is defined as the ratio of the incremental change
in the output current and an incremental change in the input current with the output AC short

- 209 -



circuited. In the common-base mode, the current gain is called alpha of the device and is
denoted by a where the subscript O refers to the fact that the frequency is very low

Go = VYar
In the common-emitter mode, the short circuit current gain at low frequency is called beta of
the device and is denoted by f3;.
Qo

Bo= T——

1 - ao
In a well designed transistor, a, is made as close to unity as possible. This is done by making the
emitter heavily doped in comparison with base doping to get y as close to unity as possible and
making the base region as narrow as possible in comparison with the minority carrier diffusion
length in the base to get a; as close to unity as possible.

The transistor is said to be saturated or operating in the saturation regime when the collector-
base junction also is forward biased. In saturation, the excess minority density in the base at the
edge of the collector base space-charge region is increased due to injection from the collector.
The transistor is said to be in the active regime of operation when the emitter-base junction is
forward-biased and the collector-base junction is reverse biased.

In the common-base mode of operation, the input resistance to a small signal input voltage is
the small signal resistance of a forward biased p-n junction. The resistance is called the emitter

. . kT . . L
resistance and is equal to 15 = P where I is the DC emitter current. The output circuit can
E

be represented by having a dependent current source with a current value g,,Ugr Where Uz is
the sinusoidal signal emitter-base voltage.

TE
1- [24))

In the common emitter mode the small signal input resistance is equal to and therefore

(

be represented by the same equivalent circuit as for the common base mode.

1
1-ag

) times larger than the input resistance in the common base mode. The output circuit can

Due to injection of excess minority carriers in the base, at any given instant of time, there is an
extra amount of charge in the base. This charge is called stored base charge,. In order to
maintain charge neutrality majority carriers flow into the base from the base contact to keep an
excess majority carrier density everywhere in the base exactly equal to the excess minority
carrier density. A small increment in the emitter base voltage causes an increase in the stored
charge by an incremental charge flowing into the base from the emitter while an incremental
charge of same magnitude but of opposite polarity flows into the base from the base contact to
maintain charge neutrality. Thus a capacitive effect arises due to the stored charge. This is called
the diffusion capacitance.
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The time taken for the minority carriers to traverse the neutral base region from the emitter-
base depletion region to the collector-base depletion junction when the device is in the active
mode is called the base transit time, 7. The collector current, I times the base transit time,
gives the stored base charge, Qg

Qp = Ictp
The diffusion capacitance is related to 75 as

Qo
Caiff = . B

Due to the diffusion capacitance the excess minority carrier density does not change
instantaneously with a change in the emitter base voltage. Hence the gain of the transistor falls
off. The equivalent circuit for the transistor has the diffusion capacitor in parallel with the input
resistance. The input circuit has a time constant due to Cy;¢ and 1. When we ignore the effect
of junction capacitances but include only the effect of the diffusion capacitance we call the
device an intrinsic transistor. In an intrinsic transistor, the alpha falls off at high frequencies and

the frequency at which || falls to iz of its low frequency is called the alpha-cut-off frequency,

V2

few- The gain |a| falls of at a rate of 6 db/octave i.e., decreases by a factor of 2 for an increase in
frequency by a factor of 2. In this range of frequencies the product of f and |«| is a constant.
The asterisk denotes that an intrinsic transistor is being considered. The beta also decreases

with frequency and the frequency at which |3] falls to iz of its low frequency is called the beta

NP

cut-off frequency, fc*ﬁ. Hence also, | 8| decreases by a factor of 2 when the frequency is
increased by a factor of 2 at frequencies larger than fc*ﬁ. The frequency at which | 8| becomes

equal to 1, is called the gain-band width product and is denoted by fr. The product of f and ||
at frequencies larger than fc*ﬁ is a constant and equal to f7.

When the junction capacitances are included, the time constant of the input circuit is increased.
In the output circuit capacitive shunting effects arise. Due to this, the frequency response is
poorer than in the intrinsic device. The alpha cut-off frequency, the beta cut-off frequency and
the gain band width product in an actual transistor are all reduced from the intrinsic transistor
values.

When the transistor is used as a saturated inverter, there is delay in the turn-on time. The delay

in the turn-off time is longer than the turn-on time by the amount of storage time. The storage
time is defined as the time needed to get off saturation regime and reach active regime.
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The punch-through voltage, V,; , is the collector voltage at which the collector-base depletion
region widens all the way until it touches the emitter-base junction depletion region, V,; poses

a limit on the maximum voltage that can be applied on the collector

In the common base mode, the collector-base junction breakdown voltage represents the
maximum voltage that can be applied on the collector unless punch-through occurs earlier. This
voltage is denoted BVp(.

In the common-emitter mode, the maximum collector voltage that can be applied is less than
BV:po due to collector multiplication factor. This voltage is denoted BV g(.

: . arc \71 . o
The output impedance of the transistor, (avc ) , in the common base mode is not infinite due

CB
to Early effect. Early effect is the reduction of the neutral base width with increasing collector

voltage.

The output impedance in the common emitter mode is smaller than in the common base mode
due to the fact that the injection of minority carriers from the base has to increase in order to
keep the base current constant when the collector voltage is increased.

In an actual transistor, non-ideal components due to recombination in the emitter, base
junction depletion region and surface recombination arise. This has the effect of lowering the
gain at low emitter current whereas at higher emitter currents the gain remains at a high value.

In a real device, the impurity profile is non-uniform in the base with the density decreasing from
the emitter side to the collector side. Such a non-uniform impurity profile arises as a result of
the diffusion process in the fabrication of the device. Due to this an internal electric field arises
which helps the minority carriers to reach the collector in a shorter time interval. The base
transit time is reduced. Hence the frequency response is improved.
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Ecrit
fea
feu
fep
fég
fr

*

T

Glossary
= area of cross-section of the base region
= integration constants
= collector-base junction breakdown voltage
= collector breakdown voltage in the common emitter mode
= diffusion capacitance of the transistor
= emitter-base junction capacitance
= electron diffusion constant
= hole diffusion constant
= hole diffusion constant in the collector
= incremental positive (majority carrier) charge
= incremental time or time interval
= small incremental step voltage

electric field

= critical electric field

= a- cut off frequency

intrinsic a- cut off frequency

B - cut off frequency

intrinsic f§ - cut off frequency

gain bandwidth product

= intrinsic gain bandwidth product

= Farad. Unit of capacitance

= conductance

= small signal input conductance

= small signal sinusoidal base current

= small signal sinusoidal collector current
= small signal sinusoidal emitter current

small signal sinusoidal input current

= small signal sinusoidal output current

base current
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I yoc = component of base current due to recombination in the emitter-base junction depletion
region

Ip: = total base current

Ic = collector current

Icgo = collector-base junction leakage current

Icgp = collector current with the base open

Ien = collector current due to the injection of electrons from the emitter into the base

Ic, (x) = current in the base region due to injected electrons

It = total collector current

Ipc = DCcurrent

I = DC emitter current

Ign = electron current injected from the emitter into the base

Igp = DC emitter current due to hole injection from base into the emitter

Igs = total saturation current of the emitter-base junction

Igsn = saturation current of the emitter-base junction due to electron injection into the base
Igsp = saturation current of the emitter-base junction due to hole injection into the emitter
Is o = saturation current due to recombination in the emitter-base depletion region
Ig: = total emitter current

j = V-1

In = minority carrier (electron) current density

Jo.(x") = electron current density in the base

In = hole current density

k = Boltzmann constant

L, = minority carrier (electron) diffusion length in the base

Lyc = minority carrier (hole) diffusion length in the collector

Lyg = minority carrier (hole) diffusion length in the emitter

M = avalanche multiplication factor

n = electron density

n; = intrinsic carrier density

NyBo = thermal equilibrium minority carrier (electron) density in the base
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Ny

NypE
Npc
Npg
Po
Pnco

PnEo

Qs
Qs
Tg

To

v(x")

74
VBC
Vihic

Vbie

= acceptor density
= acceptor impurity concentration in the base
= acceptor impurity concentration at x’ = 0
= donor impurity concentration in the collector
= donor impurity concentration in the emitter
= majority carrier density in thermal equilibrium
= thermal equilibrium minority carrier (hole) density in the collector
= thermal equilibrium minority carrier (hole) density in the emitter
= electron charge
= minority carrier charge stored in the base
= stored charge, Qp att=t;
= emitter resistance
= output impedance
= load resistance
=time
= turn-on transient
= storage time, the time it takes for the device to get out of saturation
= absolute temperature
= base-emitter voltage
= small signal sinusoidal input voltage
= small signal sinusoidal output voltage
= small signal sinusoidal voltage
= velocity of electrons as a function of x'
= voltage applied across the junction
= voltage across the collector-base junction
= built-in voltage of the collector-base junction
= built-in voltage of the emitter-base junction
= base-emitter voltage
= breakdown voltage of the junction

= collector-base voltage
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Vce = DCcollector supply voltage

Vcg = collector-emitter voltage

Vot = punch-through voltage

w' = width of the neutral base region

Wg; = width of the base region between the metallurgical junction on the emitter side, and that on

the collector side

Wg = width of the neutral emitter region

X = coordinate

Xpc = width of the depletion-region occurring in the base region due to the collector-base junction
XpE = width of the depletion-region occurring in the base region due to the emitter-base junction
x' = coordinate system in the neutral base region where the origin is chosen at the edge of the

neutral base region on the emitter side

a = current gain

g = low frequency current gain in the common-base mode
ar = base transport factor

|a(w)| = alpha as a function of w = 2m times frequency

B = current gain in the common emitter mode

B(w) = beta as a function of w = 2r times frequency

Bo = low frequency current gain in the common emitter mode
d = differential

d(An) =incremental change in the excess minority carrier density

at = short time interval

ox’ = elementary distance

A = increment

Alg = incremental change in base current I

Al = incremental change in collector current I

An = excess minority carrier in the base region due to minority carrier injection from the emitter
Alg = incremental change in emitter current I

An(x") = excess carrier (electron) density as a function of x’
€s = permittivity of semiconductors

14 = emitter injection efficiency
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= an empirical parameter in avalanche multiplication expression

= an empirical parameter defining the impurity density variation in the base
= electron mobility

= hole mobility

base transit time

= minority carrier (electron) lifetime
= 2m times frequency

21 times alpha cut-off frequency

= 2m times beta cut-off frequency
= value of w at which |8 (w)| becomes unity

divergence
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Problems

(Assume room temperature in all problems except when it is specifically states otherwise. Also assume
silicon as the semiconductor material. Take n;, as 1 x 101 cm™3)

1. The expression for the excess minority carrier density in the neutral base region was derived in
the text in terms of hyperbolic functions. Show under appropriate conditions that a) it becomes
a linear function and b) it becomes an exponentially decaying function.

2. An-p-ntransistor has impurity concentrations of 5 X 10'° cm™3 in the emitter, 5 X
10'® cm™3 in the base and 2 x 10° cm ™3 in the collector. Assume the distance between the
metallurgical junction on the emitter side and that on the collector side called the metallurgical
base width is equal to 2 um. Assume the diffusion constant and the lifetime of the minority
carriers in the base region to be 30 cm?/sec ane 3 X 107° sec respectively. Assume that the
emitter-base voltage is —0.5 V and the collector-base voltage is 5 V. Plot on a graph sheet the
excess carrier density in the base region.

3. We derived in the class the expression for the base-transport factor, the emitter injection
efficiency and the current gain for a n-p-n transistor. Do the same for a p-n-p transistor.

4. For the device in problem 2, the area of the emitter-base junction and that of the collector-base
junction are the same and equal to 10™* cm?. Assume the minority carrier mobility and lifetime
in the emitter to be 500 cm?/V — sec and 0.25 x 107° sec respectively. What is the injection
efficiency at the voltage biases given in problem 2.

5. Forthe device in problem 2, determine the base transport factor at the specified voltage.

3 and

6. A p-n-p transistor has impurity concentrations of 5 X 10 cm™3,2 x 10'® cm™
5 x 10> cm™2 in the emitter, base and collector regions respectively. Assume that the
distance between the two metallurgical junctions, Wg; is 2.5 X 10™* c¢m. Assume the emitter-
base junction is forward biased by 0.5 V and that the collector-base junction is reverse biased by

10 V. The minority carrier parameters are given below in each of the three regions.

Emitter Base Collector
Lifetime (sec) 1076 107* 2x10~*
Diffusion Constant 10 15 16
(cm?/sec)

Calculate y, ar ag and fy.
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10.

11.

12.

13.

14,

15.

16.

For the device in problem 6, calculate I-g5 and I-go . Take the area of both the collecetor and
the emitter junctions to be 10™3 cm?.
For the device in problem 6, draw the equivalent circuit for a) common base mode and b)

common emitter base mode.

For the device in problem 6, calculate the punch-through voltage, BV.go andBV gy . Assume
that the critical electric filed for breakdown in the collector-base junction is 200,000 V/cm. Take
asn=3

An n-p-n transistor has impurity concentrations of 101° cm =3, 101® cm ™3 and 10 cm ™2 in the
emitter, base and collector regions respectively. Assume that the distance between the two
metallurgical junctions, Wg; is 2.5 X 10~* cm. Assume that the emitter-base junction is
forward biased to 0.5 V. Find the punch-through voltage.

Assume that for the device in problem 10, 75 = 5 x1078 sec and the minority carrier lifetime in
the base is 1075 sec. Assume the transistor to be intrinsic. What is BV g, , assuming that y is
nearly unity. Take the value of the parameter 1 as 3 and BV p,to be 250V.

For the device in problem 11, determine fcq, fcg and fr . Assume the device is intrinsic i.e., you
can neglect the parasitic elements and the junction capacitances.

Assume an area of 1073 c¢m? for emitter-base junction for the device in problem 10. Assume g
is not the value given in problem 11. Assume the width of the neutral base region W' to be

V2 x 107* cm. Let the minority carrier diffusion constant in the base be 16 cm2%sec™1.
Calculate fcq and fcg at an emitter-base bias voltage of 0.6 V and a collector-base reverse bias

of 5 V. (Note: You are still assuming that y is nearly unity.)

For the operating voltage given in the last problem determine the equivalent circuit. Assuming
the area of the collector-base junction to be the same as that for the emitter-base junction.

Assume that V¢ is 10 V for the device in the last problem. Calculate the storage time when the
device is used as an inverter with a load resistor of resistance equal to 10 Kf2. Assume that the
base current drive is 2 mA and that the current has been on for a long time for the purpose of
calculating the storage time.

A switching transistor has the following characteristics fc*s = 10%Hz and fi = 108 Hz. The

device is used as a saturated inverter and assume (a) y, the emitter injection efficiency is nearly
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17.

18.

19.

20.

unity, b) the load resistor is 5K and (c) the collector supply voltage is 10 V. A base drive
current of 50 uA is applied at t = 0. Calculate the time required to turn the device on.

In the device in problem 16, assume that the base current of 50 uA is flowing for sufficiently
long time to establish steady state condition. Assume that at t = 0, the base current is switched
off. Calculate the turn-off time which is defined as the time required for the collector current to

. . 1 L
decay to a predetermined fraction such as ~or 10% of the initial value.

For the condition given in problem 17, determine the emitter-base voltage at time t = 0,

assuming that the device is a p-n-p transistor and the base doping is 101° cm™3.

The impurity concentration in the base of a n-p-n transistor is given approximately by the

function
!

—nNXx

Np(x') = Npg exp(— )

Where Npgg = impurity concentration at x’ = 0 and 7 is a parameter. Take W' as equal to 2

pum.

(a) What is the value of 5 if Ny = Ng(x’ = W') = 1073 Ngg. Do not confuse this  with the
one that we used to calculate BV g0

(b) What is the value of the electric field in the base?

Design a n-p-n transistor with the following specifications. It should have a minimum £, of 40

and it should be capable of withstanding a collector voltage of 100 V. It should have an intrinsic
beta cut-off frequency of 150 KHz or larger. Assume you can alter the minority carrier lifetime
to any specific design value by adding g-r centers with a capture cross-section of 10716 cm?.

Assume that the starting material has a lifetime of 100 usec. (Note: There is no unique design.)
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Chapter 5
MOS Devices

MOS devices refer to a class of devices in which a thin insulating layer such as silicon-di-oxide
(usually a thermally grown oxide) is sandwiched between a metallic plate and a semiconductor. The
term MOS stands for Metal-Oxide-Semiconductor. These types of devices are called field-effect devices,
since a voltage applied between the metallic plate and the semiconductor gives rise to an electric field
perpendicular to the interface between the semiconductor and the insulating layer. The electric field
alters the electrical properties of the semiconductor in a region close to the interface by inducing a
space charge. The term MIS is used to describe in which, instead of an oxide, any insulting layer is used.

MOS Capacitor

We will first consider a simple structure called an MOS capacitor, which is also sometimes called
an MOS diode. The device is just a parallel-plate capacitor with the metallic layer as one plate, and the
semiconductor as the other parallel plate, with the insulating layer as the dielectric region between the
parallel plates. The device is illustrated in Figure (5.1). This type of structure is fabricated by oxidizing the
surface of silicon in a furnace which is heated to a very high temperature, such that a thin oxide layer of
thickness typically less than 1000 Ais grown on the surface. Silicon has a great affinity for oxygen, and
therefore the thermal oxidation of silicon is easy to accomplish. The interface between silicon and the
oxide has a low interfacial charge. A metallic film is then deposited on top of the oxide layer to form the
MOS sandwich.

The metal is called the gate. In modern devices the gate is made of polysilicon instead of a
metallic layer. The semiconductor is called the substrate. A voltage applied on the gate with respect to
the substrate give rise to a perpendicular electric field in the oxide layer. The electric field induces
charge in the semiconductor. The induced charge generally exists over a certain spatial region of the
semiconductor, and hence it is called the spacer charge. The space charge is induced in a region very
close to the semiconductor-oxide interface. This field-effect is illustrated in Figure (5.2). &,, is the
electric field in the oxide layer. The electric field lines terminate on the charges in the space charge
region. Choosing the interface between the oxide and the substrate as the origin of the x-axis in Figure
(5.2), the space charge region extends up to a depth of x ; and the neutral region is below the space
charge region.

In the neutral region of the semiconductor, the net charge density is zero, and in the space
charge region of the semiconductor, the charge density is not zero. The total charge of the free carriers
in a neutral semiconductor, which is mostly due to majority carriers, is equal and opposite to that of the
ionized impurities. Hence, in the neutral region the charge density p is zero, as shown in the following
equation.

p=qlpy—no+ Ny —N;]=0 (5.1)

As done in earlier chapters, we use a subscript 0 to denote the thermal equilibrium carrier density. On
the other hand, in the space-charge region, the free-carrier densities are less than in the neutral region,
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and hence a net charge density results. The electrostatic potential, @, varies in the space charge region
as given by Poisson equation.

vVig=-L (5.2)
€s

The potential energy of the electron, which is equal to E, varies in the space-charge region with
distance, and therefore E; and E,, also vary with distance as we saw in our discussion of the depletion
region in pn junctions. This is usually called the bending of the bands in the space-charge region. In the
neutral region of the semiconductor, where the electric field is zero, the potential and therefore the
potential energy are constant with distance, and hence the band is said to be flat. This is illustrated in
Figure (5.3). Since there is no electric current in the direction of x, the Fermi energy, Er, does not vary
with x. In the example shown in Figure (5.3) we have assumed the substrate be p-type.

Nz
&

Figure (5.1): Cross-section of an MOS capacitor
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417

Figure (5.2): Illustration of the field-effect in the MOS structure. A sheet charge is induced in the gate
and a space-charge is induced in the semiconductor

Figure (5.3): The space-charge region in the substrate of an MOS capacitor. (a) Four distinct regions of
the MOS capacitor (b) The band-bending in the space-charge region of the semiconductor

. . L. E ..
The electrostatic potential, which is equal to — ;C plus an additive constant, can therefore be

written as
_ Er—E;

@ =-E"t (5.3)
q
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Recalling our previous discussions on carrier density, we can write

n= nie(El;c;Ei) = nie(%) (5.4)
and
p= nie(_%) = nie(_%) (5.5)

The neutral region beneath the space-charge region is referred to as the bulk, where the carrier
densities are at their thermal equilibrium values. The carrier densities in the bulk are denoted n;, and py,
and are given by

()
ny = n;e\ kT (5.6)
and
(- %)

pp = nje\ kT (5.7)

Here we have defined a bulk electrostatic potential as equal to
Er—Eip
@y = T (5.8)

where Ejj, is the intrinsic Fermi energy level, and Er — Ej;, represents the separation between the Fermi
energy and the intrinsic Fermi energy in the bulk. We can now write the expression for the electrostatic
potential @, in the bulk in terms of the thermal equilibrium carrier densities.

@, = k—Tln (@) = —k—Tln (@) (5.9)
q ng q n;

In an n-type substrate, n, is larger than n;, and hence @y,is positive, while in a p-type substrate pj, is

larger than n;, and therefore it is negative. Again we can express this in terms of the impurity

concentrations in the bulk by assuming that the majority carrier density is equal to the donor density in

the n-type substrate, and equal to the acceptor density in the p-type substrate. For example, in an n-

type substrate, n;, is equal to n,,o which is equal to N7 Hence

KT N KT N
@, =—In (—D) ~ —In (—D) (5.10)
q ng q n;
Similarly, in a p-type substrate, p,is equal to p,q, which is equal to N, . Hence
kT N4 KT N
@, =——In (—A) ~——In (—A) (5.11)
q n; q n;

The reader should easily recall that @is the same electrostatic potential @, or @,, we defined in
Chapter 2. In the above two equations we have made the assumption that at room temperature all the
impurity atoms are ionized, i.e., N7 = Np and N; = Ny. In the space-charge region, the electrostatic
potential varies due to band bending, and hence the carrier densities vary.
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n(x) = n, el )

(5.12)
and
(_ q G)(x))
p(x) =n;e\ "kt (5.13)
(%) x - %)
Multiplying both sides of the equation by e\ kT / X e\ kT /, which is equal to 1, we get
(qQ)b) (q(Q)(x)—@b))
n(x) =ne\kT/ e\ kT
(q(@(x) - (Z)b))
=nye kT (5.14)
and similarly,
(_ q(@(x)—@b))
p(x) = ppe kT (5.15)

We will now define as electrostatic potential difference, P(x) between x and x; ,as

Y(x) = 0(x) — 0, (5.16)

We can think of 1)(x) as representing the electrostatic potential at some point x, measured with
respect to the bulk. The carrier densities at x in the space-charge region can be now expressed in terms
of this electrostatic potential difference i as

(q¢<x))
n(x) = ny e\ «r (5.17)
and
(_ qw(x))
p(x) = ppe\ kT (5.18)

We notice that

n(x) p(x) =n, pp = ni2

The law of mass action is valid in the space-charge region, since the space-charge region is in thermal
equilibrium. The value of ratx = 0 is denoted v, and is defined as the surface potential (or more
correctly, the interface potential).

Ys =P (x=0) (5.19)

The electron and hole concentrations at the interface are obtained by substituting Y in Equations (5.17)
and (5.18)

qll’s)

ng=n(x=0) = nbe(F (5.20)
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py = p(x = 0) = pyel )

— q Y (x) denotes the value by which the potential energy ( and therefore E. ) is different at some value
x, from the value in the bulk. In other words, q ¥ (x) denotes the amount of band bending. If (x) is
positive, the potential energy at x is less than in the bulk, and the bands bend downward. The electron
concentration increases, and the hole concentration decreases from their respective bulk values (i.e.,
the values in the neutral region) as the interface is approached. If )(x) is negative, the band bends
upward as the surface is approached. The hole concentration increases and the electron concentration
decreases.

(5.21)

The amount of space charge induced in the semiconductor under a unit area of cross-section at
the interface is defined as the space-charge density Q.. If x4 is the width of the space-charge region,
then Q. is equal to

Qsc = f()xscp (x) dx (5.22)

Q. can be visualized as the amount of charge in the space-charge region contained in a cylinder of unit
area of cross-section and length equal to the width of the space-charge region, as shown in Figure (5.4).

We will now consider the behavior of the space-charge region under different bias conditions.
For the purposes of discussion of the principles involved, let us consider a p-type substrate, although we
could have (equally well) chosen an n-type semiconductor.

Figure (5.4): The space-charge density Q,,, is defined as the amount of charge in the space-charge
region under a unit area of cross-section at the interface. Therefore Q. is equal to the charge contained
in a cylinder in the space-charge region of length equal to the width of the space-charge region and unit

area of cross-section.

Accumulation

Let us first assume a negative charge voltage on the gate. The voltage is divided between the
oxide layer and the space-charge region. The potential across space-charge region is the surface
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potential Y5, and s is therefore negative. Another way of looking at this is that the electric field at the
interface is directed away from the semiconductor towards the gate. Potential increases from the
surface as the bulk is approached and hence 1) is negative. The induced space-charge is therefore
positive. The hole concentration increases from its bulk value, so as to give rise to a net positive charge
in the space-charge region. The hole concentration at the surface is given by

py = ppel~H7)

For a small increase in |4, ps increases enormously because of the exponential dependence on 1, and
also because py, (which is the thermal equilibrium majority carrier density) is large. The space-charge
region occurs in a very thin region near the surface, so that the space-charge can be considered as a
sheet charge. Since the majority carrier charge is increased at the interface by accumulating majority
carriers, the space-charge region is called the accumulation region. Under this condition, the
semiconductor is said to be accumulated.

(5.23)

The band-bending under conditions of accumulation is illustrated in Figure (5.5). The space
charge region extends to a width xg. = x,.. . Since the space charge due to accumulation extends over
a small region of very narrow width, the accumulation charge can be considered to be a sheet charge for
all practical purposes.

Figure (5.5): Band-bending under conditions of accumulation at the surface of a p-type substrate in an
MOS capacitor. In this figure, the conduction band and the valence band in the oxide are also shown.
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Example

Let us calculate the carrier densities at the surface, given the surface is accumulated with s = — 0.1V
and the bulk impurity concentration Ny =5 X 10c¢cm™3. Let us consider room temperature and
therefore we can assume that all the acceptor atoms are ionized at room temperature.

pp, =5x10¥%cm™3

_a¥s

Ps = DPp e( kT)

0.1

=5 10153(0.0259)cm_3

=24 x107cm™3

n, = — = 20,000 cm™3

Pp

(qll’s)
n, = nye\ kT

0.1

= 20000 X% e(_ 0-0259)cm‘3
=421 cm™3

The hole concentration at the surface is much larger than the hole (majority carrier) density in the bulk
and hence the surface is accumulated. Alternately, we can calculate ng, by using the law of mass action.

2 1020

= YR 421 cm™3

Depletion

When the gate voltage is positive, 1 is positive and the induced space-charge is negative. The
hole concentration in the space charge region is decreased from its thermal equilibrium value, and
hence the net charge is negative in the space-charge region. The space-charge is assumed to be only due
to the ionized impurity atoms, and not due to free carriers. It is therefore like the depletion region that
we considered earlier in the p-n junction. To calculate the potential variation in the space-charge region,
we make the approximation that, throughout the space-charge region, the free carrier density is small
compared with the impurity density. Hence we will refer to the space-charge region under these
conditions as the depletion region. The free carrier density varies in the depletion region due to the
potential variation as given by Equation (5.17) and (5.18). The hole density decreases and the electron
density increases as they move towards the surface. The assumption that the free carrier density in the
space-charge region is negligibly small in comparison with the impurity concentration is valid
everywhere in the depletion region except near the edge of the depletion region. However, we will
assume that even at the edge of the depletion region the free carrier density is negligible, by taking the
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majority carrier density to change abruptly from its thermal equilibrium value in the bulk to zero in the
depletion region.

We can express ng in terms of p,, the thermal equilibrium majority carrier density in the neutral
region as

ne = ny e(qk_ll;f) = ni (Q_%)

—+ e\ kT (5.24)
Pb
But py, is given by Equation (5.7). Rearranging Equation (5.7) as
(%)
n; = ppe’ kT (5.25)
and substituting, we obtain
2 q9p (_ q2 I%I)
ns 20
-t = pbe( kT ) = ppe kT (5.26)
Db
Therefore
(& (ws=2105])
ng= ppe kT (5.27)

From this we see that as long as ) is < 2 |@; |, the electron density at the surface is less than py,
and therefore less than N,. If the electron density at the surface is less than p, (= Ny), it is definitely
also less than N, throughout the space-charge region since n(x) is less than ng when 1, is positive. For
the entire range of Y values between 0 and 2 |@,,|, the assumption that the space-charge region is just
a depletion region is valid, and the semiconductor surface is said to be depleted.

When s = |@p|, ny = n; as can be readily seen. Therefore, when ¥ > |@,[, ng > n; and
ps < n;, In other words, at the surface, the electron concentration is larger than the hole concentration,
and hence the surface region is more like an n-type material as far as the carrier densities are
concerned, and hence the surface is said to be weakly inverted. We say that the surface is weakly
inverted because at the surface the electron concentration, n, is still less than the bulk majority carrier
density, p,,. It is therefore possible to subdivide the range of 15 values of 0 to 2 |@,,| as depletion when
Y, lies between 0 and |@, | and weak inversion, when 1) lies between |@,| and 2|@,|.

The band bending and the charge density in the space-charge region are shown in Figure (5.6),
when the surface is depleted. The band-bending under the condition v that satisfies 0 < ;< |@], is
shown in Figure (5.6 A), while the band-bending under the condition that i satisfies |@,| < @5 < 2|0, |,
corresponding to weak inversion is shown in Figure (5.6 B). In both cases the charge density in the
space-charge region is still equal to — gN,4. For our purposes, the entire range of 1) values between 0
and 2|@,| is said to correspond to depletion condition, for in this range the charge density in the space-
charge region is equal to — gN4. When the gate voltage, V;;, is of such a magnitude and polarity as to
make 1, lie between 0 and 2|@;,|, the MOS device is said in the depletion region of operation.
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Figure (5.6): Band-bending under conditions of depletion at the surface: A) Depletion B) Weak inversion

Strong Inversion

When 1, becomes larger than 2|9, |, according to Equation (5.27) the surface electron density
becomes larger than p;, and hence N4. The surface is said to be strongly inverted under this conditions.
The band-bending and the charge density under strong inversion conditions are shown in Figure (5.7).

The space-charge region under these conditions can be viewed as comprising two regions: one
in which the electron density is > N, and the other in which the electron density is < N4. The former,
which lies close to the surface is called the inversion region and the latter, that lies between the
inversion region and the bulk neutral region, is called the depletion region. The charge density in the
inversion region is determined by the electron density (since n(x) > Ny) while that in the depletion
region is just equal to gN4 since n(x) < Ny.

Referring to Figure (5.7), the region lying between the surface (x = 0) and x;, where
Y (x;) = 2|0,|, represents the inversion region. The region to the right of x; is the depletion region.
Thus when g = 2|@, |, x; occurs at x = 0. The inversion region has zero width. Hence, the condition
Y = 2|Dp| is called the on-set of inversion. As 1) increases beyond 2|@, |, the inversion region grows.
The surface is said to be strongly inverted. We denote the boundary between the space charge region
and the neutral bulk region X4 max- Hence the depletion region occurs between x; and X4 yax-

In reality, the inversion layer is a thin layer, the charge in this region can be approximated as a
sheet charge, and x; can be assumed to be negligibly small.
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0

Figure (5.7): Band-bending under inversion conditions

Relation Between V; and g

In this section, let us determine the relation between the gate voltage and the surface potential
or the space-charge density. Referring to Figure (5.8), when a voltage V;; is applied between the gate
and the substrate, the electric field, £,,, in the oxide induces a space-charge of density Qg in the
semiconductor. If €,, is positive, i.e., (directed into the semiconductor,) Q. is negative. Using Gauss’
law, Qg is given by

Qsc = — €ox€ox (5.28)
where €,, is the permittivity of the oxide, which is equal to
€ox = Kpx€p (5.29)

where K, is the dielectric constant of the oxide, and €, is the permittivity of free space. For silicon-di-
oxide, K,, = 3.9. The voltage across the oxide layer is denoted V,,,, and equal to

Vox = Eoxtox (5.30)

where t,, is the thickness of the oxide layer. Using Equation (5.28), we can write

Q
Vo = — ESC toy (5.31)

ox

A parallel plate capacitor using the oxide layer as the dielectric and with t,,, as the thickness of the
dielectric layer will have a capacitance per unit area (denoted C,,) equal to
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Cox = ox (5.32)

tox

We call C,, the oxide layer capacitance. Equation (5.31) can be rewritten as
Vox = — =2 (5.33)

Since the gate voltage is applied across the oxide layer and the space-charge region, V; is divided into
two components, one, V,,, across the oxide layer, and the other, 1), across the space-charge region.

Ve = Vox + s (5.34)

Since Qscdepends on the surface s, we will denote Qg as Qs ( Ws). Combining the equation for V,,
with the above equation, we can write V;; as

Ve = _ Qsc(¥s) + P, (5.35)

COX

We can now determine the relation between ) and V;; for accumulation, depletion and inversion
conditions.

Figure 5.8: The MOS diode under the application of a DC bias
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Figure (5.9): Sheet charge of majority carriers under accumulation condition

Accumulation

As stated before, we will assume that the space-charge is a sheet charge under accumulation
conditions, and we take i = 0. By putting s = 0 in Equation (5.35), we get

_ <2SC
Cox

VG ==

Denoting the space-charge density in accumulation as Q, ., we get

Qace = — Cox Vg (5.36)

In p-type substrates, the accumulation charge is due to holes and it is also customary to write

Qacc = Qp

Hence

Qp = Qacc = —Cox Vg (5.37)

Since Vi is negative in the accumulation condition for a p-type substrate, we see that

p = Coxl Vgl (5.38)

The accumulation sheet charge is illustrated in Figure (5.9). The origin of the x-axis is chosen at the
oxide silicon interface, and the gate electrode is located at x = —t,,, in this figure. We see that the
charge on the gate is a sheet charge and the space-charge is also a sheet charge at the surface of the
semiconductor.
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Example

Consider an MOS capacitor with a p-type substrate. Let the oxide thickness be 500 A. calculate the
accumulation charge density at a gate voltage of - 5V.

€ Kox€ 3.9%x8.85x%x 10”14 _
C,, = -2 = —oxfox _ =69 x 1078 F/cm?
tox tox 500 x 10~8

( A useful number to remember for C,, is 3.45 X 1078 F /cm? for 1000 A of oxide thickness.)

Qace = Qp=—0Cox Vo= —69 x 1078 x (=5) = 3.45 x 1077 C/cm?

Depletion

We now apply a positive gate voltage of such a magnitude as to keep 1 less than 2|@p|. s is
positive. As stated before, the space-charge is due to ionized impurities, and hence the space charge
region is a depletion region. As discussed in chapter 3, all the impurity atoms (acceptors for a p-type
substrate) are ionized in the depletion even at low temperatures, in contrast to the neutral region
where the impurity atoms are only ionized partially at low temperatures.

The charge density in the depletion region is
p= —qNy (5.39)

and the potential difference across the depletion region is 1. Although the depletion region can be
treated as similar to that arising in a one-sided abrupt junction, and the expression for the space-charge
density written straight away, we derive the expression for ¥¢(x) again using Gauss theorem approach.
Consider the band-bending under depletion condition shown in Figure (5.10 A), and the corresponding
space-charge region shown in Figure (5.10 B). The electric field £(x) at some point x in the depletion
region is due to negatively ionized acceptor atoms lying between x and x; in the depletion region and
the direction of the electric field is positive since the charge is negative.

g(x) - qN (xd - X)

(5.40)
€s
Integrating, we obtain
Ys(x)= — [Edx +C
x2
N —_
__4a aAXgx = =) +C (5.41)

€s
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Figure (5.10): A) Band-bending under depletion conditions. B) The space-charge is due to depletion
charge.

where Cis an integration constant. At x = x4, ¥(x;) = 0. Hence

Ng x3
Cc = 124X (5.42)
2€g
Substituting this expression for C,
2 x2
_ aNalxax-F5—=9
lps(x) - e
N
Ny 2
=q 5 (xg — x) (5.43)
€s
atx =0,y = 1),. Hence
Ng x3
hy = 1A (5.44)

2€g

Hence the expression for 1(x) can be expressed as

Y@) = q 32 (g —x)?



= 1, (1 _1)2

Xd

(5.45)

The space-charge density under depletion conditions is denoted @, since the charge is only due to

depletion charge.

Qs¢c = Qq = —q Ny xq4

We can now express V;; as

Qd qNaxq
Vo= — ot g, =Ty y,
COX CO.X'

From Equation (5.44), we can write x, as

2 € YPs
Xq = / —
d qNg
Using this expression for x4, the depletion charge density Q4 can be expressed as
_ _ 2655
Qa=—qNyxqg= —qNy aNa = — 26,9 Ny g

Substituting the expression for Q in that for V;, we get

VG — V2€6sq Ny ¢s+ l/)s

COX

Example

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

Let us calculate the depletion region width in a p-type substrate when the band-bending is 0.5 V.

Assume the net acceptor density in the substrate is 5 X 10°cm™3. ¢, = 0.5V

X, = 265 s — 2 Ks€p Ps
d qNa qNa

_ 2X11.9%8.85%x10714x0.5
o 1.6X10~19x5x1015

= 3.63 x 10"°cm=0.363 um

-236-

= v1.316 x 1079



This result can be scaled for other values of Y, by multiplying the result by ’% and for other values of

5x1015

N, by multiplying by . A useful number to remember is 1.15 um at 1 volt drop across the

depletion region for an impurity concentration of 10%° cm=3.

Example

Let us calculate the gate voltage needed to bend the band by 0.5 VV under depletion in an MOS capacitor
with an oxide thickness of 500 A and a net acceptor density, Ny =5 X 10'3cm™3. C,, = 6.9 X
1078 F /cm? from one of the previous examples.

VG — \/ZesqNA‘l’s_i_ l/}s

COX

_ V2x11.9 x8.85x10"1#x1.6x10~1% x5x1015x0.5
N 6.9x10~8

+ 0.5

=092V

1
To obtain an expression for ) in terms of V;, we rewrite equation (5.50) as a quadratic equation in 2

as

1
Ys+ K2 =V =0

V2€sqNg

ox

where K = . Solving this quadratic equation

-K +.K%2+4Vg

1
P52

= > (5.51)
1
Substituting this expression for )52 in the quadratic equation and rearranging, we get
-K? + K\/K2+4V
Ve = s + >
K2+ k2 [1+%%6
B K?+K /1+ 3
= Ps + 5 (5.52)
Since Ys = 0 when V; = 0, we take only the positive sign in front of the radical
K? 4V
VG=l/JS+ 7( 1+?—1> (5.53)
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Or

K? 4V
Ys=Vo— — | J1+-7—1 (5.54)
Example

Let us calculate the surface potential of the MOS capacitor discussed in the previous example for a gate
voltage of 0.7 V.

K? 4V
=V;— — | [1+=-2=-1
l/)S G 2 K2
K = J2€sq Ny _ V2x11.9 x8.85x10~14x1.6x10~19 x5x1015
T Cox 6.9x10~8
= 0.59VVolt
0.592 2.8

-1

¢g =:037'— —Zr— 1'+

0.592

=035V

Onset of Strong Inversion

We can now derive an expression for the gate voltage which corresponds to the onset of strong
inversion. Onset of inversion occurs when g = 2|@;,|. We denote this value g ;.. When the gate
voltage exceeds the value corresponding to the onset of inversion, strong inversion occurs. For this
reason, the gate voltage is called the turn-on voltage, since the gate voltage has to exceed this voltage
to turn the device on. Denoting the threshold voltage as Vr, we find

VT — \J2€sq Ny Vs inv

COX

+ l/)s inv

A2 Ny2
— €Esq Ny |®b| + 2|®b| (555)
COX

We are assuming that at the onset of inversion, there is no contribution to the space charge from
electrons, and that the space-charge is essentially depletion charge.
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Example
Let us determine the threshold voltage, Vr, for the MOS capacitor discussed in the previous examples.
Ny, = 5x10® cm™3

Hence

Dy = — %ln (N—‘Z) ~ — %ln (&) =-0.34V

n; n;

Vs iny = 2|®b| = 0.68V

Vo = = V2€sq Ng Y5 iny
==

COX

+ lps inv

_ V2x11.9 x8.85x10"1#x1.6x10~1% x5x1015x0.68
N 6.9x10~8

=117V

+ 0.68

Strong Inversion

The space charge, under strong inversion, arise due to both the inversion charge (the minority
carrier charge at the surface) and the depletion charge. Denoting the inversion charge per unit area of
the surface as Q.

Qsc = Qiny + Qq (5.56)

For a small increase, A 1, in the surface potential beyond v ;,,,, (equal to 2|@, | ), the inversion charge
density, Q;,, increase enormously since the minority carrier density, n, increase exponentially with

surface potential. On the other hand, the depletion charge density, @4, increase only slightly since it is
1
proportional to 2. The exact calculation of Qg-( Y5 ) in strong inversion is treated in advanced text

books, and is beyond the scope of this book. Hence we will calculate Q.- ( 15 ) using an approximation
called Depletion Approximation. According to this approximation, in strong inversion the depletion
region width, and hence the depletion charge density do not increase once inversion sets in i.e., they
remain constant at a value they had at the on-set of inversion. i.e., corresponding to g = P iy =
2|@,|. This means that beyond the on-set of inversion, the space-charge density, Qg, increases only
due to an increase in the inversion charge density. Since the depletion region width does not increase
once inversion sets in, the depletion region width is presumed to have attained a maximum value at the
on-set of strong inversion and is denoted x; ;4 Where

_ 265 Y5 inv _ 2€52|0p|
Xgmax = | —2tsine = 26210 (5.57)
qNa qNa

The depletion layer charge density, which also does not increase once inversion sets in, is denoted

Q4 max Where
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Qamax = —qNaXgmax = — \/zesq N42|@p| (5.58)

Therefore
Qs¢ = Qinv + Qamax = Qinv — \/ZESC[ Ny2|@p| (5.59)
Under strong inversion, 1, can be written as
Ys = Ysimp + A5 = 2(0] + A1, (5.60)
Qinv

As already stated, for a small 4 Y, Q;y,,, increases enormously. As V; is increased, the term - . will
ox

increase enormously, while 4 ¢ will change only slightly. Hence in the depletion approximation, 4 1 is
neglected and 1 at inversion is taken as 2|0, |.

VG — _%4_ lps=_Qinv_ Qdmax+ 2|®b|+ Al/Js

COX COX COX

__Qinv+ VZESQ:A2|¢b| + 2|®b|+ Al/Js

(5.61)

COX ox

Using Equation (5.55), we can write

Ve = — L4 Vo 4+ A, (5.62)

COX

Hence we can write

V= — Lm gy (5.63)

COX

Therefore

Q iny = —Cox(Ve — V1) (5.64)

This equation implies that the inversion charge density is zero when V; < V. However, in
reality it is not true, and there is some inversion charge density even when V; is equal to V; or slightly
less than V due to weak inversion. However, in the region of strong inversion, i.e., when V; > Vr, the
depletion approximation is reasonable and Equation (5.64) is valid. The inversion charge density
increases linearly with the gate voltage. Since the inversion charge density is due to electrons in a p-type
substrate, the inversion charge density, Q ;,, is also denoted Q,,.

Qiny = Qn = — Cox (Vg — V7) (5.65)

So far we discussed accumulation, depletion and inversion using a p-type substrate as a
reference. If we use an n-type substrate, we will get similar expressions for the various parameters,
excepting in accumulation we will have a sheet charge of electrons, and in inversion a sheet charge of
holes. Also the signs will be opposite for different parameters. Table 1 summarizes the expressions for
different parameters in both p-type and n-type substrates when the MOS capacitor is biased into
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accumulation, depletion or inversion. Referring to Table 1, it can be seen that the surface potential is of
opposite sign in an n-type substrate in comparison to the p-type substrate.

Table 5.1 Difference between substrate types

Bias Parameter p-type n-type
e.s. potential, @, _ ﬁln (E) _ kT n (@)
q n; q n;
Surface Potential, <0 >0
Accumulation
Space charge density, =Qp & — CoiVs ==Q,= —C,V;
Qsc = Qacc
Surface Potential, s —20, > Yy >0 —20, < Y, <0

Depletion

Space charge density, Qg¢

=0Qq = — 26, Ny s

= Qq :VzesqNDllpsl

On-set of
Inversion

Surface Potential, Y,

Space charge density, Qg¢

= =20, = 2|0,

= Q4 max = — v 2€,q N42|0|

= —20,

= Q4 max = v 2€5q Np20,

Strong
Inversion

Surface Potential, Y,

Space charge density, Qg¢

Threshold Voltage, V-

Inversion charge density, Qi

> — 20, but! =~ — 20,

=0Qn + Qdmax

Q
- _ dmax+ Zlq)bl
Cox

= = Cox (Vg = Vrp)

< — 20, but! = — 20,
= Qp + Qamax

Qd max
)
T + 20,

= Qp = = Cox (Vg — VT)

1- Depletion Approximation

Non-ldeal MOS Device

Till now we discussed as ideal MOS Device. What do we mean by an ideal MOS device? An ideal
MOS device is one in which there is no induced space charge in the semiconductor in the absence of the
gate voltage. An non-ideal MOS device, on the other hand, is one in which there is a space-charge in the
semiconductor even in the absence of a gate voltage. Real MOS device have a space charge in the
semiconductor even when the gate voltage V is equal to zero. There are three causes for this non-ideal
behavior, and they are:
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1. Charges in the oxide
2. Difference in work function between the gate and the substrate
3. Surface state charges

We can apply a voltage on the gate that will reduce the induced space charge to zero, and we define
that voltage as the flat-band voltage, Vg. The reason for using the concept of the flat-band voltage is
to describe the behavior of a non-ideal MOS device as though it were an ideal device with a bias voltage
applied on the gate equal to the flat-band voltage Vig. For example the threshold voltage of a non-ideal
MOS device can be written as

Vi non—ideal = V1 idear + Vrs (5.66)

Actually, this relationship is not exactly valid due to the presence of surface states, but for all practical
purposes this can be taken as valid. Let us now determine the flat-band voltage arising from the three
different sources of non-ideal behavior.

Charges in the Oxide

Due to the manner in which the silicon atoms are bonded to the oxygen atoms in the growth of
the oxide layer in a thermal oxidation process, the oxide layer contains some positive charge. The
positive charges in the oxide induced a negative space charge in the semiconductor, and the magnitude
of the induced charge will depend on the relative location of the charge in the oxide between the metal
and the substrate. Let the positive charge in the oxide have a density p(x), and let it vary in some
arbitrary fashion as shown in the Figure (5.11). In this figure we have chosen the origin, (x = 0), at the
oxide-silicon interface, and the oxide-gate interface at x = —t,, where t,, is the thickness of the oxide
layer. Consider the charge in the oxide in an elementary region between x and x + dx. This charge can
be thought of as a sheet charge of density p(x)dx. According to the theory of images, the sheet charge
p(x)dx, located at a distance x on the x-axis from the oxide-silicon interface, will induce charges both
on the gate and in the semiconductor. The charge induced in the semiconductor is proportional to the
distance between the sheet charge and the gate and similarly the charge induced in the gate is
proportional to the distance between the sheet charge and the semiconductor. Hence it is possible to
write the space charge induced in the semiconductor per unit area of the interface as

dQSC - _ p(x)dx x_i_tox) — _p(x) (toxtx) dx (5.67)

ox tOX
In writing this equation, we must note that x is negative due to our choice of the origin of the x-axis and
1 . . . .
- can be shown to be the proportionality constant. The total induced space charge per unit area of the

ox
interface due to the entire positive charge distribution in the oxide is then given by

0 p(x) (tox+x) dx

Qsc = fdQsc= - f_

Let us now apply on the gate a voltage equal to gsc

(5.68)

tOX tox

. This voltage will give rise to a charge, Qg.
ox

on the gate. According to Gauss’ theorem, all the electric field lines emanating from the positive charge
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in the oxide now terminate on the charges on the gate. The space-charge in the semiconductor becomes
zero. Hence, the flat-band voltage Vg can be expressed as the voltage necessary to apply on the gate
such that the charge on the gate is Q.

o = 25
= __1 fo (x) (tox +x) dx (5.69)
Coxtox _tOXp ox .
- _ CL f_‘)tox p(x) (t,0 + %) dx (5.70)

We define an effective sheet charge density in the oxide as Q,,, which is equal to

1 (0
Qoy = —Qgc = af_toxp(x) (tox +x) dx (5.71)

Hence the flat-band voltage is then given by

Vep = — &€ (5.71)
COX
|
N ................... = _bq_
,--'—--u.‘\\-x /’/1‘ —
NI
N

\/////(//

X+0X

Figure (5.11): Am arbitrary charge density in the oxide.

Example

Let us now consider an example in which we assume that the oxide layer has a thickness of 1000
A, and has a uniform charge density of 101> ions/ c¢m3. Since p(x) is a constant, say equal to py, Qsc
(or Qo) can be evaluated taking p outside the integral.
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p(x) (toxtx) dx

tox ox

Qs¢c = —0Q =_f

= —Fo f_otox(tox + x) dx

tox
x21° t
tox 2 —tox 2
In this example, Qs becomes equal to
1015%1.6x10719%1000%x10~8 _
Qsc = — - = —0.8 x10%¢/cm?  (5.73)
€ Kox€ 3.9 x8.84x10714 _
C, = 2= 22— — ~ 345 x 1078 F/cm? (5.74)
Cox tox 1000 X 10
Hence
-0.8 x107°
Vep = ——— = —-0.023V 5.75
FB 3.4 x10~8 (5.75)

Note that the flat-band voltage due to the positive charge in the oxide is the same for n- and p- type
substrates. It is negative since the charge in the oxide is positive.

Work Function Difference

Every material has a characteristic work function. Work function is defined as the difference
between the Fermi energy and the surface barrier energy, where the surface barrier energy is the
energy that an electron inside the solid must have in order to leave the solid and escape into vacuum.
The surface barrier energy therefore, is also called the vacuum level, E,, .. This is illustrated in Figure
(5.12). We denote the work-function of the solid as g& and is given by

q® = Eyac — Er (5.76)

The student should note that @, although it is in units of volt, is not the electrostatic potential.

Figure (5.12): Work-function of a solid
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Let us now consider two solids A and B with work functions g®, and q®p respectively. Let g
be less than @,. Let the two solids be not connected to each other as shown in Figure (5.13 A). Since the
two solids are not connected to each other, the vacuum levels for the two solids are at the same level
since an electron that is excited with enough energy to overcome the surface barrier energy will have
zero kinetic energy in vacuum in both solids. The Fermi energy is at a higher level in B than in A since it
has a smaller work-function. If the materials A and B are connected to form a junction as shown in
Figure (5.13 B), electrons will move from material B into material A so that the Fermi levels are lined up.
Hence B will be positive with respect to A. A potential difference, g = P, — P will arise between B
and A. This potential difference is called the contact potential.

Figure (5.13): Two solids with different work-function: A): The solids are not connected to each other,
and B): The solids are connected to each other.

When we consider the work function of a semiconductor, a similar definition follows. The
vacuum level and the conduction and valence bands are shown in Figure (5.14). We notice that the
location of the Fermi energy in the bandgap is dependent on the type and density of dopant (impurity)
atoms. The work-function is therefore not a constant for a given semiconductor material and depends
on whether it is n or p type material and also on the resistivity of the material. On the other hand, the
difference in energy between the conduction band minimum, E, , and the vacuum level, E,,., is a
constant for a given semiconductor material. This difference is called electron affinity, and denoting
affinity as y we have

Evac_Ec

X = T (5.77)

In a pn junction, n- and p-type semiconductor materials form a junction. This is equivalent to
connecting a p-type and an n-type semiconductor. We saw that a potential difference, called the built-in
voltage, V,;, exists between the n-region and the p-region in a pn junction. The built-in voltage is just
the contact potential as shown below:

Let us denote the work-function of the p-type semiconductor ®,, and that of the n-type
semiconductor as ©,.

q®, = Eygc —Ep1 = qx + E. — Epy (5.78)
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Where Eg4 is the Fermi level in the p-type semiconductor. But

E E
Ec. —Ep = ?‘g+ Ei_EFlz?g+q|®p| (5.79)
Where Q)p is the bulk electrostatic potential of the p-type semiconductor. Therefore
Eg
q0: =qx +- + q|9,| (5.80)
Similarly, it can be shown that
Eg
q®2 = qx +- —q oy (5.81)

where @,, is the bulk electrostatic potential of the n-region.

Hence the work-function difference, ®,, = ®; — @, is equal to
CI)]_Z = q)l - CI)Z = |®p| + @n = Vbi (5.82)

In an MOS device when there is a difference between the gate and the semiconductor work
function, a potential difference arises. Let ®,,; be the work function of the gate and & be the work
function of the substrate semiconductor. Therefore the substrate is positive with respect to the gate by
an amount equal to the contact potential @, where ®,5 = @y, — Ds. This will therefore give rise to a
space charge in the semiconductor. If we now apply a voltage @, it will exactly balance out the
contact potential difference, and hence no space charge will be induced in the substrate. We can
therefore conclude that the flat-band voltage Vg required to account for the work function difference
is given by

VFB == CI)MS == CDM - CI)S (5.83)

Figure (5.14): Electron affinity and work function in a semiconductor
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Surface States (Interface States)

At the interface between the oxide and the substrate, there are a large number of states due to
unfilled covalent bonds which are called dangling bonds. These states can be charged or neutral. These
are called interface states or surface states. Usually these states are distributed continuously in energy
in the band gap. Let us define D;; as the number of states per unit area per unit energy interval at some
energy level E. Then in an energy level dE between E and E + dE, the number of states per unit area is
D;;dE. A surface state will be more positively charged if the Fermi energy is below it. On the other hand,
it will be less positively charged if the Fermi energy is above it. Thus, the location of the Fermi energy in
the band gap at the surface determines the amount of charge in the surface states. Although the Fermi
energy remains constant with distance, its location in the band gap at the surface changes as the band
bending changes (i.e., as 15 changes). Hence the amount of charge in the surface states changes. The
charge in the surface states is located at the interface, and therefore is a sheet charge. If Qg; is the sheet
charge density at the surface, then Qq; is a function of ). The sheet charge at the interface between
the semiconductor and the oxide induces a space charge of density —Q,; in the semiconductor. Hence if
we apply a charge on the gate equal to —Q,;, then the space charge will be completely removed from
the semiconductor. This is again based on the principle of Gauss’ theorem that the electric lines of force
emanating from the surface state sheet charge Qs now will terminate on the sheet charge —Q; on the
gate. Hence we can write the flat band voltage V5 as equal to

VFB — —Qst(s=0) (5.84)

CO X

The total flat band voltage due to all the three sources is

=0
VFB = — % + CI)MS - —QSt(lpS ) (5.85)
COX COX
On the other hand, the threshold voltage V of a non-ideal MOS structure is
_ Qox Qst (Y5 = 2|Dp1)
VT non—ideal ~ VT ideal = '~ — + cI)MS - C
ox ox
AQst

= Vridear + Ve — — (5.86)

COX

Where

AQse = Qse(Is] = 21@,|) — Qs (Y5 = 0) (5.87)

In most modern devices, AQ,; is very small, and hence it is reasonable to express the threshold voltage
as
Vi = Vrigear + Vis (5.88)

A
and neglect the — %term.

ox

Example
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Let us assume that the surface state density, D;; , is a constant with energy (i.e., it has the same value
throughout the band-gap) with a value equal to 5 x 109 eV "1cm™2. Let the oxide thickness be 1000 A.

. A
Let us assume a p-type substrate with N, = 5 X 101°/cm3. Let us calculate the value for — 295t The

ox

change in 15 between flat-band and on-set of inversion is equal to 4 Y = 2|@].

5x1015
5x1010

o) = —kq—Tln (ﬂ) = —0.0259 1n(

nj

) ~ —0.298

A, =2 %0298 = 0596V

AQ; is negative, since the bands bend downward at inversion (Fermi energy rises in the band gap at the
surface).

s=2|0p|
AQse = = [, Nig dp = —q Ny A9
=—-1.6 x 1071 x 5 x 101° x 0.596

= —477% 107° ccm™?

Therefore

AQs 477 % 107°

— =0.14V
C,, 3.45x 1078

In modern semiconductor devices, the interface state density is lower by a factor of 10, and the oxide
AQs¢

thickness is of the order of 200 A. Hence — is a couple of millivollts, and hence negligible.

ox

Capacitance Effect

In a parallel plate capacitor, which is formed by having a dielectric medium between two parallel
metal plates, equal sheet charges but of opposite sign are induced on the two plates when a voltage is
applied across this capacitor. The charge on the metal plate which is connected to the positive terminal
of the voltage source has a positive sheet charge and that which is connected to the negative terminal
has a negative sheet charge. The capacitance is determined only by the geometrical structure of the
parallel plate capacitor. The capacitance is inversely proportional to the thickness of the dielectric
material between the plates and proportional to the area of the plate. On the other hand, when an MOS
capacitor is fabricated with silicon (the substrate) as one of the two parallel plates, the induced charge
in the semiconductor is not a sheet charge but a space charge which under certain specific conditions
can be approximated as a sheet charge as discussed earlier. The magnitude of the space charge is not
directly proportional to the potential drop across the space charge region, (the surface potential).
Hence, the capacitance in an MOS capacitor is voltage dependent. In this section we will examine the
voltage dependence of the capacitance of an MOS capacitor. Let us first consider an ideal MOS
capacitor.
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Ideal MOS Capacitor

Let us now assume that a DC voltage V;; is applied on the gate of an MOS capacitor so as to bias
the device in one of the three regimes of operation, i.e., accumulation, depletion or inversion. The
applied voltage is divided into a voltage, V,,, across the oxide layer and a potential drop, 5, across the
space charge region. Let us assume that additionally a step voltage of a very small amplitude dVy, is
applied in series with the DC voltage V;, as shown in Figure (5.15). The applied voltage dV is also
distributed partially across the oxide and partially across the space charge region, giving us the
relationship

dVe = dV,, + dy (5.89)

where dV,, and di, are the incremental changes in I/, and ), respectively. dV; gives rise to a small
sheet charge dQ on the gate electrode in addition to the already existing sheet charge due to the bias
voltage V. Similarly, the space charge density in the semiconductor increases by dQs.

where

dQsc = —dQ (5.90)

We divide the above equation for dV; by |dQs| to obtain

dVg _ dVoyx adys
aqQ |[dQscl = 1dQscl

(5.91)

d
The differential of the gate (sheet) charge Q, with respect to V, given by %, denotes the ratio of the
G

incremental change dQ@ in the gate charge Q to the incremental change dV; in the gate voltage, and is
defined as the small signal capacitance C of the MOS capacitor of gate area equal to unity.

dve 1 1
S (5.92)
Q —=<_ Cc
dvg
FITIIIIIIS

Figure (5.15): A small step voltage in series with a DC bias voltage V; applied across an MOS capacitor
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The differential of Q with respect to I/, similarly is equal to the capacitance of a parallel plate capacitor
with the oxide layer between two metallic plates. Denoting this as the oxide capacitance per unit area,
Cox, We obtain

dv dv 1
= —E = — (5.93)
|dQSC| dQ Cox
where
€
Coy = == (5.94)
tOX

The differential of |dQs| with respect to Y is defined as the space charge capacitance Cs. and is given
by

d 1
i = (5.95)
|dQscl  Csc
Therefore
1 1 1
-—=— 4 — (5.96)
c Cox CSC

The small signal equivalent capacitance of an MOS capacitor of unit area can therefore be described as a
series combination of two capacitors, one C,,, and the other Cs., and this is illustrated in Figure (5.16).
Instead of an incremental voltage dVj;, let us now apply a small sinusoidal voltage ¥ in series with the DC
voltage across the MOS capacitor, as shown in Figure (5.17). Due to the small signal voltage ¥, a small
signal current 7 flows. By measuring the ratio of ¥ and 1, the capacitance C can be determined from the
relation

1

C = Y (5.97)

where w is 21 time the frequency of the small signal voltage ¥. If Q is the component of space charge
that varies sinusoidally in step with 7, then

C = ?— (5.98)
D
The measured capacitance C is
Cox C
Cox* Csc

where the area of the gate is assumed to be unity, C,, is the oxide capacitance per unit area, and Cg is
equal to space charge capacitance per unit area. If we were to consider a MOS capacitor of area 4, then
the measured capacitance, G, is equal to A X C where C is the capacitance per unit area.

Q= Quc (5.100)
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Figure (5.16) Equivalent circuit of an MOS capacitor

Figure (5.17): A sinusoidal voltage in series with a DC bias voltage applied across an MOS capacitor

Let us now evaluate the small signal capacitance for different regimes.
Accumulation

The charge distribution in the MOS device under accumulation conditions can be visualized as
shown in Figure (5.18). Let us assume that x = 0 represents the interface between the oxide and silicon.
Let the interface between the gate and the oxide be located a x = — t,,,.

The accumulation charge is located at x = 0 as shown in Figure (5.18). Q4. is a small component of the
total sheet charge which varies in step with the applied small signal voltage 7.

C _ |dQSC| _ ancc
SC -

= (5.101)
ds dys
Since Q. changes enormously for a small change in )5, Csc is very large. Hence
1 1 1 1 1 t
C Cox Csc C Cox €ox

-251-



The above equation shows that the measured capacitance of the MOS capacitor in the accumulation
regime of operation is essentially equal to the oxide capacitance. The equivalent circuit is just a simple
capacitor C,, as shown in Figure (5.19)

Figure (5.18): Charge distribution in the MOS capacitor under accumulation conditions.

Figure (5.19): Equivalent circuit of an MOS capacitor when the surface is accumulated. The MOS
capacitor has a capacitance equal to C,, in accumulation.

Depletion

The space charge under depletion conditions is the charge in the depletion region in the
semiconductor. The applied elementary sinusoidal voltage induces a sinusoidally varying depletion
charge in the semiconductor. The sinusoidal depletion charge variation occurs at the edge of the
depletion region, as shown in Figure (5.20) The space charge capacitance is the depletion region
capacitance which is equal to

Csc = Cy = ;—2 (5.103)
where x, is the depletion region width. The equivalent circuit is shown in Figure (5.21). Since the
depletion region capacitance is comparable to or less than the oxide capacitance, the net capacitance of
the series combination of Cs. and C,, is less tha C,,. As the gate voltage is increased so as to induce a
larger space charge region, the width of the depletion region x; increases, and therefore the space
charge capacitance Cs. (= C;) decreases. Hence the capacitance of the MOS capacitor decreases as

the gate voltage is increased.
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Figure (5.20): Charge distribution in the MOS capacitor under depletion conditions.

Figure (5.21): Equivalent circuit of an MOS capacitor when the surface is depleted.
Inversion

When the gate voltage is increased to a value larger than the threshold voltage, we saw earlier
that the space charge is due to both the inversion charge and the depletion charge. Due to the applied
voltage dV;, an increase in the inversion charge occurs if minority carriers can be generated fast enough
in the depletion region. Then the inversion charge has a component that varies sinusoidally in step with
the small signal voltage . For the inversion charge to change in step with applied voltage, the sinusoidal
voltage should change slowly with time. The period of oscillation of the sinusoidal voltage 7 has to be
much larger than the minority carrier generation lifetime 7 (i.e., @ < Ti ). The sinusoidal change in the

g
space charge density therefore is equal to

Qs¢c = Qiny
and occurs at the silicon surface as shown in Figure (5.22). The range of frequencies for which w < L

Tg
called the low frequency region.

dQSC _ innv
dips — dip;

Csc =
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Figure (5.22): Low frequency charger distribution in the MOS capacitor under inversion conditions.

Hence it is large since the inversion charge increases enormously for a small change in 5. At low
frequencies the MOS device behaves like a parallel plate capacitor with an oxide dielectric between the
two parallel plates since the sinusoidal change occur on the gate and in the semiconductor at the oxide
interface. The capacitance of the MOS capacitor under these conditions is the same as the oxide
capacitance. The equivalent circuit under inversion conditions is shown in Figure (5.23).

Figure (5.23): Low frequency equivalent circuit of an MOS capacitor under inversion conditions

If sufficient time is not allowed for minority carriers to be generated, the inversion charge is not
able to change in step with applied voltage and hence the incremental change in the space charge
density occurs at the edge of the depletion region adjacent to the neutral region of the semiconductor
as shown in Figure (5.24). In other words, if the period of the sinusoidal voltage ¥ is much less than the
minority carrier generation lifetime 74, then the elementary sinusoidal change in the space charge dQ

occurs at the edge of the depletion region. The range of frequencies for which w > Ti is called the high
g

frequency region. The measured capacitance at high frequencies therefore will be the oxide capacitance

in series with the depletion capacitance corresponding to a depletion region with a maximum width,

X4 max- Figure (5.25) shows the equivalent circuit of the MOS capacitor under high frequency conditions.

Due to the different responses of the space charge density at low and high frequencies, the space

charge capacitance will have different values at low and high frequencies.
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Figure 5.24 High frequency charge distribution in an MOS capacitor under inversion conditions.

Figure 5.25 High frequency equivalent circuit of an MOS capacitor under inversion conditions.

C-V Curve

The plot of a small signal capacitance of an MOS capacitor as a function of the DC bias (gate)
voltage is called a capacitance-voltage (C-V) curve. While the C-V curve will be the same for both high
and low frequencies in the accumulation and depletion regions, there will be a difference in the
inversion region behavior. At intermediate frequencies, the C-V curve will lie between the high
frequency and the low frequency curves, under inversion conditions. This is illustrated in Figure (5.26).
Cmin is the value of the capacitance measured in inversion under high frequency conditions, C,, the
oxide capacitance. At intermediate frequencies, the capacitance measured in inversion region has a
value intermediate between Cy,,;;, and Cp,.
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Figure (5.26): The capacitance-voltage (C-V) characteristics of an MOS capacitor at low, intermediate
and high measurement frequencies.

Deep Depletion

Let us now assume that a step voltage of amplitude V; (> dV7) is applied on the gate at time
t = 0. Let us also apply a small sinusoidal voltage ¥ in series with the step voltage V; as shown in Figure
(5.27). The purpose of ¥ is to measure the small signal capacitance, and it is therefore called the probing
signal. Immediately after the application of the step voltage, that is at t = 0", the induced space charge
will essentially be due to the depletion charge. This is because there is no time for the inversion charge
to be generated by thermal generation of minority carriers. The depletion charge is increased beyond
the maximum depletion charge obtained under steady state conditions. The space charge region under
this condition represents the non-equilibrium condition. At t = 0%, the depletion region widens to a
large value x 4o+ which is much larger than x4 4. Hence, the condition is called “deep depletion.” The
generation and recombination rates in the space charge are not what wll be obtained in thermal
equilibrium, and do not balance each other out as required by the law of mass action. Minority carriers
are generated in the space charge region in excess of what are lost due to recombination. These
minority carriers will be driven towards the interface, where they will form the inversion charge, while
the majority carriers proceed in the opposite direction. Part of the majority carriers generated will
neutralize the ionized impurities at the edge of the depletion region, thereby reducing the depletion
region width while the rest of the majority carriers will be flown out of the ohmic contact. It must be
pointed out that the increase in the inversion charge is more than the reduction in the depletion charge.
As time progresses, the inversion charge increases and the depletion charge decreases correspondingly.
Ultimately at t = oo, a depletion width of x; ,,,4, is Obtained, and the inversion charge and the
depletion charge attain steady state values. The space charge region now is in thermal equilibrium. The
space-charge region thus exhibits a transient behavior before steady state conditions are reached.
Therefore the capacitance also exhibits a transient behavior. The transient response of the capacitance
is shown in Figure (5.28). In deep depletion, (i.e., at t = 0%), there is no inversion charge and there is

- 256 -



only depletion charge. Hence, the surface potential 1, (0%) is related to the step voltage V; by the
relationship

Qq(07" J2€5qN 45(0F)
Ve = — 20 4y (0%) = SWahOD 4 oy (0t

COX COX

(5.104)

This can be solved to yield, as was done earlier,
K? 4v
(0 = V, — 7( fK—ZG +1-— 1) (5.105)

K = +2€sqN 4

COX

where K is defined as equal to

(5.106)

The band-bending at t = 0% is shown in Figure (5.29). The surface potential 1); represents a potential
well at x = 0 for an electron (remember we are assuming a p-type substrate), of depth equal to ¥4 (07).
This potential well can be used to store electrons. This storage can be done only momentarily due to the
transient nature of deep depletion. By placing a large number of MOS capacitors at close spacing and by
pulsing these in a suitable sequence, the charge stored in the potential well under these capacitors can
be successfully transferred from one to the next all the way to the end of the string of capacitors. The
string of closely spaced MOS capacitors is called the charge couple device (CCD). The charge coupled
device has many applications in digital, analog and imaging circuits.

The capacitance at t = 07 is very small since the depletion region width is large and hence C; at
t = 0% is small. Hence C is also small. As time increases from t = 07, 1y, decreases and the depletion
region width decreases and Cj increases. Therefore the capacitance of the MOS capacitor also increases
and finally reaches a steady state value corresponding to x; = X4 max after alongtime. This is called
the transient behavior of the MOS capacitor.
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Figure 5.27: Application of a large step voltage on the gate of an MOS capacitor to produce deep
depletion.

Figure 5.28 Transient behavior of the capacitance of an MOS capacitor.

Figure 5.29 Band-bending in deep depletion.

MOS Transistors

The MOS transistor is a device which is based on the principle that a conducting channel is
induced in the surface of a semiconductor by an electric field of suitable polarity and magnitude. In our
study of MOS capacitors, we saw that when we apply a gate voltage larger than the threshold voltage,
the surface gets inverted. The inversion layer at the surface can provide a conducting path, and
therefore can carry electric current between two regions which are doped opposite to the substrate. As
an example, consider a MOS structure on a p-type substrate as shown in Figure (5.30). Two n* regions,
one called the source and ther other called the drain are formed by diffusing (or implanting) donor
atoms. A thin oxide layer called the gate oxide is grown on the surface of the substrate between the
source and the drain. A gate electrode extending from the edge of the source region to the edge of the
drain region is deposited on top of the gate oxide layer. When the voltage applied on the gate is less
than the threshold voltage Vi, no conducting channel exists between the source and the drain. The path
between the source and the drain comprises two n™- p junctions connected back-to-back. When the
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gate voltage V;; is made larger than Vr, an inversion layer of electrons provides a conducting channel
between the source and the drain. The conductance is dependent on the inversion charge density, and
hence on the gate voltage V,;. Thus we are able to control the conductance (and therefore the
resistance) between the source and the drain through the application of a voltage on the gate. The
device is therefore called a transistor.

The particular structure which we discussed is called an n-channel device since the charge
carriers in the conducting channel are electrons. If we had started with an n-type substrate and p*
diffusions for the source and the drain, the resulting device would have been called a p-channel device.
The drain current, I, versus the gate voltage, Vg, characteristic is called the transfer characteristic, and
it is shown in Figure (5.31) for n - and p- channel devices. For the n-channel device when the gate
voltage V;; is less than Vy no current flows, and when V;; is larger than V the current increases with V.
We will later on see that this increase is linear for small drain voltages. In the case of the p- channel
device, the threshold voltage is negative, and hence when the magnitude of the negative gate voltage is
larger than the magnitude of the threshold voltage, conduction results in the p-channel device. The
symbols for the two types of devices are also shown in Figure (5.31). The direction of the arrow in the
substrate lead is to indicate whether it is a p- channel or an n- channel device, and the convention is the
same as in a p n junction. The direction of the arrow is from the p to the n-region. In the case of the n-
channel device, the substrate is p and the channel is n. Therefore the arrow is inward. In the case of the
p-channel, the substrate is n-type and the channel is p-type, and therefore the arrow is outward.

Let us now calculate the drain current. Assume that the length of the channel between the
source and the drain lies along the y axis with the source at y = 0, and the drain at y = L. Let W be the
width of the channel. Then the current, J, in the channel is given by

J= p,nZE (5.107)
- I’ln dy *
where p, is the mobility of the electrons, n is the electron density, and Er is the Fermi energy. The
current density J is in units of amperes per square centimeter. Let us assume that a voltage V,, between
the source and the drain. At any point, the voltage drop along the channel measured with respect to the

d
source will be denoted V (y). The gradient of the voltage along the channel is é . The gradient of Fermi

energy is related to the gradient of the voltage drop along the channel through the relationship

dEp av (5.108)
dy q dy '
We can therefore write the current density as equal to
av
J= —qupn — (5.109)

dy

Let x; be the thickness of the inversion layer of electrons. Furthermore, let us assume that the electron
density, n, is constant in the inversion layer perpendicular to the channel. Then the drain current I, is
equal to the current density, /, multiplied by W x; , and is given by

av
Ip = —qu,nWx; o (5.110)
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Consider a small section of the inversion layer a shown in Figure (5.32). Let us now describe a
rectangular strip of length dy, contained between y and y + dy. The charge contained in this
rectangular strip is equal to Q,,W dy since Q,, is the electron (inversion) charge per unit area of the
surface. But this is also equal to

Q.Wdy =—qgqnWx; dy (5.111)

Hence

Q, =—qnx; (5.112)
Using this expression for Q,, we can express the drain current as

av

In = u, Q, WE (5.113)

<>
"

A <
(P77 7777777777777 7777775

Figure (5.30) A schematic representation of the n-channel MOS transistor.

Figure (5-31) The transfer characteristics and the symbol for a) n-channel device and b) p-channel
device.
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Figure (5-32) A section of the inversion layer between y and y + dy
We will now distinguish three cases:

Case 1: Small Vp,

Let the source and the substrate be connected together to the ground. We will assume that the
drain voltage Vp is small. Therefore it is reasonable to assume that the inversion charge density is the
same everywhere in the channel i.e., does not vary with y. The inversion charge density Q;;,,, is given by

Qiny = Qn = —Cox (Vg — V7) (5.114)

where C,, is the oxide capacitance per unit area. The inversion layer now looks like a rectangular sheet
of electron charge of dimensions W, L and x; as shown in Figure (5.33). Therefore the drain current is
given by

d
Iy = —u,WC,,(V, — VT)é (5.115)

av 14
We can now approximate the gradient o as equal to TD since the drain voltage I/ is very small.
Hence
w
Ip = —un ~ Cox Ve =Vr) Vp (5.116)

We see therefore that the drain current varies linearly with the drain voltage and also linearly with the
gate voltage.
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Figure (5-33) Approximation of the inversion layer as a sheet charge.

Case 2: Large V}, (Simplified Treatment)

We will now consider the case when the drain voltage, Vj, is large. We present a simplified

. . . . . . av .
treatment. Since the drain voltage V}, is large, it is no longer possible to assume that the gradient o is

constant everywhere between the source and the drain. Due to V(y), the inversion charge density will
be different for different values of y. In the early days, it was assumed that a threshold voltage V;(y) at

some value of y was related to Vi at y = 0 at the source by the relation

Vr@y) = Vr(y =0) + V(y)

At the drain therefore, the threshold voltage will be given by

Viy=L)=Vr(y=0)+Vp

(5.117)

(5.118)

Hence the inversion charge density, Q,,, according to Equation (5.114) is at a maximum value at the
source, decreases along the channel, and is at minimum value at the drain. Another way of looking at
this is that the electric field between the gate and the substrate is large at the source and decreases as
one proceeds towards the drain. Hence the induced inversion charge gets smaller as you approach the

drain. The inversion charge density Q,,(y), at some point y in the channel is therefore given by

Q. (y) =— Cox[Ve — VT(y)] = —Cox[Vs — Vr(y =0) — V(y)]

Substituting this value of Q,, in the expression for drain current given before, we get

av
Ip = — paWCox[Ve — Ve (y = 0) = V(y)] dy

Multiplying both sides of the above equation by dy and integrating, we obtain

Vb
bL=—j U W ConlVe — Ve(y = 0) — V(3)]dV
0

Vb
= = W Cox |Vs = Ve (y = 0) = 2|V,
Dividing both sides of the equation by L, the drain current is obtained as

n WCox V
Ip = — MT[VG —Vr(y =0) —7D]VD

Writing the threshold voltage at the source y = 0 as /-, we obtain I as equal to
_ Un WCoy Vp
I = = v = v = 2|V

At the drain, y is equal to L, and therefore Q,, at y = L is equal to
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(5.121)

(5.122)

(5.123)



Qu(y =L) == Cox[Vg — Vr — Vp] (5.124)

The inversion charge density at the drain decreases, as Vj is increased, and at some value of Vj, denoted
V) sat, the inversion charge density Q,,(y = L), becomes zero. Q,, at the drain becomes zero when

Vo =Vpsar =V — Vr (5.125)

At this value of the drain voltage, the channel is said to be “pinched-off” at the drain, and hence Vj, 44; is
also denoted I}, . We denote the drain current at V, equal to Vp g4¢, as I gq¢- Substituting V 4 for Vp in
Equation (5.122), we get

Ip sat = = P |V = Vp = 2| Vp g = = ERTRE (Vp — V)P (529
When the channel is pinched off at the drain, the drain current is proportional to the square of the gate
voltage as shown in Equation (5.126). If V} is increased beyond Vj, 4, the channel is pinched off at
some other value of y < L. In other words, the pinch off point moves towards the source. The voltage
at the pinch-off point y is now equal to Vj, ¢4. Another way of looking at this is at the pinch off point,
the gate voltage is equal to the local threshold voltage. Hence the inversion charge density is zero.

When V, > Vp o4, let L' be the distance of the pinch-off point from the source as shown in
Figure (5.34). The region between y = L’ and y = L, has a voltage drop Vp — Vj 4t This region is a
depletion region. Although the channel is pinched off at y = L', the current through the device is what
would flow in a device with V, = V¢, and of length L', since the integration carried out in Equation
(5.121) to obtain I is now carried out between the source and the pinch off point. In other words, the
current is given by

n WCOX
IpWp > Vpsar) = — 572 (Vg = Vp)? (5127)

In the olden days, devices were fabricated with very large L, and hence L — L' was negligible in
comparison with L. Hence I at voltages greater than Vp 5, was essentially the same as what was
obtained at Vp = Vj g4¢- It is though the drain current saturates to a constant value I 4.

n WCOX
IoWp > Vpsat) = Ipsar = — 57 (Ve = Vr)? (5.128)

However, in modern short channel devices the distance (L — L' ) between the pinch off point and the
drain is not negligible in comparison with L. Hence the drain current does not remain constant with the
drain voltage, and increases with the drain voltage in saturation. The drain voltage drain current
characteristic is shown in Figure (5.35). The drain conductance gy, is defined as

alp

9p = — |V; = constant (5.129)
vy
and the transconductance g,, is defined as
alp
Im = 5 |Vp = constant (5.130)
G
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Figure (5.34) Schematics representation of the channel pinch-off.

Figure (5.35) The drain current/drain voltage characteristics, called I, — V}, characteristics, of an n-
channel MOS transistor.

We will call the region of operation when Vp < Vp ¢4t as linear, and the region when
Vp > Vp sqr as the saturation region. This is shown in the table given below. Thus we see that as the
drain voltage is increased, the current deviates from a linear behavior and ultimately saturates to I s4¢-

Linear Saturation
wcC ~
9o “"L_Ox Ve — Vi) 0
wc wcC
Im HUn ; ox VD HUn ; o0x (VG _ VT)

Case 3: Large V, ( A More Exact Treatment)
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The assumption made in Case 2 that the threshold voltage at any point y in the channel
increases from its value at the source by the amount V(y) presupposes that the depletion region width
does not change with the voltage drop V(y). In other words, it is implicit in this assumption that the
depletion region width is the same from the source to the drain independent of V(). This is not correct.
If we refer to Figure (5.36) we will notice that due to the voltage drop V (y) the Fermi level at point y is
decreased from the Fermi level in the bulk by an amount equal to qV (y) and therefore the band has to
be bent by g (V(y) + 2|@,|) to produce the onset of inversion. Hence the condition for the inversion to
setin at y is dictated by VV(y). The band-bending for the onset of inversion at y is given by

lpsinv(y) = V(Y) + 2|®b| (5.131)

Under this condition, the depletion region width at y is given by

)= [ZEVO) + 210, ] 5132

And the depletion charge density at y is given by

Qu(y) = —q Ny x4(y) = —\Jq Na2 ,[V(Y) + 2|0,] (5.133)

Now if we were to write the expression for gate voltage in terms of the space charge density and y; we
get

Ve = Vox + s (y) = - QS#S])"'I/)S (y) (5.134)

Figure (5.36): Band-bending at y when the voltage drop is V (y).

We will now use the depletion approximation according to which the band bending in strong
inversion is the same as the band bending at the onset of inversion. That is, the surface potential
continues to remain at

Ys ) =V(©) + 2[0] (5.135)

even in strong inversion. Using the above two equations, we find that the total space-charge density is
given by

Qsc ) = —Cox Vo — Vs )] = —Cox [Ve — V(¥) — 2]0,]] (5.136)
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The inversion charge density is the difference between the total space charge density and the depletion
charge density. Hence, the inversion charge density is given by

Qn (y) = Qsc (y) - Qd (y)
VaNaZEs 0y 4 210,02

=—Cox V6 — V(y)_ 2|Q)b|_ C
0x

If we substitute this in the expression for the drain current which is
I W Qn(y) il
D~ Hn nY dy
d
and then integrate after multiplying both sides by Ty' we obtain

n Cox W 4 2 NaZ € 2
I, = — tnCox W [(VG— L 20, 1) Vp — XS (1, + 216,12 -

L 2 Cox

210,12 )]
(5.137)

We could have arrived at the same result by determining the local threshold voltage V;(y) as

Vr(y) = YaNAZE V) + 210, +V(y) + 2|0,] (5.138)

COX

and obtaining the inversion charge density as

Qn(y) = —Cox Ve —Vr (v)] (5.139)

This expression for the drain current is valid as long as the channel is not pinched off due to a high drain
voltage. The channel is pinched off at y = L if the gate voltage is equal to the threshold voltage at y =
L. Vp ¢4t therefore can be obtain from Equation (5.138) by putting Vi (y = L) asV; and V(y = L) as
Vp sat- Hence solving for Vp ¢4 (left as an exercise for the student), we get

2
Vpsat = Vp — K?( ’%‘F 1- 1) — 2|0, (5.140)

K — 1IZ(:'SCINA
C

ox

where

(5.141)

K is called the body factor, and is also sometimes denoted y.

The expression for the drain current I, given in Equation (5.137) is valid in strong inversion
regions (VV; > V;). This expression is modified in the presence of a substrate bias voltage. If a reverse

- 266 -



bias voltage Vg is applied between the source and the body, then the amount of band bending needed
at the source (y = 0) for the onset of inversion is

Ys ¥y =0) =Vsp + 2[0,| (5.142)

The band-bending required at the onset of inversion at some point y in the channel is therefore equal to

Ys ) =Vep + V() + 2|0 (5.143)

Hence the expression for the drain current in the presence of a substrate bias is modified such that
2|0, is replaced by Vsg + 2|@,| and is therefore given by

Ip =_M+W [(VG_ %_VSB_ 2|®b|)VDS - %V ((VDS +Vsp +

210, 1) — (Vs + 29,2 ) |

(5.144)

where V¢ is the drain to source voltage, V; is measured with respect to the substrate, and y is equal
to K given in Equation (5.141)

Measurement of V.

The threshold voltage, can be obtained by measuring the drain current as a function of the gate
voltage for a small value of drain voltage. When the drain current is plotted as a function of V, the
characteristics shown in Figure (5.37) are obtained. If we now extrapolate the linear portion to intercept
the voltage axis, the intercept on the voltage axis is the threshold voltage.

We note that I, does not go to zero when the gate voltage, V;; is equal to V. This is because
the inversion charge density does not actually go to zero at this voltage. In fact, a small drain current
flows through the device, even when the gate voltage is less than the threshold voltage under weak
inversion conditions. This region of operation is called the subthreshold region. The calculation of the
drain current in the subthreshold region is beyond the scope of this course. Hence we will assume that
the drain current is zero at V; = V.

Equivalent Circuit

We can draw the equivalent circuit for the MOS transistor. This is illustrated in Figure (5.38). The
input voltage is applied between the gate and the source, and the output current is taken between the
drain and the source. C;;, and G, are the capacitance and the conductance that the input voltage
source looks into. In our case, Cj, is given by

Cn=—=WLC,, (5.145)
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The value of Cj, is obtained in strong inversion. The input conductance, Gj,, is essentially due to
leakage current in the oxide. The feedback capacitance between the drain and the gate, Cf, is the sum
of the gate overlap capacitance and the fringing field capacitance. The overlap capacitance arises
because the gate electrode extends beyond the length of the channel over the source and the drain
region. This fringing field capacitance arises due to edge effects. The output conductance gp is given by

§1Ip
= — 5.146
1)) 5 Vp ( )
The transconductance g, is given by
é1Ip
gm - S VG

The output capacitance is the capacitance between the drain and the source region, and that is
essentially equal to the capacitances of the source-to-substrate pn-junction and the drain to substrate
pn-junction.

We can now calculate the maximum frequency up to which the MOS transistor can be used. The
constant current source in the output circuit is equal to g, Uiy. This constant current source therefore,
is directly related to the voltage across the conductance G;;, thatisin other words, the current through
the conductance G;, . Therefore as the frequency is increased, the input current flows more and more
through the input capacitance C;,, and less through the conductance G;, . We can now calculate the
gain of the device at any given frequency, just as we did for the bipolar transistor in the last chapter. The
maximum frequency is defined as that at which the current through the input capacitance, C;, is equal
to gm Vi - The current through Cyy, is given by ¥;jw Cyy,. Equating this to g, 7, we get

Im

Wmax = Cim (5.147)

This now leads to the maximum frequency as equal to

Im

= —_— 5.148
fmax = S (5.148)

The ratio 2™ is called the figure of merit. In the linear region we saw that the transconductance g, is
in

given by
_ Un Cox w
and
Cin =W LC,,

Substituting these two values to calculate the figure of merit, we find the maximum frequency fp,4 to
be

1 unVp

= — 5.149
fmax 2 12 ( )
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. . . . . Vp . .
Assuming V, is very small because we are considering the linear region, - s approximately the

electric field, and multiplying it by u,, gives us the velocity, and therefore, the maximum frequency f;,,4x
is rewritten as

v 1

= = 5.150
fmax 2L 2T Ter ( )

where v is the velocity of the carriers in the channel, and % is the reciprocal of the transit time 7,.. Thus

we find that the maximum frequency at which the device can be operated is related to the time of
transit of carriers from the source to the drain. The intrinsic limit on the maximum frequency of
operation is imposed by the transit time of the carriers. This is true not only in MOS transistors and
bipolar transistors but also in all other devices.

Figure (5.37) Plot of the drain current as a function of the gate voltage to obtain the threshold voltage

Figure (5.38) Equivalent circuit for the MOS transistor.
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Summary

An MOS device uses the electric field applied perpendicular to the surface of a semiconductor to
induce space-charge in the semiconductor. The MOS structure consists of a semiconductor
substrate on the surface of which a thin oxide layer is grown. A conducting layer (metal),
deposited on top of the oxide, is called the gate and a voltage applied on the gate generates the
electric field perpendicular to the semiconductor surface (also called the interface).

The space charge induced by the voltage on the gate bends the bands in the semiconductor up
or down towards the interface according to whether the gate voltage is negative or positive,
respectively.

When the induced charge is of the same polarity as that of the majority carriers in the substrate
(bulk), excess majority carriers accumulate at the interface. The surface is said to be
accumulated in this case and the device is in accumulation region of operation. The space
charge is due to the excess majority carriers.

When the induced charge is of a polarity opposite to that of the majority carriers in the
semiconductor, the induced space charge is initially due to ionized impurity atoms in the
substrate and the surface is said to be depleted. The device is said to be in the depletion region
of operation. For larger values of gate voltage the minority carrier density at the interface
becomes comparable to or large than the majority carrier density in the bulk. Under these
conditions, the surface is said to be inverted. The charge due to the excess minority carriers is
called the inversion charge and the layer of excess minority carriers is called the inversion layer.
The inversion layer is very thin and therefore the inversion charge can be considered as a sheet
charge. The space charge is due to both depletion charge and inversion charge.

The space charge density, which is defined as the charge contained in the space charge under
unit area of the interface, determines the electric field in the oxide and hence the potential
difference across the oxide.

The potential difference across the space charge region is the amount of band bending in the
space charge region and is called the surface potential. The surface potential determines
whether the substrate is accumulated, depleted or inverted.

The charge in the accumulation layer or in the inversion layer is approximated as a sheet charge
and hence the potential difference across these layers is taken as negligible. On the other hand,
the depletion region is of non-zero width. The width of the space charge region is therefore
approximated as the width of the depletion region.

Inversion sets in when the bending of the band is such that the difference between the Fermi
energy and the intrinsic Fermi energy at the interface is the same in magnitude as the difference
between these two energies in the bulk but of opposite polarity. This condition is called “on-set
of inversion”. The gate voltage at which the surface starts to be inverted (on-set of inversion) is
called the threshold voltage.
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According to the depletion approximation, the depletion region width remains constant in
strong inversion at a value it had at the on-set of inversion. The width of the depletion region
remains at a maximum value x4 4, Under inversion condition.

An ideal MOS device is one in which there is no space charge in the semiconductor when the
gate voltage is zero. A voltage is required to be applied on the gate to induce a space charge.

A non-ideal MOS device is one in which there is a space charge even when there is no applied
voltage on the gate, Charge in the gate oxide, interface states and work function difference
between the gate and the substrate give rise to non-ideal behavior.

Flat band voltage is the voltage needed to be applied on the gate to reduce the space charge to
zero so that the device with a voltage on the gate equal to the flat —band voltage looks like an
ideal device with zero gate voltage.

The space charge induced by the oxide charge and the work function difference is independent
of band-bending while that due to the interface states depends on band bending.

Interface states can be acceptor type or donor type. It is conventional to assume that the
interface states in the upper half of the band gap are acceptor type while those in the lower half
are donor type.

The space charge region gives rise to small signal capacitance effect. This capacitance is called
space charge capacitance and is equal to the rate of increase of space charge with surface
potential.

Since the inversion and accumulation charge increases exponentially with surface potential, the
space charge capacitance of accumulation and inversion charges is much larger than the
capacitance due to the oxide layer. The capacitance due to the oxide layer called the oxide
capacitance is the same as a parallel plate capacitor with the gate oxide as the dielectric. The
MOS capacitor behaves equivalent to a series combination of the oxide capacitance and the
space charge capacitance.

Due to the dependence of the space charge capacitance on the surface potential which in turn
depends on the gate voltage, the capacitance of a MOS capacitor varies with the gate voltage.
The capacitance-voltage characteristic is called the C-V curve.

In accumulation, the MOS capacitance is equal to the oxide capacitance itself since the space
charge capacitance is very much larger.

As the device is biased into depletion, the space charge capacitance (equal to the depletion

region capacitance = ;—S) decreases (due to the increase in depletion region width) and hence
d

the capacitance of the MOS device decreases.

At strong inversion, the capacitance behavior is different at high and low frequency of the
measuring small signal. At high frequencies, the inversion charge does not vary in step with the
small measuring signal and hence the space charge capacitance remains at a minimum value

~
~

< and the MOS capacitance remains constant at a minimum value.
d max

At low frequencies, the inversion charge has time to be generated thermally so that it can vary
in step with the measuring signal; hence the space charge capacitance is determined by the
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variation with time of the inversion charge and is therefore very large. The MOS capacitance in
strong inversion becomes equal to the oxide capacitance as in the accumulation case.

In the MOS transistor, the conductance between two heavily doped regions, in the substrate,
(called the source and the drain) is controlled by the surface inversion of the region between the
source and the drain.

In the simplest model, the drain voltage is assumed to be small and the inversion charge density
is assumed to be constant between the source and the drain.

If the inversion charge is due to electrons providing a conductance between the n* source and
drain, the device is called an n-channel MOS transistor.

If the source and drain are heavily doped p regions and the inversion charge is due to holes, the
device is called a p-channel MOS transistor.

When the drain voltage is high, the inversion charge density decreases towards the drain due to
the voltage drop along the channel. This is equivalent to the local threshold voltage increasing
from its lowest value near the source to the highest value near the drain.

In one approximate model, the local threshold voltage at some point y in the channel is taken as
sum of the voltage drop at y measured with respect to the source and the threshold voltage at
the source.

In a more exact model, the band bending required to attain inversion at some point y in the
channel is taken as the sum of voltage drop at y and the band bending needed at the source to
produce inversion.

As the drain voltage is increased, ultimately the inversion charge density at the drain decreases
and becomes zero. The channel is said to be pinched off at the drain. When the drain voltage is
increased further, the pinch — off point moves toward the source and the drain current increases
very slowly with the drain voltage as though the current has saturated. Hence the transistor is
said to be operating in the saturation region.
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Glossary

= Angstrom (s)

= an integration constant

= capacitance per unit area of the MOS capacitor

= depletion layer capacitance

= feedback capacitance between the drain and the gate
= input capacitance

= measured capacitance

= minimum capacitance in the high frequency C — V curve
= oxide layer capacitance per unit area

= space charge capacitance per unit area

= electrostatic potential

= energy at the bottom of the conduction band (also potential energy of electrons)
= Fermi energy

= Fermi level in a p-type semiconductor

= energy gap

= intrinsic Fermi energy

= intrinsic Fermi energy level in the bulk

=vacuum level

= energy at the top of the valence band (also potential energy of holes)
= electric field

= electric field in the oxide

= electric field at x

= maximum frequency

= drain conductance or output conductance

= transconductance

= input conductance

= small signal current

=drain current

= drain current at saturation

= current density

= Boltzmann constant

= body factor, also y

= dielectric constant of the oxide

= length of the channel

= distance of the pinch-off point from the source

= electron density

= thermal equilibrium electron density

= electron density in the bulk

= intrinsic carrier density
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Mo = thermal equilibrium electron density in n-type material

ng = electron concentration at the interface or surface
n(x) =electron density at x

Ny = acceptor impurity density

Ny = jonized acceptor impurity density

Np = donor impurity density

N7 = jonized donor impurity density

N, = number of interface states per unit area per unit energy interval at some energy level E
p = hole density

Do = thermal equilibrium hole density

Db = hole density in the bulk

Ds = hole concentration at the interface or surface
p(x)  =holedensity at x

q = electron charge (magnitude)

q® = work function of the solid

qP, = work function of solid A

qPp = work function of solid A

Q = sinusoidally varying small signal charge
Qucc = space charge density in accumulation

Q4 = depletion charge density

Q4 max =maximum depletion charge density

Q¢ = charge on the gate

Qinv = inversion charge density

Q, = electron density at the surface or interface
Qox = effective sheet charge density

Qp = hole density in the surface or interface
Qsc = space charge density

Q¢ = sheet charge density at the interface or surface
t =time

tox = thickness of the oxide layer

v = velocity of the carriers in the channel

1% = small signal sinusoidal voltage

Ug = small signal sinusoidal gate voltage

Vyi = built-in voltage, contact potential

Vp = drain voltage

Vpsat = Ssaturation drain voltage

Vps = drain to source voltage

Veg = flat-band voltage

Do = thermal equilibrium density of holes

Ve = gate voltage

Vox = voltage across the oxide layer

4 = pinch-off voltage
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Vsp = reverse substrate bias voltage

Ve = threshold voltage

Vi idear = threshold voltage of an ideal MOS device

Vr non—idear = threshold voltage of a non-ideal MOS device
V(y) =voltageaty

w = width of the channel

X = position value

Xq = width of the space-charge or depletion region

Ximax = depletion region width at the on-set of strong inversion
Xy = thickness of the inversion layer of electrons

y = position value

Ay,  =change in surface potential

€o = permittivity of free space

€ox = permittivity of the oxide

€s = permittivity of the semiconductor

y = body factor, same as K

) = electrostatic potential

@ = bulk potential

D, = bulk electrostatic potential of the n-region

D, = bulk electrostatic potential of a p-type semiconductor
@ (x) = electrostatic potential at x

O] = work function

(ON = work function of a p-type semiconductor

o, = work function of an n-type semiconductor

&, =contact potential

O3 = work function of the gate

®ys  =work function difference between the gate and the substrate
(OR = work function of the substrate semiconductor

p = charge density

Ty = minority carrier generation lifetime

Ttr = transit time

Y = electrostatic potential difference

Py = surface potential or interface potential

Yiny = band bending at the onset of inversion or surface potential at onset of inversion

P(x) = electrostatic potential difference at xi.e.,, @ (x) — @y,
X = electron affinity

w = 2 1t times the frequency of the small signal voltage ¥
Wmax =2 times the maximum frequency
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10.

11.

12.

Problems

Show that ng = n; when ¥, = — @, for a MOS device with a p-type substrate.
For an ideal MOS diode (capacitor) with t,, = 5004 and N, = 10'°cm™3, Find the value of the
surface potential 1); and the voltage across the oxide layer required to produce a) intrinsic
condition at the interface and b) on-set of strong inversion at the interface.
In a MOS capacitor with a p-type substrate determine the space-charge density for a gate
voltage of 0.75 V assuming the oxide layer thickness to be 1000 A and the substrate impurity
concentration to be 5 x 10°cm 3.
Consider a MOS capacitor with a substrate doping of 2 x 101°cm ™2 of donor atoms and an
oxide thickness of 600 A, Determine the gate voltage at which the surface becomes intrinsic.
For the device in the previous problem, find the value of the space-charge density at a gate
voltage equal to

a. The threshold voltage

b. Twice the threshold voltage
For the device in the previous problem, find the inversion charge density and the depletion
region charge density when the gate voltage is three times the threshold voltage.
For the device in the previous problem, find the high and low frequency capacitance at a gate
voltage of —4V. Assume an area of 10~*cm? for the capacitor.
Show that the potential ¥(x) in the depletion region of a MOS capacitor varies as

2
X
v =y (1-2)
Show that in deep depletion, the relation between the gate voltage and the surface potential
Yy is given by
_ K% [ |4V,

Vo= [z +1-1]+ws

Where K is defined as
v 2€5q Ny
COX
Consider a MOS device in which the oxide layer contains positive ions with a density of
10%®cm™3. If the oxide thickness is 400 A calculate the flat-band voltage V.
Assume the gate is p-type poly-silicon with an impurity concentration of 1017¢cm™3 and the

substrate to be n-type with a resistivity equal to 5 £2-cm. Assuming the electron affinity of silicon
to be 4.1 V, determine the flat-band voltage.

Consider a MOS capacitor with a p-type substrate and an oxide thickness of 500 A . Letthe
substrate impurity density be 5 x 101°cm™3. Assume the device is ideal.

Calculate the high frequency and low frequency capacitances in strong inversion.

Assuming that a step voltage of 5 V is applied on the gate at t = 0. Calculate the small signal
capacitanceatt = 0%,
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13.

14.

15.

Consider a MOS transistor with a p-type substrate containing 10'>cm=2 acceptor impurities and
an oxide thickness of 500 A. The flat-band voltage is 0.5 V. Determine the drain conductance for
a gate voltage of 5 V in the linear region. Take the mobility y,, as 900 cm?V ~1sec™, W as
20 yum and L as 10um.
For the device in the previous problem, determine the transconductance in the saturation
region.
Consider an n-channel MOS transistor with t,, = 150 A. The substrate impurity concentration
is 101cm™3. Let the channel length, L, be 2 um, the channel width, W be 20 ym and the
mobility of the channel carriers be 750 cm?V ~lsec™!.
What is the value of the transconductance for a drain voltage of 20 mV?
Assume that the oxide has positive ions of density equal to 1017 cm™3. Assume that
the gate is p-type poly-silicon with an impurity density of 1018cm™3. Neglect the
contribution of surface states to the flat-band voltage. Using the simplified
treatment given in case 2, determine the saturation drain voltage, V54 for a gate
voltage 5 V.
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